
L3 Mention Informatique
Parcours Informatique et MIAGE

Génie Logiciel Avancé -
Advanced Software

Engineering
Part IV : Test Introduction

Burkhart Wolff
(burkhart.wolff@universite-paris-saclay.fr)

https://usr.lmf.cnrs.fr/~wolff

mailto:burkhart.wolff@universite-paris-saclay.fr

B. Wolff - GLA - System Test 2

Validation and Verification

❑ Validation :
➢ Does the system meet the clients requirements ?
➢ Will the performance be sufficient ?
➢ Will the usability be sufficient ?

10/13/22

B. Wolff - GLA - System Test 3

Validation and Verification

❑ Validation :
➢ Does the system meet the clients requirements ?
➢ Will the performance be sufficient ?
➢ Will the usability be sufficient ?

Do we build the right system ?

10/13/22

B. Wolff - GLA - System Test 4

Validation and Verification

❑ Validation :
➢ Does the system meet the clients requirements ?
➢ Will the performance be sufficient ?
➢ Will the usability be sufficient ?

Do we build the right system ?

❑ Verification: Does the system meet the specification ?

10/13/22

B. Wolff - GLA - System Test 5

Validation and Verification

❑ Validation :
➢ Does the system meet the clients requirements ?
➢ Will the performance be sufficient ?
➢ Will the usability be sufficient ?

Do we build the right system ?

❑ Verification: Does the system meet the specification ?

Do we build the system right ?
 Is it « correct » ?	 		 	 	 	

10/13/22

B. Wolff - GLA - System Test 6

How to do Validation ?

❑ Mesuring customer satisfaction ...
(well, that's afterwards, and its difficult)

❑ Interviews, inspections (again post-hoc)

❑ How to validate a system early?
➢ early prototypes, including performance analysis ...
➢ mock-ups (fonctionnality, ergonomics,…)

➢ Test and Animation on the basis of formal specifications
(e.g., à la OCL !)

10/13/22

B. Wolff - GLA - System Test 7

How to do Verification ?

❑ Test and Proof on the basis of formal
specifications (e.g., à la OCL !) against programs ...

10/13/22

B. Wolff - GLA - System Test 8

How to do Verification ?

❑ Test and Proof on the basis of formal
specifications (e.g., à la OCL !) against programs ...

In the sequel, we concentrate on Testing and
Proof Techniques ...

10/13/22

B. Wolff - GLA - System Test 9

A Philosophical Position Statement :
Test vs. Proof

❑ Note:

Some researcher consider test as opposite to formal
proof! Reasons:

➢ “A test can only reveal the presence of bugs,
but not their absence” (Dijkstra, v. Dalen)

➢ ... these researchers referred to unsystematic tests ...
(which are, admittedly, still quite common in SE practice)

10/13/22

B. Wolff - GLA - System Test 10

A Philosophical Position Statement :
Test vs. Proof

❑ Note:

We consider (systematic!) test more as
an approximation to formal proof. Reasons:

➢ The nature of the approximation can be
made formally precise (via explicit test-hypothesis ...)

➢ both techniques, model-based tests and formal verification,
share a lot of technologies ...

➢ even full-blown proof attempts may profit from testing,
since it can help to debug specs early and cost-effectively

10/13/22

B. Wolff - GLA - System Test 11

￧

￧

Require
ment

Analysis

Concept
ual

Specifica
tion

Coding Phase

Unit
Tests

Integrati
on

Tests

Architect
ure

Concepti
on

Design

Acceptan
ce

Test

Deploym
ent

Testing in the SE Process

 Where to integrate Tests
in the SE-Process:
➢ On the methodological level,

à la “Extreme Programming”
(XP) ?
No specs, instead writing test
scenarios and test cases from
the beginning ...

￧
￧

10/13/22

B. Wolff - GLA - System Test 12

￧

￧

Require
ment

Analysis

Concept
ual

Specifica
tion

Coding Phase

Unit
Tests

Integrati
on

Tests

Architect
ure

Concepti
on

Design

Acceptan
ce

Test

Deploym
ent

Testing in the SE Process

 Where to integrate Tests
in the SE-Process:
➢ On the methodological level,

à la “Extreme Programming”
(XP) ?
No specs, instead writing test
scenarios and test cases from
the beginning ...

➢ On the specification level for
validation ...

￧
￧

10/13/22

B. Wolff - GLA - System Test 13

￧

￧

Require
ment

Analysis

Concept
ual

Specifica
tion

Coding Phase

Unit
Tests

Integrati
on

Tests

Architect
ure

Concepti
on

Design

Acceptan
ce

Test

Deploym
ent

Testing in the SE Process

 Where to integrate Tests
in the SE-Process:
➢ On the methodological level,

à la “Extreme Programming”
(XP) ?
No specs, instead writing test
scenarios and test cases from
the beginning ...

➢ On the specification level for
validation ...

➢ On the specification level
against code

￧
￧

10/13/22

B. Wolff - GLA - System Test 14

Some empirical data ...

❑ Size of Software ?
➢ Peugeot 607 : 2 Mb embedded software
➢ Windows 90: 10 Mb. LOC source, Win2000: 30 Mb.
➢ Kernel Hyper V: 50000 LOC. (Highly complex, concurrent C)
➢ Noyau RedHat 7.1 (2002) : ~2.4 M. LOC, XWindow ~1.8,

Mozilla ~2.1 M.
➢ Space Shuttle (and its environment) : ~50 MLOC

❑ Reminder: Development Cost ?
➢ Percentage of «Coding» ? 15 - 20 %

Trend: Code is more and more generated (CASE Tools)
➢ Proportion of Validation et Verification ? ~20% / ~20%

10/13/22

B. Wolff - GLA - System Test 15

Verification Costs

❑ costs ? 35 - 50 % of the global effort ?

❑ all “real” (large) software has remaining bugs …

❑ The cost of bug ?
➢ the cost to reveal and fix it …

or:
	 the cost of a legal battle it may cause...
or	 the potential damage to the image
	 (difficult to evaluate, but veeeery real)
or	 costs as a result to come later on the market

➢ on the other side – you can't test infinitely, and verification
is again 10 times more costly than thoroughly testing !

10/13/22

B. Wolff - GLA - System Test 16

Verification Costs

❑ Conclusion:
➢ verification is vitally important,

and also critical in the development

➢ to do it cost-effectively, it requires
□ a lot of expertise on products and process
□ a lot of knowledge over methods,

tools, and tool chains ...

10/13/22

B. Wolff - GLA - System Test 17

Overview on the part on « Test »

❑ WHAT IS TESTING ?
❑ A taxonomy on types of tests

➢ Static Test / Dynamic (Runtime) Test
➢ Structural Test / Functional Test
➢ Statistic Tests

❑ Functional Test; Link to UML/OCL
➢ Dynamic Unit Tests, Static Unit Tests,
➢ Coverage Criteria

❑ Structural Tests
➢ Control Flow and Data Flow Graphs
➢ Tests and executed paths. Undecidability.
➢ Coverage Criteria

10/13/22

B. Wolff - GLA - System Test 18

What is testing ?

❑ It is an approximation to full verification (for ex. by proof)
❑ Main emphasis: finding bugs early,

➢ either in the model
➢ or in the program
➢ or in both

❑ A systematic test is:
➢ process programs and specifications

and to compute a set of test-cases
under controlled conditions.

➢ ideally: testing is complete if a certain criteria,
the adequacy criteria is reached.

10/13/22

B. Wolff - GLA - System Test 19

Limits of testing ?

❑ We said, test is an approximation to verification,
usually easier (and less expensive)

❑ Note: Sometimes it is easier to verify than
to test. In particular:

➢ low-level OS implementations:
	 memory allocation, garbage collection
	 memory virtualization, ...
	 crypt-algorithms, ...
	

➢ non-deterministic programs with
no control over the non-determinism.

10/13/22

B. Wolff - GLA - System Test 20

Taxomomy: Static / Dynamic Tests

❑ static: running a program before deployment on data
carefully constructed by the analyst (in a test environment)
➢ analyse the result on the basis of all components
➢ working on some classes of executions symbolically

= representing infinitely many executions

❑ dynamic: running the programme (or component)
after deployment, on “real data” as imposed by the
application domain
➢ experiment with the real behaviour
➢ essentially used for post-hoc ananalysis and debugging

10/13/22

B. Wolff - GLA - System Test 21

Taxonomy: Unit / Sequence / Reactive Tests

❑ unit: testing of a local component (function, module),
typically only one step of the underlying state.
(In functional programs, thats essentially all what
you have to do!)

❑ sequence: testing of a local component (function, module),
but typicallY sequences of executions,
which typically depend on internal state

❑ reactive sequence: testing components by sequences
of steps, but these sequences represent communication
where later parts in the seqience depend on what has
been earlier cummunicated

10/13/22

B. Wolff - GLA - System Test 22

Taxonomy: Functional / Structural Test

❑ functional: (also: black-box tests). Tests were generated
on a specification of the component, the test focusses
on input output behaviour.

❑ structural: (also: white-box tests). Tests were generated
on the basis of the structure or the program, i.e. using
control-flow, data-flow paths or by using symbolic
executions.

❑ both: (also: grey-box testing).

10/13/22

B. Wolff - GLA - System Test 23

Functional (“Black-box”) Unit Test

❑ We got the spec, but not the program, which is considered
a black box:

input output???

Ce que le programme devrait faire…we focus on what the program should do !!!

10/13/22

B. Wolff - GLA - White-Box-Test 24

Structural (“white-box”) Tests

❑ we select “critical” paths

❑ specification used to verify the obtained results

what the program does and how …

x0
y0
z0

Results

x
y
z

Cond1(x,y,z)

Cond2(x,y,z)

10/13/22

B. Wolff - GLA - System Test 25

Functional Unit Test : An Example

The (informal) specification:

	 Read a “Triangle Object” (with three sides of integral type),
and test if it is isoscele, equilateral, or (default) arbitrary.

Each length should be positive.

Give a specification, and develop a test set ...

10/13/22

B. Wolff - GLA - System Test 26

Functional Unit Test : An Example

The specification in UML/MOAL:

	 	 Triangles
a, b, c: Integer

- mk(Integer,Integer,Integer):Triangle
- is_Triangle(): {equ (*equilateral*),
 iso (*isosceles*),
 arb (*arbitrary*)}

10/13/22

B. Wolff - GLA - System Test 27

Functional Unit Test : An Example

We add the constraints of the
analysis:

	 	
Triangles
a, b, c: Integer

- mk(Integer,Integer,Integer):Triangle
- is_Triangle(): {equ (*equilateral*),
 iso (*isosceles*),
 arb (*arbitrary*)}

inv 0<a ∧ 0<b ∧ 0<c
inv c≤a+b ∧ a≤b+c ∧ b≤c+a

operation t.is_Triangle():
post t.a=t.b ∧ t.b=t.c ⟶ result=equ
post (t.a≠t.b ∨ t.b≠t.c) ∧
 (t.a=t.b ∨ t.b=t.c ∨ t.a=t.c))⟶ result=iso
post (t.a≠t.b ∨ t.b≠t.c ∨ t.a≠t.c))⟶ result=arb

10/13/22

B. Wolff - GLA - Black Box Test 28

Revision: Boolean Logic + Some Basic Rules

❑ ¬(a ∧ b)=¬ a ∨ ¬ b 	 	 	 	 (* deMorgan1 *)
❑ ¬(a ∨ b)=¬ a ∧ ¬ b	 	 	 	 (* deMorgan2 *)
❑ a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)
❑ ¬(¬ a) = a
❑ a ∧ b = b ∧ a; a ∨ b = b ∨ a
❑ a ∧ (b ∧ c) = (a ∧ b) ∧ c
❑ a ∨ (b ∨ c) = (a ∨ b) ∨ c
❑ a ⟶ b = (¬ a) ∨ b
❑ (a=b ∧ P(a)) = P(b) 	 	 	 	 (* one point rule *)

❑ let x = E in C(x) = C(E)	 	 	 (* let elimination *)
❑ if c then C else D = (c ∧ C) ∨ (¬ c ∧ D)

	 	 	 	 	 = (c ⟶ C) ∧ (¬ c ⟶ D)

10/13/22

B. Wolff - GLA - Black Box Test 29

Intuitive Test-Data Generation

❑ Consider the test specification (the “Test Case”):

	 mk(x,y,z).isTriangle() ≡ X

i.e. for which input (x,y,z) should an
implementation of our contract yield which X ?

Note that we define mk(0,0,0) to invalid,
as well as all other invalid triangles ...

10/13/22

B. Wolff - GLA - Black Box Test 30

Intuitive Test-Data Generation

❑ an arbitrary valid triangle: (3, 4, 5)
❑ an equilateral triangle: (5, 5, 5)

❑ an isoscele triangle and its permutations :

(6, 6, 7), (7, 6, 6), (6, 7, 6)

❑ impossible triangles and their permutations :

(1, 2, 4), (4, 1, 2), (2, 4, 1) -- x + y > z

(1, 2, 3), (2, 4, 2), (5, 3, 2) -- x + y = z (necessary?)

❑ a zero length : (0, 5, 4), (4, 0, 5),

❑ . . .

❑ Would we have to consider negative values?

10/13/22

B. Wolff - GLA - Black Box Test 31

Intuitive Test-Data Generation

❑ Ouf, is there a systematic and automatic
way to compute all these tests ?

❑ Can we avoid hand-written test-scripts ?
Avoid the task to maintain them ?

❑ And the question remains:

 When did we test „enough“ ?

10/13/22

B. Wolff - GLA - System Test 32

Functional Dynamic Unit Test

Can we exploit the Spec so far ?
How to perform Runtime-Test?

Well, we compile:

context X:
inv	l

1
: C

1
, ...,

inv 	 l
n
 : C

n

to some checking code (with assert as in Junit, ACSL, ...)

check_X() = assert(C

1
); ... ; assert(C

n
)

 10/13/22

B. Wolff - GLA - System Test 33

Functional Dynamic Unit Test

How to perform Runtime-Test?

Moreover, compile:

context C::m(a1:C1,...,an:Cn)

pre	 : P(self,a1,...,an)

post 	: Q(self,a1,...,an,result)

to some checking code (with assert as in Junit, VCC, ACSL, ...)

check_C(); check_C1(); ... ; check_Cn();

assert(P(self,a1,...,an));

result=run_m(self,a1,...,an);

assert(Q(self,a1,...,an,result));
10/13/22

B. Wolff - GLA - Black Box Test 34

Functional Dynamic Unit Test in Context

❑ Obviously, systematic stimuli of functions is problematic in runtime
testing

❑ ... there may be a lot of dead code (libraries)
(technical problem to measure code coverage)

❑ ... there may be an enormous amount of
rarely executed code ...

function under test

stubs

user input

10/13/22

B. Wolff - GLA - System Test 35

Conclusion:
Functional Dynamic Unit Test : Problems

❑ Thus, any violation of an invariant, a pre-condition or a post-
condition is detected.

❑ If a violation occurs within an execution of a
method, the error is precisely reported.

❑ On the other hand – it is post-hoc. Only when
a problem occured, we know where. And we need
complete program.

❑ Inefficiencies can be partly overcome by optimized
compilations.

10/13/22

B. Wolff - GLA - System Test 36

Conclusion:
Test in the SE Process
 General questions for verification in a process:

➢ How to select test-data ? To which purpose ?>

➢ How to focus verification activities?
Where to verify formally, and
where to test, and when did we test enough?

Note: The quality of a test does not increase
necessarily by the number of test-cases !

➢ Automation ? Tools ?

10/13/22

