
L3 Mention Informatique
Parcours Informatique et MIAGE

Génie Logiciel Avancé -
Advanced Software

Engineering
From Analysis to Design

Burkhart Wolff
(burkhart.wolff@universite-paris-saclay.fr)

https://usr.lmf.cnrs.fr/~wolff

mailto:burkhart.wolff@universite-paris-saclay.fr

9/8/20 B. Wolff - GLA - From Analysis to Design

Plan of the Chapter

❑ Introduction: The Role of Design
❑ Objectives of the Design Phase

➢ capturing non-functional requirements
➢ refining functional aspects
➢ linking decisions, tracing requirements

❑ Techniques	 	 	 	 	 	 	

9/8/20 B. Wolff - GLA - From Analysis to Design

The Role of the Design Phase

❑ Transition from an analysis model to a collection
of more detailed, more executable, more explicit models

❑ Shift of Focus
➢ Analysis: Understanding the Requirements Documents

(Cahier de Charge)
➢ Design: Understanding the Implementation

and the specific constraints resulting from
technology choices
(programming language, frameworks, libraries,
 protocols, ...)

❑ Producing more refined UML models dor documentation

9/8/20 B. Wolff - GLA - From Analysis to Design

The Objectives of Design (1)

4

➢ Taking « non-functional » requirements into account :
■ legal constraints, technical norms
■ security
■ performance
■ robustness
■ synchronization

☞ Adding technical classes and methods
➢ Instantiating architectural schemata

(design patterns, N-tier architectures)
➢ Reuse of «Components Off The Shelf » (COTS)
➢ for classes and packages

	 ☞ interface code might be necessary

	 ☞ component tests to provide !

9/8/20 B. Wolff - GLA - From Analysis to Design

The Objectives of Design (2)

❑ Implementing Class/Use-Case/Sequence/
State-Chart/Architecture Diagrams
➢ Introducing algorithmic aspects
➢ Refining/detailing component interactions (interfaces)	 	
➢ Choice classes and methods implementing interactions
➢ Choice of implementation language/technology
➢ Coping with limitations:

☞ Inheritance ? Simple or multiple ?

☞ Visibility rules ?

☞ Exceptions

☞ Libraries ? Number Representations

(integer? longint? multi-precision?)

9/8/20 B. Wolff - GLA - From Analysis to Design

Refining Class Diagrams

6

➢ Adding technical classes and methods
■ arithmetic operations (int, longint, multi-precision ints ?)
■ date representations
■ classes for protocols (streams ? sockets ? VPN ? web-protocols ?)
■ classes for standard solutions

(package for credit-card payment, ...)
■ synchronization protocols for data

in distributed systems

9/8/20 B. Wolff - GLA - From Analysis to Design

Refining Class Diagrams

6

➢ Adding technical classes and methods
■ Reuse of «Components Off The Shelf » (COTS)
■ additional classes and operations for interface code

(example: “communication layer” abstracting “POSIX”, ...
 “data-base layer” abstracting “mySql”, ...)

■ Provide tests for interfaces of COTS components
to understand their behaviour in corner cases

9/8/20 B. Wolff - GLA - From Analysis to Design

The Objectives of Desig (3)

7

❑ Systematics:
➢ Documenting the design choices
➢ Tracing choices wrt. requirements / cahier de charge (doors)
➢ Checking the coherence of choices,

trying to keep the design simple
➢ Writing design document, linking to analyse documents

 Classes of Analysis -> Design Classes

 Associations of Analysis -> Attributes, methods, tables ?
 Operations of Analysis -> Methods in design classes

9/8/20 B. Wolff - GLA - From Analysis to Design

Domain Specific Safety Standards

❑ Hard «digital» requirements arise:

The international standard on functional safety for software
development of road vehicles ISO26262-6 requires the

	 	 freedom from interference by software partitioning

❑ Thus it is aimed at providing a trusted embedded real-time operating
system, which is oriented to ECUs (Electronic Control Units) in
automotive industry. (avionics similarly)

9/8/20 B. Wolff - GLA - From Analysis to Design

Security vs. Architecture : Consequences

❑ A current industrial challenge resulting
from the requirement «Freedom of interference»
➢ Real-time Operating System Kernels

assuring not only memory protection, but
« Non-interference »
(PikeOS, Sel4, INTEGRITY-178B, RTOS Wind River Systems...)

Airbag
Linux/
Audio

Entertainmt

Engine
Control

OS 1 OS 2 OS 3
Proc 1 Proc 2 Proc 3Proc 2

Cables, Cables, Cables ...

Airbag
Linux/
Audio

Entertain

Engine
Control

Multicore - Proc 1
RT-OS with Separation

simple bus

9/8/20 B. Wolff - GLA - From Analysis to Design

Browser
Engine

(eg. Webkit)

Robustness vs. Efficiency : Consequences

❑ Communication between components
➢ Pipe-Communication
(flexible, compatible with dynamic process creation)
➢ Shared-Memory Communication

(fast, but rigid wrt. component-architecture)
➢ message-passing

(very fast, but only for small messages)
➢ synchronous/asynchronous “mailboxes”

 Linux/

Audio
Entertainmt

Audio-
Driver

Memory

Linux/
Audio
Driver

Browser
Task 1

Shared

Browser
Task 1

Browser
Task 1

pipes

9/8/20 B. Wolff - GLA - From Analysis to Design

Example Design Patterns : « Observer »

❑ Objective: Maintain coherence of different « views »
of a piece of data;

❑ Motivation: decoupling management of an objet and its use in different
components
➢ an observer can observe several objects ;

this list can dynamically change
➢ an observed object can be target of several observers;

this list can dynamically change

❑ Collaborations:
➢ an observer registers for the observed object
➢ the observed object notifies his registerd observers
➢ the observer can store specificinformation in the observed object

9/8/20 B. Wolff - GLA - From Analysis to Design

Example Design Patterns : « Observer »

❑ Adding « controlers » (interactions) gives MVC.

❑ Directly impemented in Java :
interface observer where class observable is to
derive …

❑ Adding « controlers » (interactions) gives MVC.

❑ Classical pattern in GUI design:
some content is modified, but the gui-classes
have to update their presentation…

9/8/20 B. Wolff - GLA - From Analysis to Design

Example Design Patterns : « Observer »

Observer

update()

Subject

attach(observer)

detach(observer)

notify()

ConcreteSubject

getState()

setState()

ConcreteObserver

update()

observers

*

subject

*
this is a aggregation in practice

☞

9/8/20 B. Wolff - GLA - From Analysis to Design

Refining Class Diagrams

➢ Fixing (Arithmetic) implementation types

9/8/20 B. Wolff - GLA - From Analysis to Design

Refining Class Diagrams

B. Wolff - GL A - Ana2Design 18

➢ Fixing (Arithmetic) implementation types

9/8/20 B. Wolff - GLA - From Analysis to Design

Refining Class Diagrams

19

➢ Totalizing operation contracts with exceptions

9/8/20 B. Wolff - GLA - From Analysis to Design

Refining Class Diagrams

B. Wolff - GL A - Ana2Design 20

➢ Totalizing operation contracts with exceptions

9/8/20 B. Wolff - GLA - From Analysis to Design

Refining Class Diagrams

B. Wolff - GL A - Ana2Design

➢ Expressing Inheritance
■ ... because the target language doesn't support it
■ ... because the instance shouldn't loose its identity

when changes

2018-2019

9/8/20 B. Wolff - GLA - From Analysis to Design

Refining Class Diagrams

➢ Expressing Inheritance
■ ... because the target language doesn't support it
■ ... because the instance shouldn't loose its identity

when changes

9/8/20 B. Wolff - GLA - From Analysis to Design

Refining Class Diagrams

➢ Expressing Inheritance
■ ... because the target language doesn't support it
■ ... because the instance shouldn't loose its identity

when changes

9/8/20 B. Wolff - GLA - From Analysis to Design

Refining Class Diagrams

➢ Expressing Inheritance
■ ... because the target language doesn't support it
■ ... because the instance shouldn't loose its identity

when changes

- Employe
- Director

Enumeration

9/8/20 B. Wolff - GLA - From Analysis to Design

Refining Class Diagrams

➢ Implementing Associations
■ ... depends on cardinality (1 ? * ? 1..5 ?)
■ ... depends on type (set ? multiset ? list ?)

9/8/20 B. Wolff - GLA - From Analysis to Design

Refining Class Diagrams

➢ Implementing Associations
■ ... depends on cardinality (1 ? * ? 1..5 ?)
■ ... depends on type (set ? multiset ? list ?)
■ ... as mutually linked lists (or arrays) of references

9/8/20 B. Wolff - GLA - From Analysis to Design

Refining Class Diagrams

➢ Implementing Associations
■ ... depends on cardinality (1 ? * ? 1..5 ?)
■ ... depends on type (set ? multiset ? list ?)
■ ... as recomputing methods ...

9/8/20 B. Wolff - GLA - From Analysis to Design

Refining Class Diagrams

➢ Implementing Associations
■ ... depends on cardinality (1 ? * ? 1..5 ?)
■ ... depends on type (set ? multiset ? list ?)
■ ... as recomputing methods using an index table

9/8/20 B. Wolff - GLA - From Analysis to Design

Tracing Requirements

❑ Tracing requirements from CDC over Analysis and
Design Milestones is mandatory in many certification
processes

❑ Technical Solution:
➢ Rational Dynamic Object Oriented Requirements System (DOORS)

client–server application, with a Windows-only client and servers for
Linux, Windows, and Solaris.

➢ There is also a web client, DOORS Web Access.
➢ For example, it is common practice to capture verification

relationships to demonstrate that a requirement is verified
by a certain test artefact.
➢ DOORS comes with an own modeling language allowing to
generate UML diagrams
➢ https://www.ibm.com/de-de/marketplace/requirements-management/details

9/8/20 B. Wolff - GLA - From Analysis to Design

Tracing Requirements

❑ DOORS screenshot	 	 	 	 	 	

9/8/20 B. Wolff - GLA - From Analysis to Design

Conclusion

❑ Refinement of the Analysis docs
❑ Objectives of the Design Phase

➢ capturing non-functional requirements
➢ refining functional aspects
➢ linking decisions, tracing requirements

❑ Techniques numerous, and depend on
chosen target languages / technologies	 	 	 	
	 	 	

