N This
universite C//

PARIS-SACLAY N

L3 Mention Informatique
Parcours Informatique et MIAGE

Génie Logiciel Avancé -
Advanced Software
Engineering
White-Box Tests

Burkhart Wolff
wolff@Iri.fr

Towards Static Specification-based Unit Test

2 How can we test during development

(at coding time, even at design-time ?)

2 How can we test "systematically"?

J

3

3

What cou
What cou
What cou

d be a test-generation method?
d be an algorithm to generate tests?

d be a coverage criterion ?

(or: adequacy criterion,

telling that we "tested enough")

9/8/20

B. Wolff - GLA - White-Box Tests

2 Let's exploit the structure of the program !l

(and not, as before in specification based tests (..black
box"-tests), depend entirely on the spec).

2 Assumption: Programmers make most likely errors in
branching points of a program (Condition, While-Loop, ...),
but get the program "in principle right".

(Competent programmer assumption)

2 Lets develop a test method that exploits this |

9/8/20 B. Wolff - GLA - White-Box Tests

Static Structural ("white-box") Tests

1 (X, v,2)

Cond2 (X,V,2)

. > results

0 W I n
... we select “critical” paths

apatl 5{‘19 f??@é”r oG LEY @Wéer‘ tie ﬁ‘g?a‘fﬁ@ﬁf Pesufrants

corres Iing to one test-case comprlsm several test data
- Cond, (x,, Y,» 2,) N — Cond,(x,, V,r Z,)

We are interested either in edges (control flow), or in nodes (data flow)

9/8/20 B. Wolff - GLA - White-Box Tests

A Program for the triangle example

procedure triangle(j,k,l : positive) 1is
eg: natural := 0;
begin

if] + k <=1lor k +1 <= jor l + 7 <= k then
put (“impossible”) ;

else if 7 = k then eg := eg + 1; end if;
if j =1 then eg := eg + 1; end if;
if 1 = k then eg := eg + 1; end if;
if eg = 0 then put (“arbitrary”);
elsif eg = 1 then put (“isocele”);
else put (“equilateral”);
end if;

end if;

end triangle;

9/8/20 B. Wolff - GLA - White-Box Tests

What are tests adapted to this program ?

2 try a certain humber of execution "paths”
(which ones ? all of them ?)

2 find input values to stimulate these paths

2 compare the results with expected values
(i.e. the specification)

9/8/20 B. Wolff - GLA - White-Box Tests

Functional-test vs. structural test?

Both are complementary and complete each other:

2 Structural Tests have weaknesses in principle:
= if you forget a condition, the specification will most likely reveal this |

= if your algorithm is incomplete, a test on the spec has at least
a chance to find this | (Example: perm generator with 3 loops)

9/8/20 B. Wolff - GLA - White-Box Tests

Functional-test vs. structural test?

Both are complementary and complete each other

2 Structural Tests have weaknesses in principle:
for a given specification, there are several possible
implementations (working more or less differently from the spec):

= sorted arrays : linear search ? binary search ?
= (x, n) — xn : successive multiplication ? quadratic multiplication ?

Each implementation demands for different test sets !

9/8/20 B. Wolff - GLA - White-Box Tests

Equivalent programs ...

Program 1:
S:=1; P:=N;
while P >= 1 loop S:= S*X; P:= P-1; end loop;

Program 2 :
S:=1; P:= N;
while P >= 1 loop

if Pmod 2 /= 0 then P := P -1; S := S*X; end if;
S:= S*S; P := P div 2;
end loop;

Both programs satisfy the same spec but ...
= one is more efficient, but more difficult to test.

> test sets for one are not necessarily "good” for the other, too |

9/8/20 B. Wolff - GLA - White-Box Tests

Control Flow Graphs

A graph with oriented edges root E and an exit S,

= the nodes be either "elementary instruction blocs”
or “"decision nodes" labelled by a predicate.

> the arcs indicate the control flow between the

elementary instruction blocs and decision nodes (control flow)

= all blocs of predicates are accessible from E and lead to S

(otherwise, dead code is to be supressed !)

elementary instruction blocs: a sequence of
> assignments
= update operations (on arrays, ..., hot discussed here)

= procedure calls (not discussed here !ll)

conditions and expressions are assumed to be side-effect free

9/8/20 B. Wolff - GLA - White-Box Tests

Computing Control Flow Graphs

2 Tdentify longest sequences of assignments

9/8/20 B. Wolff - GLA - White-Box Tests

Computing Control Flow Graphs

2 Identify longest sequences of assignments

Example:
S:=1;
P:=N;

while P >= 1

loop S:= S*X;
P:= P-1;

end loop;

9/8/20 B. Wolff - GLA - White-Box Tests

Computing Control Flow Graphs

2 Identify longest sequences of assignments

Example:
S:=1;
P:=N;

while P >= 1
loop |S:= S*X;
P:= P-1;
end loop;

9/8/20 B. Wolff - GLA - White-Box Tests

Computing Control Flow Graphs

2 Identify longest sequences of assignments

2 eliminate if_then_else's by branching

9/8/20 B. Wolff - GLA - White-Box Tests

Computing Control Flow Graphs

2 Tdentify longest sequences of assignments
2 Erase if_then_elses by branching

2 Erase while_loops by loop-arc, entry-arc, exit-arc

9/8/20 B. Wolff - GLA - White-Box Tests

Computing Control Flow Graphs

2 Tdentify longest sequences of assignments
2 Erase if_then_elses by branching

2 Erase while_loops by loop-arc, entry-arc, exit-arc

9/8/20 B. Wolff - GLA - White-Box Tests

Computing Control Flow Graphs

2 Identify longest sequences of assignments

Example:
S:=1;
P:=N;
P>=1 >
S:= S*X;
P:= P-1;

9/8/20 B. Wolff - GLA - White-Box Tests

Computing Control Flow Graphs

2 Identify longest sequences of assignments
2 Erase if_then_elses by branching
2 Erase while_loops by loops

2 Add entry node and exit loop-arc, entry-arc, exit-arc

A Control-Flow-Graph (CFG) is usually a by-product of

9/8/200 Compiler' B. Wolff - GLA - White-Box Tests

-4 Example:
Add entry node and exit loop-arc, entry-arc, exit-arc

‘lil*8:=l;
P:=N;
S

S:= S*X;
P:= P-1;

9/8/20 B. Wolff - GLA - White-Box Tests

Q: What is the CFG

of the body of triangle ?

9/8/20 B. Wolff - GLA - White-Box Tests

Revisiting our triangle example ...

procedure triangle(j,k,1l : positive) is
eg: natural := 0;
begin

if] + k <=1lor k +1 <= jor l + 7 <= k then
put (“impossible”) ;
else if 7 = k then eg := eg + 1; end if;
if j =1 then eg := eg + 1; end if;

if 1 = k then eg := eg + 1, end if;
if eg = 0 then put(“gquelconque”);
elsif eg = 1 then put (“isocele”);
else put (“equilateral”);
end if;

end if;

end triangle;

9/8/20 B. Wolff - GLA - White-Box Tests

The non-structured control-flow graph of a program

" B0 //Pl\\ > BI

> B2

> B3

> B4

B7 | 4 B6

ek l b

9/8/20 B. Wolff - GLA - White-Box Tests

A procedure with loop and return

procedure supprime (T: in out Table; p: in out integer;
X: 1n integer) 1is

i: integer := 1;
begin

while 1 <> p 1loop
if T[i].val <> x then 1 :=1i + 1;
elsif 1 =p -1 then p := p - 1; return;
else T[i] := T[p-1]; p := p -1; return;
end if;

end loop;

end supprime;

9/8/20 B. Wolff - GLA - White-Box Tests

.. and its control flow graph

Can we represent this
program as control-
graph ???

Sure ...

B2

B3

9/8/20 B. Wolff - GLA - White-Box Tests

.. and its control flow graph

>- BO //Pl\\

Are all paths actually

B3

B4

B5]

Consider:

[S,B0,P1,P2,B2,P3,B3,P4,P5,...]

possible executions ? -i ;
Are they feasible paths ? »

B7 |

> BI

9/8/20 B. Wolff - GLA - White-Box Tests

Paths and Path Conditions

M|

Some Terminology:

>

>

initial path M = path of the CFG starting at S

path of M = path of the CFG starting at S and ending in E
(a path corresponds to a complete execution of the procedure)

for an initial path M, a predicate over the parameters and state
can be defined: the path-condition @y,

@), is exactly true over the initial values initiales of parameters

(and global variables) if the program will run exactly M for these parameters

faisable paths : M is feasible exactly if a for parameters and global

variables concrete values exist such that M is executable.
i.e. the path condition ®,, is satisfiable

9/8/20

B. Wolff - GLA - White-Box Tests

Computing Path Conditions by Symbolic Execution

e
Let M be an initial path in the CFG of our program.
= we give symbolic values for each variable x,y,,z, ...

> we set the path condition @ initially to the pre-condition
= We follow the path M, block for block:
= If the current block is an instruction block B:

we execute symbolically B by memorising the new possible values
by predicates depending on x,,v,,z,, .. ("symbolically")

= If the current block is a decision block P(x1,...,xn)

= if we follow the « true » arc we set @ := ® A P(x1,...,xn),

= if we follow the «false» arc we set ® := ® A “"P(x1,...,xn).

The x1,...,xn are the symbolic values for the program variables

9/8/20 B. Wolff - GLA - White-Box Tests

Execution

e Execution is based on the notion of state.

A state is a table (or: function) that maps
a variable V to some value of a domain D.

o= V—-D
e As usual, we denote finite functions as follows:

{xPp1,yr5 x»12}

9/8/20 B. Wolff - GLA - White-Box Tests

Symbolic Execution

e TIn static program analysis, it is in general not
possible to infer concrete values of D.

However, it can be inferred a set of possible values.

e For example, if we know that

x €{1..10}
and we have an assignment x:= x+2, we know:

x € {3..12} afterwards.

9/8/20 B. Wolff - GLA - White-Box Tests

Symbolic Execution

e This gives rise to the notion of a symbolic state.

o... = V — Set(D)

sym
We denote the set of possible values by a

predicate over the initial state, so:

x+ (1=x,4x,=10)

e thus, after x:= x+2, we know:

X+ (3=x,AXx,s12)

9/8/20 B. Wolff - GLA - White-Box Tests

Symbolic States and Substitutions

e An Example substitution:

(x +2*y){xr1,yrx}
= 1+ 2*X,
e Aninitial symbolic state is a map of the form:

{X P Xp YPYyzr2z,}

9/8/20 B. Wolff - GLA - White-Box Tests

Basic Blocks as Substitutions

Symbolic Pre-State o, Block Symbolic Post-State o'
X P x, 1:=x+y+1 % B x
, z =zt 0
y Py, t37x, y Py +3*x,
z Pz, z Pz +y,t4*x,+1
1 P 1, 1P v+ 4*x +1

X, ¥V, and z, represent the initial values of x, y et z.

i is supposed to be a un-initialized local variable.

Thus, we update the symbolic state whenever we pass a
basic block on our path.
9/8/20 B. Wolff - GLA - White-Box Tests

Symbolic Execution

sym Xzy >

false

Thus, we update the path-condition whenever we pass a
decision node on our path.

9/8/20 B. Wolff - GLA - White-Box Tests

Example: A Symbolic Path Execution

Recall

procedure supprime (T: in out Table; p: in out integer;
X: in integer) 1is

1: integer := 1;
begin

while 1 <> p 1loop
if T[i1] <> x then 1 := 1 + 1;
elsif 1 =p - 1 then p := p - 1; return;
else T[1i] := Tl[p-1]; p := p - 1; return;
end if;

end loop;

end supprime;

9/8/20 B. Wolff - GLA - White-Box Tests

Example: A Symbolic Path Execution

.. and the corresponding
control flow graph.

We want to execute the path:

B2

B3

[S,B1,P1,E]

9/8/20 B. Wolff - GLA - White-Box Tests

Example: A Symbolic Path Execution

We want to execute the path:

S, B1, P1, E]
b P True O P True (I)l->—-(i<>p)0B1 OP 1= p,
T P T T B T, TP T TP 1
p P Py p P Dy p P Dy p P P
x P X x P X x P %9 x P %o
i i i P 1 i1 i 1

9/8/20 B. Wolff - GLA - White-Box Tests

Example: A Symbolic Path Execution

Result:

Test-Case:
For the path M=[S,B1,P1,E]

we have the path condition ® » p - 1

A concrete Test,
satisfying P

9/8/20 B. Wolff - GLA - White-Box Tests

Example: A Symbolic Path Execution

B2

B3

S
.. and the corresponding :]
Bl
control flow graph. S
—< >
X
<L P2 >—
We want to execute the path: L
< jm}—
B4
[S,B1,P1,P2,B2,P1,E]

9/8/20 B. Wolff - GLA - White-Box Tests

Example: A Symbolic Path Execution

We want to execute the path:

[S, B1, P1, P2, B2, P1, E]

O o (1<>p) Og; | P#1 A p,#1 A p,#L A P #1 A

True True|= p, # 1 (T[1i]#x)0, T, [1]#x, T,[1] # xJ|T,[1] # x,
A—- (1<>p) O 2:po

T P 1 T, T, T, T, T, T,

p P Do Py Po Po Po Py Py

< P X X, X, X X X, X,

ik 1] 1 1 1 (1+1) Oy, 2 2

9/8/20 B. Wolff - GLA - White-Box Tests

Example: A Symbolic Path Execution

Result: Test-Case for Path

M= [S,B1,P1,P2,B2,P1,E]

Path Condition: @ := T1,[11#%,A p =2

T b [3]
A concrete Test,
P p P 2
satisfying @
x = 17

9/8/20 B. Wolff - GLA - White-Box Tests

Paths and Test Sets

In (this version of) program-based testing
a test case with a (feasable) path

2 atestcase= apath M in the CFG

= a collection of values for variables (params and global)

(+ the output values described by the specification)

2 atest case set = a finite set of paths of the CFG
= a finite set of input values and
a set of expected outputs.

9/8/20 B. Wolff - GLA - White-Box Tests

Unfeasible paths and decidability

2 Ingeneral, it is undecidable of a path is feasible ...
2 Ingeneradl, it is undecidable if a program will terminate ...
4 In general, equivalence on two programs is undecidable ...

4 Ingeneral, a first-order formula over arithmetic is undecidable ...

2 ... Indecidable = it is known (mathematically proven)
that there is no algorithm; this is worse than

“"we know none” I~

BUT: for many relevant programs, practically good solutions
exist (Z3, Simplify, CVC4, AltErgo ...)

9/8/20 B. Wolff - GLA - White-Box Tests

A Challenge-Example (The Collatz-Function):

A HAIRY EXAMPLE:

while x <> 1 loop
if pair(x) then x := x / 2;
else x := 3* x +1;

end if;
end loop;
- does this fun maT or' all x ?
: SF"é W&'l%% KBO - all x 2

a’r mfeas le pa’rhs exusT

9/8/20 B. Wolff - GLA - White-Box Tests

The Triangle Prog without Unfeasible Paths

procedure triangle(j,k,1)
begin

if j k<=1 or k+1l<=7j or 1+j<=k then put (“impossible”);
elsif j = k and k = 1 then put (“Yequilateral”);
elsif j = k or k =1 or J = 1 then put (“isocele”)
else put (“quelconque”) ;
end if;

end;
@~ In the contrary, there are programs where all paths are feasible
= That is rare, however.

= Worse: in practice the probability for a path to be feasible is

smaller the longer the path gets.

9/8/20 B. Wolff - GLA - White-Box Tests

)

The notion of a “"coverage criterion’

A coverage criterion is a function mapping a CFG
to a particular subset of its paths ...

* the set of paths covering all basic blocks
* the set of paths covering all instructions
* the set with all loops are traversed

» a particular subset of calls/labels occurring in
the CFG has been covered

9/8/20 B. Wolff - GLA - White-Box Tests

Well-known Coverage Criteria I

Criterion C = Alllnstructions(CFG):

For all nodes N in CFG (basic instructions or decisions)
exists a path in C that contains N

9/8/20 B. Wolff - GLA - White-Box Tests

Well-known Coverage Criteria IT

Criterion C = AllTransitions(CFG):

For all arcs A in the CFG exists a
path in C that uses A

9/8/20 B. Wolff - GLA - White-Box Tests

Well-known Coverage Criteria III

Criterion C = AllPaths(CFG):

All possible paths ...

® Whenever there 1s a loop, C is infinite !

= weaker variant: AllPaths (CFG).

We limit the paths through a loop to maximally k times ...

= we have again a finite number of paths

9/8/20 B. Wolff - GLA - White-Box Tests

A Hierarchy of Coverage Criteria

AllPaths(CFG) 2
AllPaths, (CFG) 2

AllTransitions(CFG) 2
Allinstructions(CFG)

U

2 Each of these implications reflects a proper containment;
the other way round is never true.

9/8/20 B. Wolff - GLA - White-Box Tests

Using Coverage Criteria 1

Source du » Graphe de Flot o]
Programme de Contréle Ensemble fini de chemins

o Critere de couverture
(défini a I'avance)

Prédicats de

v

Programme Ensemble fini de S
compilé valeurs d’entrée Specification

\) |
Probléme potentiel !
d’observation ? Ensemble des Ensemble des

.................................... » résultats obtenus résultats espéreés

Verdict: OK / KO

\ a parcourir pour satisfaire le critere

cheminement résolus ?

9/8/20 B. Wolff - GLA - White-Box Tests

Summary

2 We have developed a technique for program-based
tests

2 ... based on symbolic execution
2 ... used in tools like JavaPathFinder-SE or Pex
2 Core-Concept: Feasible Paths in a Control Flow Graph

2 Although many theoretical negative results on key
properties, good practical approximations are available

2 CFG based Coverage Critieria give rise to a hierarchy

9/8/20 B. Wolff - GLA - White-Box Tests

Schmankerle

2 Program:

int f (int a) {

inti=0;

inttm = 1;

int sum = 1;

while(sum <= a) {
i = i+1;
tm = tm+2;
sum = tm+sum;

}

return i;

}

Speci

pre : ¢
post:

‘ start ,

A

2 j=0;
tm=1;

sum=1

:

—_—— se
True |

6 i+=1; 10
— tm+=2; return i
sum+=sum
)
¥
end

9/8/20

B. Wolff - GLA - White-Box Tests

Schmankerle

A CFG de f:

‘ start ’
Y

2 i=0;
tm=1;
sum=1

N

i+=1;
tm+=2;
sum+=sum

—J

[return i]

end

3

For example:

Allinstructions(CFG)={[start,2,5,6,5,10,end]}

AllTransitions(CFG)={[start,2,5,6,5,10,end]}

AllPaths(CFG)={[start,2,5,10,end],
[start,2,5,6,5,10,end],
[start,2,5,6,6,5,10,end],
[start,2,5,6,6,6,5,10,end]}

AllIPath(CFG)={ k e N |

[start,2,5,(6)k,5,10,end]}
(infinite !)

9/8/20

. Wolff - GLA - White-Box Tests

Example: A Symbolic Path Execution

We want to execute the path from AlPaths:

S, 2 5 6, 5 10, E]
b P (sumSa)O2 1<a, A 1<a, A 1=<a, 1<a, A
a,>0 a,20 | A a,20 a,20 - (sumsa)o| 4>a, 4>a, A
a P 3 A9 = = g g =
i 0 0 1 1 1 1
tm P tm| 1 1 3 3 3 3
sumF9sumO 1 1 4 il il 4

9/8/20

B. Wolff - GLA - White-Box Tests

Example: A Symbolic Path Execution

Result:
Test-Case:
For the path M=[start,2,5,6,5,10,end]
we have the path condition ® » 1<a, A 4>a,
A concrete Test, satisfying ®: a, P 3 ‘

Execution of program with this test vector 3: {(3) = 1

Verification of the post-condition: post(3,1) =true

9/8/20 B. Wolff - GLA - White-Box Tests

Addendum: Multiple-Condition-Decision-Coverage

Problem: Consider:

if (ml == m2) {
res = j2 - ji;

} else {
if ((annee%4 == 0) || (annee%100 == 0 && annee400 !'= 0)) {
daysin([2] = 29;
} else {

daysin[2] = 28;
}
res = j2 + (daysin[mi] - j1);
for(int i = mi+1; i < m2; i++) {
res = res + daysin[i];
}
}

even ftransition coverage on the Byzantine condition
(line 4-5) is very coarse and risks to miss the point !

9/8/20 B. Wolff - GLA - White-Box Tests

Addendum: Multiple-Condition-Decision-Coverage

Solution: We use the inherent control flow in C for || and &&
for a refined control flow graph !

D2.1 D2.2 D2.3
t—»@NNee%100=0>—t—»- annee%400
f f > B4

now transition coverage (on the refined CFG) checks

each condition individually for true and false.
This kind of coverage is called MC/DC.

9/8/20 B. Wolff - GLA - White-Box Tests

