universite {

PARIS-SACLAY

L3 Mention Informatique
Parcours Informatique et MIAGE

Génie Logiciel Avancé -
Advanced Software
Engineering

Deductive Verification II
Burkhart Wolff

https://usr.Imf.cnrs.fr/~wolff

mailto:burkhart.wolff@universite-paris-saclay.fr

Recall: The role of formal proof

2 formal proofs are another technique for program verification

> based on a model of the underlying programming language,
the conformance of a concrete program to its specification
can be established

FOR ALL INPUT DATA AND ALL INITIAL STATES !l

2 formal proofs as verification technique can:

= verify that a more concrete design-model "fits"
to a more abstract design model
(construction by formal refinement)

= verify that a program “fits" to a concrete design model.

9/8/20 B. Wolff - GLA - Deductive Verification

Recall: Hoare - Logic

3 A means to reason over all input and all states: Is there
A Logic for Programs ???

9 We consider the Hoare-Logic, technically
an inference system PL + E + A + Hoare

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare - Logic: A Proof System for Programs

L

Basis: The mini-language ..IMP",
(following Glenn Wynskell's Book)

4 We have the following commands (crmd)

>

>

>

the empty command
the assignment
the sequential compos.

the conditional

the loop

SKIP
X:==E (xeV)
C,;C

2
IF cond THEN C, ELSE C,

WHILE cond DO c

where c, c,, C,, are cmd’s, V variables,

E an arithmetic expression, and cond a boolean expression.

9/8/20

B. Wolff - GLA - Deductive Verification

Hoare - Logic: A Proof System for Programs

2 Core Concept: A Hoare Triple consisting ...

> of a pre-condition P
> a post-condition 0,
> and a piece of program cmd

> the triple (P,cmd,Q) is written:

- P} emd {Q}

= P and Q are formulas over the variables V,
so they can be seen as set of possible states.

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare - Logic: A Proof System for Programs

2 TIdea: We consider the specification (precond, postcond)
and the program together

2 The Hoare-Triple says : The program “is conform”
to the specification

2 More precisely:

- P} emd {Q}

If a program cmd starts in a state admitted
by P if it ferminates, that the program must
reach a state that satisfies P.

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare - Logic: A Proof System for Programs

2 PL+E+ A+ Hoare (simplified binding) at a glance:

- {P} SKIP {P} - {P[x — E|} x :== E{P}

={P Acond} c{Q} F{P A-cond} d{Q}
= {P} IF cond THEN ¢ ELSE d{Q}

F{P} c{Q} F{Q}d{R} = {P A cond} c {P}
- {P} ¢; d {R} = {P} WHILE cond DO ¢ {P A —cond}

P—P F{P}emd{Q} Q —Q
= {P} emd {Q}

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare - Logic: A Proof System for Programs

Let's consider it one by one ...

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare - Logic: A Proof System for Programs

9 The SKIP-rule for the empty statement:

- {P} SKIP {P}

well, states do not change ...

Therefore, valid states remain valid.

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare - Logic: A Proof System for Programs

2 The assignment rule:

= {P[x — E|} x :== E{P}

2 Example (1):
F {1=x A Xx<10} x:== x+2 {3=<x A x<12}

2 Is this really an instance of the assignment rule ? We calculate:

(B=x A X=12) [x-Xx+2]
= 3=(x+2) A (x+2)<12

= 1<x A X<10

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare - Logic: A Proof System for Programs

4 The assignment rule:

- {P[x — FE|} x :== E{P}

2 Example (2):
- {true} x:==2 {x=2}

2 Is this really an instance of the assignment rule ? We calculate:

(x=2) [x++2]
= 2=2 = true (reflexivity...)

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare - Logic: A Proof System for Programs

The conditional-rule:

F{P Acond} c{Q} +{PA-cond}d{Q}
= {P} IF cond THEN c ELSE d{Q}

Example (3):

- {true} IF 0 < z THEN SKIP ELSE z :== —z {0 < z}
This can be extended to the formal proof:

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare - Logic: A Proof System for Programs

2 The conditional-rule:

F{P Acond} c{Q} +F{PA-cond} d{Q}
= {P} IF cond THEN c ELSE d{Q}

Example (3):

F{trueN0 <z} SKIP {0 <z} F{trueA—-(0<2z)}z:==—2{0<z}
- {true} IF 0 < z THEN SKIP ELSE z :== —z {0 < z}

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare - Logic: A Proof System for Programs

4 The sequence rule:

- {P} c{Q} F{Q}d{R}
- {P} ¢ d{R}

4 essentially a relational composition on state sets.

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare - Logic: A Proof System for Programs

The rule for the sequence.

Example (4):

= {true} tm :==1;(sum == 1;1:==0) {tm =1Asum=1Ai=0}

This can be extended to the formal proof:

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare - Logic: A Proof System for Programs

The rule for the sequence.

Example (4):
= {tm = 1}sum:==1{B} F{B}i:==0{A}
= {true}tm :== 1{tm =1} = {tm =1} sum == 1;1:==0 {A}
= {true} tm :==1; (sum == 1;i:==0) {tm =1 A sum = 1 Ai =0}

where A=tm=1Asum=1A1=0 and where B=tm =1A sum = 1.

It is often practical to introduce abbreviations.

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare - Logic: A Proof System for Programs

2 The while-rule.
= {P A cond} c {P}
- {P} WHILE cond DO ¢ {P A —cond}

2 This works like an induction: if some P is true after n traversals of the loop
and remain true for the n+1 traversal, it must be always frue.

2 When exiting the loop, the condition cond can on longer hold.

24 The predicate P is called an invariant. Note that an invariant
can be maintained even if the concrete state changes ! See:

F {1=x A Xx<10} WHILE x < 10 DO x:==x+1 {-~ (X < 10) A 1=x A x<10}

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare - Logic: A Proof System for Programs

2 The consequence-rule:

P—P F{P}emd{Q'} Q —Q
- {P} emd {Q}

Reflects the intuition that P’ is a subset of legal states P and Q is a subset
of legal states O’.

This is the only rule that is not determined by the syntax of the

program; it can be applied anywhere in the (Hoare-) proof.

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare - Logic: A Proof System for Programs

2 The consequence-rule:
P—P F{P}lemd{Q} Q —Q
- {P} emd {Q}

Example (5) (the continuation of Example (3)):

trueN-(0<z) - (0<—2z) FH{0<Lz)z— —z]}z:==—2{0<2z} 0<z—-0<z
F{trueA-(0<z)} z:== -z {0 <z}

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare - Logic: A Proof System for Programs

2 The Hoare calculus has a number of implicit
consequences, i.e. rules that can be derived from
the other ones.

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare - Logic: A Proof System for Programs

4 A handy derived rule, the False-rule:

- {false} ecmd { false}
2 Proof: by induction over cmd | (At the Blackboard)

2 A very handy corollary of the False-rule and the
consequence-rule is the FalseE-rule:

- {false} cmd {P}

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare - Logic: A Proof System for Programs

2 Another handy corollary of the False-rule:

= {P A =cond} WHILE cond DO ¢ {P A —cond}

Proof.

by consequence-rule, while-rule,
P and cond-negation,

False-rule.

This means: If we can not enter into the WHILE-loop, it behaves like a SKIP.

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare - Logic: A Proof System for Programs

4 Yet another handy corollary of the consequence rule:

P=P +{P}tmd{Q} Q=0Q
- {P} cmd {Q}

Proof:
by consequence rule and the fact that P = P' (ou P= P’) infers P — P’

3 Note: We will allow to apply this rule implicitly, thus leveraging

local “logical massage” of pre- and post-conditions.

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare - Logic: A Proof System for Programs

2 Example (6):

- {true} WHILE true DO SKIP {x = 42}

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare - Logic: A Proof System for Programs

2 Example (6):

= {true} WHILE true DO SKIP {x = 42}

Proof (bottom up):

true A —true = false

/

true — true\/ ~ {true} WHILE true DO SKIP {false} false — z =42
= {true} WHILE true DO SKIP {z = 42}

\/

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare - Logic: A Proof System for Programs

2 Example (6):

= {true} WHILE true DO SKIP {x = 42}

Note:
Hoare-Logic is a calculus for

partial correctness; for non-terminating
programs, it is possible to prove anything!

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare - Logic: A Proof System for Programs

1 Example (7):

- {true} WHILE z <2 DO z:==z+1 {2 < z}

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare - Logic: A Proof System for Programs

2 Example (7):
Proof (bottom up):

= {true} WHILE 2 < 2DO z:==z+1 {2 <z}

We cant apply the WHILE-rule directly — the only other choice is
the consequence rule. Instantiating the invariant variable P by a
fresh variable I allows us to bring the triple into a shape that we
can apply the WHILE rule later

Hoare - Logic: A Proof System for Programs

2 Example (7):
Proof (bottom up):

true—I1 F{I} WHILEz<2DOz:==z+1{IA-(z<2)} IA-(z<2)—-2<z
= {true} WHILE 2 < 2DO z:==z+1 {2 <z}

Now we can apply the while rule.

Hoare - Logic: A Proof System for Programs

2 Example (7):
Proof (bottom up):

F{INz <2}z :==2+1{[}
true—I1 F{I} WHILEz<2DOz:==z+1{IA-(z<2)} IA-(z<2)—-2<z
= {true} WHILE 2 < 2DO z:==z+1 {2 <z}

To be sure (entering the while loop) we apply again the
consequence rule. For the missing bit, we instantiate /.

Hoare - Logic: A Proof System for Programs

2 Example (7):
Proof (bottom up):

INe<2-T1" F{I["Vz:=—=z+1{'} I'->1I
F{INz <2}z :==2+1{[}
true—1 F{I} WHILEz<2DOz:==z+1{IA-(z<2)} IA-(z<2)—-2<z
= {true} WHILE 2 < 2DO z:==z+1 {2 <z}

Now, in order to make the assignment rule “fit”, we must have
I”=1Txwe x+1].

Hoare - Logic: A Proof System for Programs

2 Example (7):
Proof (bottom up):

@ F{IM ==+ 1{I'} (I'>1

F{INz <2}z :==2+1{[}

@D—{I} WHILE 2 <2 DO 2 :== 2 + 1 {I A(z < 2)} @<2)—®

e ——— e ——————

= {true} WHILE 2 < 2DO z:==z+1 {2 <z}

Additionally, in order that this constitutes a Hoare-Proof, we must
have all the implications.

Hoare - Logic: A Proof System for Programs

4 Example (7):

- {true} WHILE z < 2 DO z:==z+1 {2 < z}

So, we have a Hoare Proof iff we have a solution to the
following list of constraints:

I'"=I'[x»x+1]

A = true — 1
B=EIA—=(x<2)—>2=<x
CEIAx<2—>I[xmx+l]

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare - Logic: A Proof System for Programs

1 Example (7):
Proof:
I"EI'[xw»x+]]
A= true — 1
B=EIA—-(x<2)—>2=<x
CEIAx<2—>I[xwx+]]
D=I—->1

> | must be true, this solves 4, B, D
= we are fairly free for a solution for I,
e.g.x <2 or x <5 would do the trick !

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare - Logic: Some facts.

Assume that we have a reasonably well-defined
“compiler function” that maps a program to
a relation from input to output states:

C: cmd — (ox0)Set
(See Winskell’'s Book)

Then we can define the “validity” of a specification:

= {P} ecmd {Q} = Vo,0'.(0,0") € C(ecmd) — P(o) — Q(o’)

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare - Logic: A Proof System for Programs

U

Remarks:
This proof rises the idea of particular construction
method of Hoare-Proofs, which can be automated:

2 apply bottom-up all rules following the cmd-syntax;
introduce fresh variables for the wholes where necessary

2 apply the consequence rule only at entry
points of loops (this is deterministic!)

2 extract the implications used in these consequence rule
3 fry to find solutions for these implications
(worst case: ask the user ...)
> Essence of all: again, we reduced a program verification problem
to a constraint resolution problem of formulas ...

= .. provided we have solutions for the invariants.

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare - Logic: Some facts.

Theorem: Correctness of the Hoare-Calculus:

F{P} emd {Q} —

= {P} cmd {Q}

... S50, whenever there is a proof, it is also

valid wrt. C.

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare - Logic: Some facts.

Theorem: Relative Completeness of the Hoare-
Calculus

=P} cmd {Q} — F{P} cmd {Q}

Amazingly, this holds also the other way round:
whenever a specification is valid, (and we can solve
all the implications on arithmetics), there is a Hoare-
Proof.

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare - Logic: Summary

4 .. in the essence, the Hoare Calculus is an entirely
syntactic game that constructs a labelling of the

program with assertions ...

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare-Logic : Summary

2 Note: Validity is a « partial correctness notion »

proof under condition that the program terminates.
For non-terminating programs, the calculus allows

to prove anything

2 The Deductive Proof-Method is therefore two-staged:

> verify termination (find mesures for loops and
recursive calls that strictly decrease for each iteration)

= prove partial correctness of the spec for the program
via a Hoare-Calculus (or an alternative such as the wp-calculus)

£\

total correctness = partial correctness + termination ...

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare - Logic: Summary

Formal Proof

> Can be very hard - up to infeasible
(nobody will probably ever prove the
correctness of MS Word!)

> But still, the proof-task can be
automated to a large extent.

9/8/20 B. Wolff - GLA - Deductive Verification

