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9/8/20 B. Wolff - GLA - Deductive Verification

Recall: The role of formal proof 

❑ formal proofs are another technique for program verification 
➢ based on a model of the underlying programming language, 

the conformance of a concrete program to its specification 
can be established 
 
	FOR ALL INPUT DATA AND ALL INITIAL STATES !!!  

❑ formal proofs as verification technique can: 
➢ verify that a more concrete design-model “fits” 

to a more abstract design model 
(construction by formal refinement) 

➢ verify that a program “fits” to a concrete design model.
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Recall: Hoare – Logic

❑ A means to reason over all input and all states: Is there 
 
 

	 	  

❑ We consider the Hoare-Logic, technically  
an inference system PL + E + A + Hoare

A Logic for Programs  ???
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Hoare – Logic: A Proof System for Programs

❑ Basis: The mini-language „IMP“,  
(following Glenn Wynskell's Book) 

❑ We have the following commands (cmd) 
➢ the empty command 	             SKIP 
➢ the assignment  		              x:== E		 (x ∈ V) 
➢ the sequential compos.	        c1 ; c2	  

➢ the conditional	 	               IF cond THEN c1 ELSE c2 

➢ the loop		 	                      WHILE cond DO c 

where c, c1, c2, are cmd's, V variables, 

E an arithmetic expression, and cond a boolean expression. 
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Hoare – Logic: A Proof System for Programs

❑ Core Concept: A Hoare Triple consisting ... 
➢ of a pre-condition                P 
➢ a post-condition                   Q 
➢ and a piece of program         cmd 
➢ the triple (P,cmd,Q) is written: 

 
 

➢ P and Q are formulas over the variables V, 
so they can be seen as set of possible states.
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Hoare – Logic: A Proof System for Programs

❑ Idea: We consider the specification (precond, postcond)  
and the program together 

❑ The Hoare-Triple says : The program “is conform” 
to the specification 

❑ More precisely: 
 

If a program cmd starts in a state admitted  
by P if it terminates, that the program must  
reach a state that satisfies P.
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Hoare – Logic: A Proof System for Programs

❑ PL + E + A + Hoare (simplified binding) at a glance: 
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Hoare – Logic: A Proof System for Programs

 
 

Let’s consider it one by one … 
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Hoare – Logic: A Proof System for Programs

❑ The SKIP-rule for the empty statement: 
 
 
 
 

well, states do not change ... 

Therefore, valid states remain valid. 
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Hoare – Logic: A Proof System for Programs

❑ The assignment rule: 
 
 

❑ Example (1): 
   	      
                                       ⊢ {1≤x ∧ x≤10} x:== x+2 {3≤x ∧ x≤12} 

❑ Is this really an instance of the assignment rule ? We calculate: 

     (3≤x ∧ x≤12) [x↦x+2] 
     ≡ 3≤(x+2) ∧ (x+2)≤12
     ≡ 1≤x ∧ x≤10
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Hoare – Logic: A Proof System for Programs

❑ The assignment rule: 
 
 
 

❑ Example (2): 
   	 	                     ⊢ {true}  x:== 2 {x=2} 

❑ Is this really an instance of the assignment rule ? We calculate: 

     (x=2) [x↦2] 
     ≡ 2=2 ≡ true              (reflexivity…)
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Hoare – Logic: A Proof System for Programs

The conditional-rule: 
 
 
 

Example (3): 

This can be extended to the formal proof:
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Hoare – Logic: A Proof System for Programs

❑ The conditional-rule: 
 
 
 
 
Example (3): 
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Hoare – Logic: A Proof System for Programs

❑ The sequence rule: 
 
 
 
 
 
 

❑ essentially a relational composition on state sets. 
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Hoare – Logic: A Proof System for Programs

The rule for the sequence. 
 
Example (4): 
 
 
 
 
 
              
 
 This can be extended to the formal proof:

0
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Hoare – Logic: A Proof System for Programs

The rule for the sequence. 
 
Example (4): 
 
 
 
 
 
              
 
 

It is often practical to introduce abbreviations.
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Hoare – Logic: A Proof System for Programs

❑ The while-rule. 
 
 
 
 

❑ This works like an induction: if some P is true after n traversals of the loop   
and remain true for the n+1 traversal, it must be always true. 

❑ When exiting the loop,  the condition cond can on longer hold. 
❑ The predicate P is called an invariant. Note that an invariant  

can be maintained even if the concrete state changes ! See: 

       ⊢ {1≤x ∧ x≤10} WHILE x < 10 DO x:== x+1 {¬ (x < 10) ∧ 1≤x ∧ x≤10}
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Hoare – Logic: A Proof System for Programs

❑ The consequence-rule: 
 
 
 
 
 

Reflects the intuition that P' is a subset of legal states P and Q is a subset 
of legal states Q’. 

This is the only rule that is not determined by the syntax of the  

program; it can be applied anywhere in the (Hoare-) proof.
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Hoare – Logic: A Proof System for Programs

❑ The consequence-rule: 
 
 

Example (5) (the continuation of Example (3)): 
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Hoare – Logic: A Proof System for Programs

❑ The Hoare calculus has a number of implicit  
consequences, i.e. rules that can be derived from 
the other ones.



9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: A Proof System for Programs

❑ A handy derived rule, the False-rule: 
 
 
 

❑ Proof: by induction over cmd ! (At the Blackboard) 

❑ A very handy corollary of the False-rule and the 
consequence-rule is the FalseE-rule: 
 



9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: A Proof System for Programs

❑ Another handy corollary of the False-rule: 
 
 
 

Proof:  
by consequence-rule, while-rule,  
P and cond-negation, 
False-rule.  
 
This means: If we can not enter into the WHILE-loop, it behaves like a SKIP. 
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Hoare – Logic: A Proof System for Programs

❑ Yet another handy corollary of the consequence rule: 
 
 
 
 
 

Proof:  
by consequence rule and the fact that P = P' (ou P ≡ P’) infers P → P' 

❑ Note: We will allow to apply this rule implicitly, thus leveraging 
local “logical massage” of pre- and post-conditions.
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Hoare – Logic: A Proof System for Programs

❑ Example (6): 
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Hoare – Logic: A Proof System for Programs

❑ Example (6): 
 
 
 

 
Proof (bottom up):  

 
 
 
 

true ∧ ¬true ≡ false 

√ √
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Hoare – Logic: A Proof System for Programs

❑ Example (6): 
 
 
 

 
Note:  
Hoare-Logic is a calculus for 
partial correctness; for non-terminating 
programs, it is possible to prove anything!



9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: A Proof System for Programs

❑ Example (7): 
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Hoare – Logic: A Proof System for Programs

❑ Example (7):    
Proof (bottom up):  
 
 
 

 

We can’t apply the WHILE-rule directly — the only other choice is 
the consequence rule. Instantiating the invariant variable P by a 
fresh variable I allows us to bring the triple into a shape that we 
can apply the WHILE rule later
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Hoare – Logic: A Proof System for Programs

❑ Example (7):    
Proof (bottom up):  
 
 
 

 

Now we can apply the while rule.
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Hoare – Logic: A Proof System for Programs

❑ Example (7):    
Proof (bottom up):  
 
 
 

 

To be sure (entering the while loop) we apply again the 
consequence rule. For the missing bit, we instantiate I’’.
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Hoare – Logic: A Proof System for Programs

❑ Example (7):    
Proof (bottom up):  
 
 
 

 

Now, in order to make the assignment rule “fit”, we must have  
I’’ ≡ I'[x ↦ x+1].
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Hoare – Logic: A Proof System for Programs

Additionally, in order that this constitutes a Hoare-Proof, we must 
have all the implications.

❑ Example (7):    
Proof (bottom up):  
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Hoare – Logic: A Proof System for Programs

❑ Example (7):    
                  
 
So, we have a Hoare Proof iff we have a solution to the 
following list of constraints: 
 
 
 

 

I'' ≡ I'[x ↦ x+1] 

A ≡ true → I       

B ≡ I ∧ ¬(x < 2) → 2 ≤ x 

C ≡ I ∧ x <2 → I'[x ↦ x+1]
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Hoare – Logic: A Proof System for Programs

❑ Example (7): 
Proof: 
 
 
 
 
 
 

➢ I must be true, this solves A, B, D 
➢ we are fairly free for a solution for I'; 

e.g. x ≤ 2 or x ≤ 5 would do the trick !  

I'' ≡ I'[x ↦ x+1] 

A ≡ true → I       

B ≡ I ∧ ¬(x < 2) → 2 ≤ x 

C ≡ I ∧ x <2 → I'[x ↦ x+1]
D = I' → I
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Hoare – Logic: Some facts.

Assume that we have a reasonably well-defined 
“compiler function” that maps a program to 
a relation from input to output states: 
 
 
 
  

Then we can define the “validity” of a specification:

    C :  cmd  → (σ×σ)Set 

(See Winskell’s Book)
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Hoare – Logic: A Proof System for Programs

❑ Remarks: 
This proof rises the idea of particular construction  
method of Hoare-Proofs, which  can be automated:  

❑ apply bottom-up all rules following the cmd-syntax; 
introduce fresh variables for the wholes where necessary 

❑ apply the consequence rule only at entry     
points of loops (this is deterministic!) 

❑ extract the implications used in these  consequence rule 
❑ try to find solutions for these implications 

  (worst case: ask the user ...)   
➢ Essence of all: again, we reduced a program verification problem 

to a constraint resolution problem of formulas … 
➢ … provided we have solutions for the invariants.



9/8/20 B. Wolff - GLA - Deductive Verification

Hoare – Logic: Some facts.

Theorem: Correctness of the Hoare-Calculus: 

 
 
… so, whenever there is a proof, it is also  
valid wrt. C.
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Hoare – Logic: Some facts.

Theorem: Relative Completeness of the Hoare-
Calculus 

Amazingly, this holds also the other way round: 
whenever a specification is valid, (and we can solve 
all the implications on arithmetics), there is a Hoare- 
Proof. 
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Hoare – Logic: Summary

❑ ... in the essence, the Hoare Calculus is an entirely  
syntactic game that constructs a labelling of the  
program with assertions …
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Hoare-Logic : Summary

❑ Note: Validity is a  « partial correctness notion » 
 
proof under condition that the program terminates.  
For non-terminating programs, the calculus allows  

to prove anything 

❑ The Deductive Proof-Method is therefore two-staged:  
➢ verify termination (find mesures for loops and 

recursive calls that strictly decrease for each iteration) 
➢ prove partial correctness of the spec for the program 

via a Hoare-Calculus (or an alternative such as the wp-calculus) 

	  

	  total correctness = partial correctness + termination …


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Hoare – Logic: Summary

Formal Proof 

➢ Can be very hard – up to infeasible  
(nobody will probably ever prove the 
 correctness of MS Word!) 

➢ But still, the proof-task can be  
automated to a large extent.


