o am
universite f%-ﬂ

PARIS-SACLAY

L3 Mention Informatique
Parcours Informatique et MIAGE

Génie Logiciel Avancé -
Advanced Software
Engineering

Deductive Verification 1
Burkhart Wolff

https://usr.Imf.cnrs.fr/~wolff

mailto:burkhart.wolff@universite-paris-saclay.fr

Recall: Validation and Verification

2 Validation :
> Does the system meet the clients requirements ?

= Will the performance be sufficient ?
= Will the usability be sufficient ?

Do we build the right system ?

2 Verification: Does the system meet the specification ?

Do we build the system right ?
Is it « correct » ?

9/8/20 B. Wolff - GLA - Deductive Verification

Recall: What are the limits of tests

2 Assumptions on ,Testability"

(system under test must behave deterministically,
or have controlled non-determinism, must be initializable)

2 Assumptions like Test-Hypothesis

(Uniform / Regular behaviour is sometimes
a .realistic" assumption, but not always)

2 Limits in perfection:
We know only up to a given "certainty” that the
program meets the specification ...

9/8/20 B. Wolff - GLA - Deductive Verification

The role of formal proof

2 formal proofs are another technique for program verification

> based on a model of the underlying programming language,
the conformance of a concrete program to its specification
can be established

FOR ALL INPUT DATA AND ALL INITIAL STATES !l

2 formal proofs as verification technique can:

= verify that a more concrete design-model "fits"
to a more abstract design model
(construction by formal refinement)

= verify that a program “fits" to a concrete design model.

9/8/20 B. Wolff - GLA - Deductive Verification

Who is using formal proofs in industry?

4 Hardware Suppliers:
= INTEL: Proof of Floating Point Computation compliance
to IEEE754
= INTEL: Correctness of Cash-Memory-Coherence Protocols
= AMD: Correctness of Floating-Point-Units againt Design-Spec
= GemPlus: Verification of Smart-Card-Applications in Security

4 Software Suppliers:

> MicroSoft: Many Drivers running in ,Kernel Mode" were verified

= MicroSoft: Verification of the Hyper-V OS
(60000 Lines of Concurrent, Low-Level C Code ...)

9/8/20 B. Wolff - GLA - Deductive Verification

Who is using formal proofs in industry?

2 For the highest certification levels along the lines
of the Common Criteria, formal proofs are
2 recommended (EAL6)
9 mandatory (EAL7)

There had been now several industrial cases of EAL7 certifications ...

2 For lower levels of certifications, still, formal specifications were required.

2 Recently, Microsoft has agreed in a Monopoly-Lawsuit against the European
Commission to provide a formal Spec of the Windows-Server-Protocols

4 the tools validating them use internally automated proofs

9/8/20 B. Wolff - GLA - Deductive Verification

Pre-Rerquisites of Formal Proof Techniques

|
4 A Formal Specification (MOAL, HOL, but also Z, VDM, CSP, B, ...)

> know-how over the application domain

= informal and formal requirements of the system

2 Either a formal model of the programming language
or a trusted code-generator from concrete design specs

4 Tool Chains to generate, simplify, and solve large formulas
(decision procedures)

2 Proof Tools and Proof Checker: proofs can also be false ...

Nous, on le fera a la main ...

9/8/20 B. Wolff - GLA - Deductive Verification

How to do Verification ?

In the sequel, we concentrate on
Deductive Verification

(Proof Techniques)

9/8/20 B. Wolff - GLA - Deductive Verification

Standard example

The specification in UML/MOAL (Classes in USE Notation):

class Triangles inherits from Shapes

attributes
a : Integer
b : Integer

c : Integer

operations
mk (Integer, Integer, Integer) :Triangle
is Triangle(): triangle

end

9/8/20 B. Wolff - GLA - Deductive Verification

Standard example : Triangle

The specification in UML/OCL (Classes in USE Notation):

context Triangles:

inv def : a.oclIsValid() and b.oclIsValid()...
inv pos : 0<a and 0<b and 0<c

inv triangle : at+b>c and Db+c>a and c+a>b

context Triangle::isTriangle()
post equl : a=b and b=c implies result=equilateral
post iso : ((a<>b or b<>c) and
(a=b or b=c or a=c))implies result=isosceles

post default: (a<>b or b<>c) and
(a<>b and b<>c and a<>c)
implies result=arbitrary

9/8/20 B. Wolff - GLA - Deductive Verification

Standard example: Triangle

procedure triangle(j,k,1l : positive) is
eg: natural := 0;
begin

if j + k<=1l or k +1 <= jor 1 + 7 <= k then
put (“impossible”) ;

else if 7 = k then eg := eg + 1; end if;
if 7 =1 then eg := eg + 1; end if;
if 1 = k then eg := eg + 1, end if;

if eg = 0 then put(“gquelconque”);
elsif eg = 1 then put (“isocele”);
else put (“equilateral”);
end if;

end if;

end triangle;

9/8/20 B. Wolff - GLA - Deductive Verification

Program Example : Exponentiation

Program_1:
(* pre : N20 *)
S:=1; P:=N;
while P >

1 loop S:= S*X; P:= P-1; end loop;
(* post: =

XN %)

n

Program_2 :
(* pre : N20 *)
S:=1; P:= N;
while P >= 1 loop

if P mod 2 <> 0 then P := P-1; S := S*X; end 1if;
S:= S*S; P := P div 2;
end loop;

(* post: S = XN *)

These programs have the following characteristics:
> one is more efficient, but more complex

> But both have the same specification !

9/8/20 B. Wolff - GLA - Deductive Verification

How to do Verification ?

How to PROVE that programs

meet the specification ?

9/8/20 B. Wolff - GLA - Deductive Verification

Foundations: Proof Systems

3 An Inference System (or Logical Calculus) allows to infer formulas
from a set of elementary facts (axioms) and inferred facts by rules:

A ... A,

An+1

a “from the assumptions A to A , you can infer the conclusion 4 . .

n

A rule with n=0 is an elementary fact. Variables occurring in the
formulas 4 can be arbitrarily substituted.

4 Assumptions and conclusions are terms in a logic containing variables

9/8/20 B. Wolff - GLA - Deductive Verification

Foundations: Proof Systems

4 An Inference System for the equality operator
(or "Equational Logic") looks like this:

T=y T=Y Y=2

r=1r Y=< T =2z
r=vy Px)
P(y)

2 where the first rule "reflexivity” is an elementary fact.

9/8/20 B. Wolff - GLA - Deductive Verification

Foundations: Proof Systems

The variables in an inference rule can be replaced by a
substitution. The substituted inference rule is called an
instance (of this rule).

{xp1+2, £5
yp2+1, . {XH;*,
703} T — 2 yr5*t}
| xe142,
yPa,
142=24+1 24+1=3 73} T*H =0T bHx1T=2
1+2=3 T*H =2

1+42=a a=3
1+2=3

9/8/20 B. Wolff - GLA - Deductive Verification

Foundations: Proof Systems

QA Formal Proof (or : Derivation)
IS a tree with rule instances as nodes

f(a'ab):a' f(a'ab):a' f(f(a'7b)7b) =C

a = f(a,b) fla,b) =c
a=c 9(a) = g(a)
g(a) = g(c)

2 The non-elementary facts at the leaves are the global
assumptions (here f{a,b) = a and f{f(a,b),b) = ¢).

9/8/20 B. Wolff - GLA - Deductive Verification

Foundations: Proof Systems

2 As a short-cut, we also write for a derivation:
(Ay, ..., AV F A
2 ...or generally speaking: from global assumptions 4 to

['Fg o

2 This is what theorems are: derivable facts from

a theorem (in theory E) ¢:

assumptions in a certain logical system ...

9/8/20 B. Wolff - GLA - Deductive Verification

A Proof System for Propositional Logic

. |
2 PL + E + Arithmetics (A) in so-called natural deduction:

A, B
—A A A B AANB Q False
A ——-A ANB Q A
A
A B ~A B po Q P

AVB AvVB B A— B Q

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare - Logic: A Proof System for Programs

2 Now, can we build a

Logic for Programs ???

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare - Logic: A Proof System for Programs

2 Now, can we build a

Logic for Programs ???

Well, yes |
There are actually lots of possibilities ...

2 We consider the Hoare-Logic (Sir Anthony Hoare ...),
technically an inference system PL + E + A + Hoare

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare - Logic: A Proof System for Programs

L

Basis: The mini-language ..IMP",
(following Glenn Wynskell's Book)

4 We have the following commands (crmd)

>

>

>

the empty command
the assignment
the sequential compos.

the conditional

the loop

SKIP
X:==E (xeV)
C,;C

2
IF cond THEN C, ELSE C,

WHILE cond DO c

where c, c,, C,, are cmd’s, V variables,

E an arithmetic expression, and cond a boolean expression.

9/8/20

B. Wolff - GLA - Deductive Verification

Hoare - Logic: A Proof System for Programs

2 Core Concept: A Hoare Triple consisting ...

> of a pre-condition P
> a post-condition 0,
> and a piece of program cmd

> the triple (P,cmd,Q) is written:

- P} emd {Q}

= P and Q are formulas over the variables V,
so they can be seen as set of possible states.

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare Logic vs. Symbolic Execution

e Hoare Logic is also based notion of
a symbolic state.

state,, ., = V — Set(D)

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare Logic vs. Symbolic Execution

e Intuitively:
- {P} emd {Q} -

Means.

If a program cmd starts in a state
admitted by P if it terminates, that
the program must reach a state that
satisfies Q.

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare - Logic: A Proof System for Programs

2 PL+E+ A+ Hoare (simplified binding) at a glance:

- {P} SKIP {P} - {P[x — E|} x :== E{P}

={P Acond} c{Q} F{P A-cond} d{Q}
= {P} IF cond THEN ¢ ELSE d{Q}

F{P} c{Q} F{Q}d{R} = {P A cond} c {P}
- {P} ¢; d {R} = {P} WHILE cond DO ¢ {P A —cond}

P—P F{P}emd{Q} Q —Q
= {P} emd {Q}

9/8/20 B. Wolff - GLA - Deductive Verification

Verification : Test or Proof

Test

= Requires Testability of Programs (initialisable, reproducible
behaviour, sufficient control over non-determinism)

> Can be also Work-Intensive lll

= Regquires Test-Tools

= Requires a Formal Specification

> Makes Test-Hypothesis, which can be hard to justify !

9/8/20 B. Wolff - GLA - Deductive Verification

Summary

Formal Proof
= Can be very hard - up to infeasible (no one will
probably ever prove correctness of MS Word!)

= Proof Work typically exceeds programming
work by a factor 10!

= Tools and Tool-Chains necessary

= Makes assumptions on language,
method, tool-correctness, too !

9/8/20 B. Wolff - GLA - Deductive Verification

Validation : Test or Proof (end)

Test and Proof are Complementary ...

2 ... and extreme ends of a continuum : from static
analysis to formal proof of "deep system properties”

2 Inpractice, a good "verification plans” will be necessary
to get the best results with a (usually limited) budget !l

= detect parts which are easy to test
= detect parts which are easy to prove

= good start: maintained formal specification

9/8/20 B. Wolff - GLA - Deductive Verification

Hoare - Logic: Outlook

2 Can we be sure, that the logical systems are consistent ?

Well, yes, practically.
(See Hales Article in AMS: “"Formal Proof"”, 2008.
http://www.ams.org/ams/press/hales-nots-dec08.html)

2 Can we ever be sure, that a specification "means” what we intend ?

Well, no.
But when can we ever be entirely sure that we know what we have in mind ?

But at least, we can gain confidence validating specs, i.e. by
animation and test, thus, by experimenting with them ...

9/8/20

B. Wolff - GLA - Deductive Verification

Hoare - Logic: Outlook

= {P A —~cond} WHILE cond DO ¢ {P A —cond}

P=P F{P}cmd{Q} Q=Q
- {P} emd {Q}

9/8/20 B. Wolff - GLA - Deductive Verification

