.0 oy
universite C/ e

PARIS-SACLAY N

L3 Mention Informatique
Parcours Informatique et MIAGE

Génie Logiciel Avancé -
Advanced Software
Engineering
Part IV : Test Introduction

Burkhart Wolff
()

https://usr.Imf.cnrs.fr/~wolff

mailto:burkhart.wolff@universite-paris-saclay.fr

Validation and Verification

2 Validation :
= Does the system meet the clients requirements ?

> Will the performance be sufficient ?
> Will the usability be sufficient ?

10/13/22 B. Wolff - GLA - System Test

Validation and Verification

2 Validation :
= Does the system meet the clients requirements ?

> Will the performance be sufficient ?
> Will the usability be sufficient ?

Do we build the right system ?

10/13/22 B. Wolff - GLA - System Test

Validation and Verification

2 Validation :
= Does the system meet the clients requirements ?

> Will the performance be sufficient ?
> Will the usability be sufficient ?

Do we build the right system ?

2 Verification: Does the system meet the specification ?

10/13/22 B. Wolff - GLA - System Test

Validation and Verification

2 Validation :
= Does the system meet the clients requirements ?

> Will the performance be sufficient ?
> Will the usability be sufficient ?

Do we build the right system ?

2 Verification: Does the system meet the specification ?

Do we build the system right ?
Is it « correct » ?

10/13/22 B. Wolff - GLA - System Test

How to do Validation ?

2 Mesuring customer satisfaction ...
(well, that's afterwards, and its difficult)

2 Interviews, inspections (again post-hoc)

2 How to validate a system early?
> early prototypes, including performance analysis ...
> mock-ups (fonctionnality, ergonomics,...)

> Test and Animation on the basis of formal specifications
(e.g., ala OCL!)

10/13/22 B. Wolff - GLA - System Test

How to do Verification ?

2 Test and Proof on the basis of formal
specifications (e.g., a la OCL !) against programs ...

10/13/22 B. Wolff - GLA - System Test

How to do Verification ?

Test and Proof on the basis of formal

specifications (e.g., a la OCL !) against programs ...

In the sequel, we concentrate on Testing and
Proof Techniques ...

10/13/22 B. Wolff - GLA - System Test

A Philosophical Position Statement :
Test vs. Proof

2 Note:

Some researcher consider test as opposite to formal
proof! Reasons:

= “A test can only reveal the presence of bugs,
but not their absence” (Dijkstra, v. Dalen)

= ... these researchers referred to unsystematic tests ...
(which are, admittedly, still quite common in SE practice)

10/13/22 B. Wolff - GLA - System Test

A Philosophical Position Statement :
Test vs. Proof

Q2 Note:

We consider (systematic!) test more as
an approximation to formal proof. Reasons:

> The nature of the approximation can be
made formally precise (via explicit test-hypothesis ...)

> both techniques, model-based tests and formal verification,
share a lot of technologies ...

> even full-blown proof attempts may profit from testing,
since it can help to debug specs early and cost-effectively

10/13/22 B. Wolff - GLA - System Test 10

Testing in the SE Process

_ O Where to integrate Tests
> ST in the SE-Process:
ent = 0On the methodological level,
[a la “"Extreme Programming”
cnce
—ACTEptaTT] (XP) ?

Spefifica Tiit No specs, instead writing test

'r?ﬂite & scenarios and test cases from

\ure ' the beginning ...
o RN
or: @

1 Design Unit

Tests

&

Coding Phase

10/13/22 B. Wolff - GLA - System Test 11

Testing in the SE Process

O Where to integrate Tests

g Deploym in the SE-Process:
~ Analysis ent = 0On the methodological level,
a la "Extreme Programming”
Cencept @
ual Hccceeptall (XP) ?
Specifica Tesk No specs, instead writing test
X &7 scenarios and test cases from
ure ' the beginning ...
Concepti on
or . .
& = On the specification level for
Design' Unit validation ...
Tests

&

Coding Phase

10/13/22 B. Wolff - GLA - System Test 12

Testing in the SE Process

O Where to integrate Tests

g Deploym in the SE-Process:
Aralvsis ent > 0On the methodological level,
a la "Extreme Programming”
Ccncept @
ual N ”ccceepta” (XP) ?
Specifica Tesk No specs, instead writing test
,E'r??,itect (7 scenarios and test cases from
ure ' the beginning ...
Concepti on
or & = On the specification level for
Design o/ Unit validation ...
> Tests
& > On the specification level
Coding Phase against code

10/13/22 B. Wolff - GLA - System Test 13

Some empirical data ...

2 Sijze of Software ?
> Peugeot 607 : 2 Mb embedded software
> Windows 90: 10 Mb. LOC source, Win2000: 30 Mb.
= Kernel Hyper V: 50000 LOC. (Highly complex, concurrent C)

> Noyau RedHat 7.1 (2002) : ~2.4 M. LOC, XWindow ~1.8,
Mozilla ~2.1 M.

> Space Shuttle (and its environment) : ~50 MLOC

2 Reminder: Development Cost ?
> Percentage of «Coding» ? 15 - 20 %
Trend: Code is more and more generated (CASE Tools)
> Proportion of Validation et Verification ? ~20% / ~20%

10/13/22 B. Wolff - GLA - System Test 14

Verification Costs

Q1 costs ? 35 - 50 % of the global effort ?

|II

2 all “real” (large) software has remaining bugs ...

2 The cost of bug ?
> the cost to reveal and fix it ...
or:
the cost of a legal battle it may cause...
or the potential damage to the image
(difficult to evaluate, but veeeery real)
or costs as a result to come later on the market

> on the other side - you can't test infinitely, and verification
is again 10 times more costly than thoroughly testing !

10/13/22 B. Wolff - GLA - System Test

15

Verification Costs

2 Conclusion:

> verification is vitally important,
and also critical in the development

> to do it cost-effectively, it requires
- a lot of expertise on products and process

- a lot of knowledge over methods,
tools, and tool chains ...

10/13/22 B. Wolff - GLA - System Test 16

Overview on the part on « Test »

2 WHAT IS TESTING ?

2 A taxonomy on types of tests

> Static Test / Dynamic (Runtime) Test
> Structural Test / Functional Test

> Statistic Tests

2 Functional Test; Link to UML/OCL

= Dynamic Unit Tests, Static Unit Tests,
= Coverage Criteria

2 Structural Tests

> Control Flow and Data Flow Graphs

> Tests and executed paths. Undecidability.
= Coverage Criteria

10/13/22 B. Wolff - GLA - System Test

What is testing ?

It is an approximation to full verification (for ex. by proof)
Main emphasis: finding bugs early,

> either in the model

> orin the program

> or in both

A systematic test is:

> process programs and specifications
and to compute a set of test-cases
under controlled conditions.

> jdeally: testing is complete if a certain criteria,
the adequacy criteria is reached.

10/13/22 B. Wolff - GLA - System Test

18

3

Limits of testing ?

We said, test is an approximation to verification,
usually easier (and less expensive)

Note: Sometimes it is easier to verify than
to test. In particular:

= |low-level OS implementations:
memory allocation, garbage collection
memory virtualization, ...
crypt-algorithms, ...

> non-deterministic programs with
no control over the non-determinism.

10/13/22 B. Wolff - GLA - System Test

19

Taxomomy: Static / Dynamic Tests

2 static: running a program before deployment on data
carefully constructed by the analyst (in a test environment)

> analyse the result on the basis of all components

= working on some classes of executions symbolically
= representing infinitely many executions

2 dynamic: running the programme (or component)
after deployment, on “real data” as imposed by the
application domain

= experiment with the real behaviour
> essentially used for post-hoc ananalysis and debugging

10/13/22 B. Wolff - GLA - System Test 20

Taxonomy: Unit / Sequence / Reactive Tests

Q

unit: testing of a local component (function, module),
typically only one step of the underlying state.

(In functional programs, thats essentially all what

you have to do!)

sequence: testing of a local component (function, module),
but typicallY sequences of executions,

which typically depend on internal state

reactive sequence: testing components by sequences

of steps, but these sequences represent communication
where later parts in the segience depend on what has

been earlier cummunicated

10/13/22 B. Wolff - GLA - System Test 21

Taxonomy: Functional / Structural Test

2 functional: (also: black-box tests). Tests were generated
on a specification of the component, the test focusses
on input output behaviour.

2 structural: (also: white-box tests). Tests were generated
on the basis of the structure or the program, i.e. using
control-flow, data-flow paths or by using symbolic
executions.

2 both: (also: grey-box testing).

10/13/22 B. Wolff - GLA - System Test 22

Functional (“Black-box”) Unit Test

2 We got the spec, but not the program, which is considered
a black box:

input output

we focus on what the program should do !!!

10/13/22 B. Wolff - GLA - System Test

23

Structural ("white-box") Tests

2 we select “critical” paths

1 specification used to verify the obtained results

//
xo e X | //
N :'IZL - Condz(x,y,z)
> |/
yO y ‘ >I ///
2 : =
] . . Results

what the program does and how ...

10/13/22 B. Wolff - GLA - White-Box-Test 24

Functional Unit Test : An Example

The (informal) specification:

Read a "Triangle Object” (with three sides of integral type),
and test if it is isoscele, equilateral, or (default) arbitrary.

Each length should be positive.

Give a specification, and develop a fest set ..

10/13/22 B. Wolff - GLA - System Test

25

Functional Unit Test : An Example

The specification in UML/MOAL:

Triangles

a, b, c: Integer

- mk (Integer, Integer, Integer) :Triangle

- 1s Triangle(): {equ (*equilateral™),
1so (*1sosceles¥™),
arb (*arbitrary*)}

10/13/22 B. Wolff - GLA - System Test

Functional Unit Test : An Example

We add the constraints of the

analysis: 0

inv

—_—
—
—_
—
—
—

%
<a AN 0<b AN 0O<c

—
——
—
—
—
—_—
—
—
—
—_—
—
—
—_—
-

<at+b—~A asb+c A b<c+a

Triangles
b,

a, c: Integer

{equ
1s0
arb

- 1s-Triangle () :
(*1sosceles¥*),
(*arbitrary*) }

~
~
~
~
N

- mk (Integer, Integer, Integer) :Triangle
(*equilateral~),

operation tis_Triangle():
post
post

(t.aFt.b V t.b#t.c) A

post (t.a#t.b V t.b#t.c V t.a#

ta=t.b A t.b=t.c — result=equ

(t.a=t.b V t.b=t.c V t.a=

N

t.c))— result=iso
t.c))— result=arb

10/13/22 B. Wolff - GLA - System Test

27

Revision: Boolean Logic + Some Basic Rules

|
2 =S(aab)=mav-=ab (* deMorgan1 *)

Q2 =(avb)=maan=b (* deMorgan2 *)

2 aan(bvc)=(anb)v(anc

2 4(=-a)=a

2 aanb=bara;, avb=bva

2 aan(bac)=(anb)ac

2 av(bvc)=(avb)vc

2 a—-b=(=a)vb

2 (a=b a P(a)) = P(b) (* one point rule *)

2 Jetx = Ein C(x) = C(E) (* let elimination *)
2 ifcthenCelseD=(caAnC)v (=cnaD)

10/13/22 B. Wolff - GLA - Black Box Test 28

Intuitive Test-Data Generation

2 Consider the test specification (the “"Test Case”):

mk(x,y,z).isTriangle() = X

i.e. for which input (X,y,z) should an
implementation of our contract yield which X ?

Note that we define mk(0,0,0) to invalid,
as well as all other invalid triangles ...

10/13/22 B. Wolff - GLA - Black Box Test

29

Intuitive Test-Data Generation

2 an arbitrary valid triangle: (3, 4, 5)
2 an equilateral triangle: (5, 5, 5)

2 an isoscele triangle and its permutations :
(6,6,7),(7,6,6), (6,7, 6)

2 impossible triangles and their permutations :
(1,2,4),(4,1,2),2,4,1) --x+y>z
(1, 2, 3), (2,4, 2),(5,3,2) --x+y=z(necessary?)

2 azerolength: (0,5, 4), (4,0, 5),

2 Would we have to consider negative values?

10/13/22 B. Wolff - GLA - Black Box Test 30

Intuitive Test-Data Generation

3

Ouf, is there a systematic and automatic
way to compute all these tests ?

Can we avoid hand-written fest-scripts ?
Avoid the ftask to maintain them ?

And the question remains:

When did we test ,,enough™ ?

10/13/22 B. Wolff - GLA - Black Box Test

31

Functional Dynamic Unit Test

Can we exploit the Spec so far ?
How to perform Runtime-Test?

Well, we compile:

context X:

invll : Cl, c ey

inv 1 = C

n n

to some checking code (with assert as in Junit, ACSL, ...)

check X () = assert(C)); - assert(CQ

1

10/13/22 B. Wolff - GLA - System Test

Functional Dynamic Unit Test

How to perform Runtime-Test?

Moreover, compile:

context C::m(alzCl,...,an:Cn)
pre : P(self,al,...,an)
post : Q(Self,al,...,an,result)

to some checking code (with assert as in Junit, VCC, ACSL, ...

check C(); check C (); ... ; check C ();
assert(P(self,al,...,an));
result=run m(self,a ,...,a);

assert(Q(self,al,...,an,result));

10/13/22 B. Wolff - GLA - System Test

33

Functional Dynamic Unit Test in Context

-
-~
-~
-~
-~
-~
-~
-~
-~
-~
-~
-~
-~

) -———————— user input
—————- function under test
) «———————— stubs

Obviously, systematic stimuli of functions is problematic in runtime
testing

... there may be a lot of dead code (libraries)

(technical problem to measure code coverage)

... there may be an enormous amount of
rarely executed code ...

10/13/22 B. Wolff - GLA - Black Box Test 34

Conclusion:
Functional Dynamic Unit Test : Problems

4 Thus, any violation of an invariant, a pre-condition or a post-
condition is detected.

Q If a violation occurs within an execution of a
method, the error is precisely reported.

d On the other hand - it is post-hoc. Only when
a problem occured, we know where. And we need
complete program.

4 Inefficiencies can be partly overcome by optimized
compilations.

10/13/22 B. Wolff - GLA - System Test 35

Conclusion:
Test in the SE Process

O General questions for verification in a process:

>

>

>

How to select test-data ? To which purpose ?>

How to focus verification activities?
Where to verify formally, and
where to test, and when did we test enough?

Note: The quality of a ftest does not increase
necessarily by the number of test-cases !

Automation ? Tools ?

10/13/22

B. Wolff - GLA - System Test

36

