
L3 Mention Informatique
Parcours Informatique et MIAGE

Génie Logiciel Avancé -
Advanced Software

Engineering
 Deductive Verification II

Burkhart Wolff
(burkhart.wolff@universite-paris-saclay.fr)

https://usr.lmf.cnrs.fr/~wolff

mailto:burkhart.wolff@universite-paris-saclay.fr

9/8/20 B. Wolff - GLA - Deductive Verification

Recall: The role of formal proof

❑ formal proofs are another technique for program verification
➢ based on a model of the underlying programming language,

the conformance of a concrete program to its specification
can be established

	FOR ALL INPUT DATA AND ALL INITIAL STATES !!!

❑ formal proofs as verification technique can:
➢ verify that a more concrete design-model “fits”

to a more abstract design model
(construction by formal refinement)

➢ verify that a program “fits” to a concrete design model.

9/8/20 B. Wolff - GLA - Deductive Verification

Recall: Hoare – Logic

❑ A means to reason over all input and all states: Is there

	 	

❑ We consider the Hoare-Logic, technically
an inference system PL + E + A + Hoare

A Logic for Programs ???

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: A Proof System for Programs

❑ Basis: The mini-language „IMP“,
(following Glenn Wynskell's Book)

❑ We have the following commands (cmd)
➢ the empty command 	 SKIP
➢ the assignment 		 x:== E		 (x ∈ V)
➢ the sequential compos.	 c1 ; c2	

➢ the conditional	 	 IF cond THEN c1 ELSE c2

➢ the loop		 	 WHILE cond DO c

where c, c1, c2, are cmd's, V variables,

E an arithmetic expression, and cond a boolean expression.

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: A Proof System for Programs

❑ Core Concept: A Hoare Triple consisting ...
➢ of a pre-condition P
➢ a post-condition Q
➢ and a piece of program cmd
➢ the triple (P,cmd,Q) is written:

➢ P and Q are formulas over the variables V,
so they can be seen as set of possible states.

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: A Proof System for Programs

❑ Idea: We consider the specification (precond, postcond)
and the program together

❑ The Hoare-Triple says : The program “is conform”
to the specification

❑ More precisely:

If a program cmd starts in a state admitted
by P if it terminates, that the program must
reach a state that satisfies P.

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: A Proof System for Programs

❑ PL + E + A + Hoare (simplified binding) at a glance:

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: A Proof System for Programs

Let’s consider it one by one …

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: A Proof System for Programs

❑ The SKIP-rule for the empty statement:

well, states do not change ...

Therefore, valid states remain valid.

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: A Proof System for Programs

❑ The assignment rule:

❑ Example (1):
 	
 ⊢ {1≤x ∧ x≤10} x:== x+2 {3≤x ∧ x≤12} 

❑ Is this really an instance of the assignment rule ? We calculate: 

 (3≤x ∧ x≤12) [x↦x+2]
 ≡ 3≤(x+2) ∧ (x+2)≤12
 ≡ 1≤x ∧ x≤10

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: A Proof System for Programs

❑ The assignment rule:

❑ Example (2):
 	 	 ⊢ {true} x:== 2 {x=2} 

❑ Is this really an instance of the assignment rule ? We calculate: 

 (x=2) [x↦2]
 ≡ 2=2 ≡ true (reflexivity…)

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: A Proof System for Programs

The conditional-rule:

Example (3):

This can be extended to the formal proof:

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: A Proof System for Programs

❑ The conditional-rule:

Example (3):

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: A Proof System for Programs

❑ The sequence rule:

❑ essentially a relational composition on state sets.

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: A Proof System for Programs

The rule for the sequence.

Example (4):

 This can be extended to the formal proof:

0

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: A Proof System for Programs

The rule for the sequence.

Example (4):

It is often practical to introduce abbreviations.

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: A Proof System for Programs

❑ The while-rule.

❑ This works like an induction: if some P is true after n traversals of the loop
and remain true for the n+1 traversal, it must be always true.

❑ When exiting the loop, the condition cond can on longer hold.
❑ The predicate P is called an invariant. Note that an invariant

can be maintained even if the concrete state changes ! See:

 ⊢ {1≤x ∧ x≤10} WHILE x < 10 DO x:== x+1 {¬ (x < 10) ∧ 1≤x ∧ x≤10}

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: A Proof System for Programs

❑ The consequence-rule:

Reflects the intuition that P' is a subset of legal states P and Q is a subset
of legal states Q’.

This is the only rule that is not determined by the syntax of the

program; it can be applied anywhere in the (Hoare-) proof.

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: A Proof System for Programs

❑ The consequence-rule:

Example (5) (the continuation of Example (3)):

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: A Proof System for Programs

❑ The Hoare calculus has a number of implicit
consequences, i.e. rules that can be derived from
the other ones.

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: A Proof System for Programs

❑ A handy derived rule, the False-rule:

❑ Proof: by induction over cmd ! (At the Blackboard)

❑ A very handy corollary of the False-rule and the
consequence-rule is the FalseE-rule:

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: A Proof System for Programs

❑ Another handy corollary of the False-rule:

Proof:
by consequence-rule, while-rule,
P and cond-negation,
False-rule.

This means: If we can not enter into the WHILE-loop, it behaves like a SKIP.

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: A Proof System for Programs

❑ Yet another handy corollary of the consequence rule:

Proof:
by consequence rule and the fact that P = P' (ou P ≡ P’) infers P → P'

❑ Note: We will allow to apply this rule implicitly, thus leveraging
local “logical massage” of pre- and post-conditions.

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: A Proof System for Programs

❑ Example (6):

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: A Proof System for Programs

❑ Example (6):

Proof (bottom up):

true ∧ ¬true ≡ false

√ √

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: A Proof System for Programs

❑ Example (6):

Note:
Hoare-Logic is a calculus for
partial correctness; for non-terminating
programs, it is possible to prove anything!

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: A Proof System for Programs

❑ Example (7):

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: A Proof System for Programs

❑ Example (7):
Proof (bottom up):

We can’t apply the WHILE-rule directly — the only other choice is
the consequence rule. Instantiating the invariant variable P by a
fresh variable I allows us to bring the triple into a shape that we
can apply the WHILE rule later

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: A Proof System for Programs

❑ Example (7):
Proof (bottom up):

Now we can apply the while rule.

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: A Proof System for Programs

❑ Example (7):
Proof (bottom up):

To be sure (entering the while loop) we apply again the
consequence rule. For the missing bit, we instantiate I’’.

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: A Proof System for Programs

❑ Example (7):
Proof (bottom up):

Now, in order to make the assignment rule “fit”, we must have
I’’ ≡ I'[x ↦ x+1].

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: A Proof System for Programs

Additionally, in order that this constitutes a Hoare-Proof, we must
have all the implications.

❑ Example (7):
Proof (bottom up):

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: A Proof System for Programs

❑ Example (7):
  

So, we have a Hoare Proof iff we have a solution to the
following list of constraints:

I'' ≡ I'[x ↦ x+1]

A ≡ true → I

B ≡ I ∧ ¬(x < 2) → 2 ≤ x

C ≡ I ∧ x <2 → I'[x ↦ x+1]

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: A Proof System for Programs

❑ Example (7):
Proof:

➢ I must be true, this solves A, B, D
➢ we are fairly free for a solution for I';

e.g. x ≤ 2 or x ≤ 5 would do the trick !

I'' ≡ I'[x ↦ x+1]

A ≡ true → I

B ≡ I ∧ ¬(x < 2) → 2 ≤ x

C ≡ I ∧ x <2 → I'[x ↦ x+1]
D = I' → I

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: Some facts.

Assume that we have a reasonably well-defined
“compiler function” that maps a program to
a relation from input to output states:

Then we can define the “validity” of a specification:

 C : cmd → (σ×σ)Set

(See Winskell’s Book)

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: A Proof System for Programs

❑ Remarks:
This proof rises the idea of particular construction
method of Hoare-Proofs, which can be automated:

❑ apply bottom-up all rules following the cmd-syntax;
introduce fresh variables for the wholes where necessary

❑ apply the consequence rule only at entry
points of loops (this is deterministic!)

❑ extract the implications used in these consequence rule
❑ try to find solutions for these implications

 (worst case: ask the user ...)
➢ Essence of all: again, we reduced a program verification problem

to a constraint resolution problem of formulas …
➢ … provided we have solutions for the invariants.

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: Some facts.

Theorem: Correctness of the Hoare-Calculus:

… so, whenever there is a proof, it is also
valid wrt. C.

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: Some facts.

Theorem: Relative Completeness of the Hoare-
Calculus

Amazingly, this holds also the other way round:
whenever a specification is valid, (and we can solve
all the implications on arithmetics), there is a Hoare-
Proof.

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: Summary

❑ ... in the essence, the Hoare Calculus is an entirely
syntactic game that constructs a labelling of the
program with assertions …

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare-Logic : Summary

❑ Note: Validity is a « partial correctness notion »

proof under condition that the program terminates.
For non-terminating programs, the calculus allows

to prove anything

❑ The Deductive Proof-Method is therefore two-staged:
➢ verify termination (find mesures for loops and

recursive calls that strictly decrease for each iteration)
➢ prove partial correctness of the spec for the program

via a Hoare-Calculus (or an alternative such as the wp-calculus)

	

	 total correctness = partial correctness + termination …



9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: Summary

Formal Proof

➢ Can be very hard – up to infeasible
(nobody will probably ever prove the
 correctness of MS Word!)

➢ But still, the proof-task can be
automated to a large extent.

