
L3 Mention Informatique
Parcours Informatique et MIAGE

Génie Logiciel Avancé -
Advanced Software

Engineering
An Introduction

 Burkhart Wolff
(burkhart.wolff@universite-paris-saclay.fr)

https://usr.lmf.cnrs.fr/~wolff

mailto:burkhart.wolff@universite-paris-saclay.fr

9/8/23 B. Wolff - GLA - Motivation

What is Software Engineering ?

❑ Methods, techniques and tools for
● design: requirement analysis, models, specifications
● development: programmation, integration
● validation: prototypes, testing
● verification: formal proof of required properties
● maintenance: reusability, improvements

❑ A slightly longer answer:

9/8/23 B. Wolff - GLA - Motivation

What is Software Engineering ?

❑ ... slightly longer answer:

 The discipline of software engineering was created to address
poor quality of software, get projects exceeding time and budget
under control, and ensure that software is built systematically,
rigorously, measurably, on time, on budget, and within
specification. [Wikipedia [en]]

❑ Or much shorter:

SE addresses the problems of
 « Development in the Large »
... so for teams with 100 or 1000 of developers, and
budgets of sometimes billions of dollars.

9/8/23 B. Wolff - GLA - Motivation

What is Software Engineering ?

❑ ... lets consider this more closely:

The discipline of software engineering was created to address
poor quality of software, get projects exceeding time and budget
under control, and ensure that software is built systematically,
rigorously, measurably, on time, on budget, and within
specification. [Wikipedia [en]]

❑ ... lets consider this more closely:

The discipline of software engineering was created to address
poor quality of software, get projects exceeding time and budget
under control, and ensure that software is built systematically,
rigorously, measurably, on time, on budget, and within
specification. [Wikipedia [en]]

9/8/23 B. Wolff - GLA - Motivation

What is Software Engineering ?

❑ poor quality

❑ projects exceeding
time and budget

❑ software is built systematically,

❑ ... within specification.

Covered in this course:

✔

-

✔✔

✔✔

for something like
constructive cost
models (COCOMO)
you need experience
with a concrete
process !

9/8/23 B. Wolff - GLA - Motivation

The Problem for Quality: Size

❑ Some (anecdotal) empirical data based on
the common criteria “lines of code” (LOC)

* https://www.openhub.net/p/firefox/analyses/latest/languages_summary

Software Software Type Year
(approx)

LOC

Space Shuttle Embedded + Services 1980 50M
Windows 90 OS 1990 10M
Peugeot 607 Embedded 2000 2M
Win2000 OS 2000 30M
Hyper V V-OS (Azure core) 2008 50K
X Window Unix Windowing Sys. 2008 1.8M
Azure Virtualising Services 2009 110M
Mozilla Firefox Browser (Application) 2020 23M *

9/8/23 B. Wolff - GLA - Motivation

The Problem for Quality: Size + Aging

❑ Some (anecdotal) empirical data on one product-line for
a core-product of a Business SW Company (SAP)

Software Software Type Year
(appro
x)

LOC

Version 1 Business Application Suite 1973 ???
Version 5.1 Business Application Suite 2004 <60M
Version 5.2 Business Application Suite 2000 90M
Version 6.0 Business Application Suite 2000 100M
Version 7.0 Business Application Suite 2008 105M
Version 7.1 Business Application Suite 2008 118

9/8/23 B. Wolff - GLA - Motivation

The Problem for Quality:
Changing “Company Cultures”
❑ Software is invasive. In many traditional “engineering”

companies, most of the money is made by software.
❑ Example: Automotive.

❑ But become traditional “engineers”
automatically “software engineers” ???

https://www.transparencymarketresearch.com/automotive-software-market.html

9/8/23 B. Wolff - GLA - Motivation

The Problem for Software-Quality
❑ A Very General Rule of Thumb:

❑ Programming is not enough ! Overall,
It is not even the most important cost-factor !!

❑ A global estimate of project activities:

Percentage of «Coding» ? 15 - 20 %
Proportion of Validation et Verification ? ~20%
All others : (Analysis,Design, Certification,
 Maintenance, Management). 60 %

❑ These figures may vary substantially in
particular industries (Automotive, Railways, Medical…)

9/8/23 B. Wolff - GLA - Motivation

The Problem for Software Quality:

❑ There are various “pragmatic” ways to deal with
software quality problems
❑ Propaganda: all “real” (large) software has bugs …

(That’s true, but somewhat off the point)
❑ Shifting the costs of bug :

❑ reveal and fix it now, but ship later …
or:

❑ risking the cost of a legal battle
(perhaps, in the future…)
or

❑ risking potential damage to the brand-image
(difficult to evaluate, and often considered irreal)

❑ on the other side – you can't test infinitely,
and thorough verification techniques
are unfortunately ways more costly than shallow testing !

9/8/23 B. Wolff - GLA - Motivation

The Problem for Software Quality:

❑ … these are in practice often the real questions
for the management of a software process …

? ? ?

9/8/23 B. Wolff - GLA - Motivation

Why is it important to get software right?

❑ One common answer:

Since information technology becomes more and more pervasive,
Reliability, Safety and Security become more critical

❑ Consider the application domains with obvious criticality:

− transport systems (Cars, Métros, TGV), aviation controls, aerospace, ...
− critical industrial processes, nuclear power plants, weapons, …
− medical technologies: tele-surgery, radiation control…
− critical telecommunication infrastructures and networks,
− electronic commerce

− For most of them exist certification
processes, legal requirements, etcpp.− This should be the most important
reason, but, actually, it isn't.

− The complexity of large software-
projects can simply not be mastered
without advanced software
engineering techniques …

9/8/23 B. Wolff - GLA - Motivation

What are the Sub-disciplines of SE

❑ What is Software Engineering (SE) as a discipline
about ?

❑ What are the sub-disciplines ?

So …

B. Wolff - GLA - Motivation

What are the Sub-disciplines of SE

❑ Well - again common knowledge [thanks wikipedia!]
● [1] Requirements engineering: The elicitation, analysis,

specification, and validation of requirements for software.
● [2] Software design: The process of defining the

architecture, components, interfaces, and other
characteristics of a system or component. It is also
defined as the result of that process.

● [3] Software construction: The detailed creation of
working, meaningful software through a combination of
coding, verification, testing and debugging.

● ...

9/8/23

B. Wolff - GLA - Motivation

What are the Sub-disciplines of SE

❑ Well - again common knowledge [thanks wikipedia!]
● . . .
● [4] Software verification: The verification of the behavior of

a program on a finite set of test cases, suitably selected
from the usually infinite executions domain, against the
expected behavior.
[This may include simulation, animation, test-generation,
formal proof and model-checking activities ...]

● [5] Software maintenance: The totality of activities required
to provide cost-effective support to software.

● ...

9/8/23

B. Wolff - GLA - Motivation

What are the Sub-disciplines of SE

❑ Well - again common knowledge [thanks wikipedia!]
● . . .
● [6] Software configuration management: The identification

of the configuration of a system at distinct points in time for
the purpose of systematically controlling changes to the
configuration, and maintaining the integrity and traceability
of the configuration throughout the system life cycle.

● [7] Software engineering management: The application of
management activities—planning, coordinating,
measuring, monitoring, controlling, and reporting—to
ensure that the development and maintenance of software
is systematic, disciplined, and quantified.
[Again: this is not what we do in this course: it requires
 more experience and a concrete process to do this ...]

● . . .
9/8/23

B. Wolff - GLA - Motivation

What are the Sub-disciplines of SE

❑ Well - again common knowledge [thanks wikipedia!]
● . . .
● [8] Software engineering process: The definition,

implementation, assessment, measurement, management,
change, and improvement of the software life cycle process
itself.

● [9] Software engineering tools and methods: The computer-
based tools that are intended to assist the software life cycle
processes (see Computer-aided software engineering) and
the methods which impose structure on the software
engineering activity with the goal of making the activity
systematic and ultimately more likely to be successful.

● [10] Software quality management: The degree to which a
set of inherent characteristics fulfils requirements.

9/8/23

9/8/23

A “Software Engineering Process” (example)

MANAGEMENT PROCESS

Development Mgt.
Risc Management

Configuration
Management

« PeopleWare »
(Staff, Sub-contractors)

FEASIBILITY STUDIES
(BEFORE PROJET)

SPECIFICATION &
DESIGN

PRODUCTION

INTEGRATION &
VALIDATION

EXPLOITATION

Development

Maintenance
& Support TECHNICAL PROCESS

B. Wolff - GLA - Motivation

PROCESSUS
QUALITE

QUALITY
ASSURANCE

QUALITY
CONTROL

METRICS

9/8/23 B. Wolff - GLA - Motivation

A “Software Engineering Process” (example)

❑ Another Example: The VPM3-Model (Daimler)

9/2/23

9/8/23 B. Wolff - GLA - Motivation

How can software be «built systematically»?

❑ Organise a development into formally
described process !
● ... with identified phases, (which correspond

partly to the aforementioned “SE disciplines”)
● ... staff (and organisation and cost-plans)
● ... defined deliverables (i.e. documents, codes, ...)
● ... procedures (and tools !) to validate the

 quality of the deliverables (reviews, static checks)
● ... procedures to version and configure

deliverables (in particular code)
● Compare: THE SWEBOOK

	IEEE Computer Society an international standard ISO/IEC TR 19759:2005

9/8/23 B. Wolff - GLA - Motivation

How can software be «built systematically»?

❑ Let’s have a closer look into another Example Process-
Model: The V-Model. [German Administration 2005]
http://de.wikipedia.org/wiki/V-Modell_(Entwicklungsstandard)#cite_note-6
It identifies:
● ... phases : Requirement, Architectural Design,

Design, Code, Tests, passed deployments, ...
● ... defined deliverables as milestones (i.e. documents,

codes, ...) based on templates to be “taylored” to the task
● ... tools & procedures : syntax-based editors, IDEs, version &

configuration management and an access control management
for the various different roles in the process, …

B. Wolff - GLA - Motivation

A Schematic View on the V-Model

Requirement
Analysis

Design

Coding Phase

Integration

Deployment

￧

￧

9/8/23

B. Wolff - GLA - Motivation

A Schematic View on the V-Model

Requirement
Analysis

Design

Coding Phase

Integration

Deployment

￧

￧

D0 : Cahier de Charges

D2 : System Design

D1 : System Analysis

D3 : Code

D5 : Updates

D4 : Final

￧

9/8/23

B. Wolff - GLA - Motivation

A Schematic View on the V-Model

Requirement
Analysis

Design

Coding Phase

Integration

Deployment

￧

￧

D7 : System Validation

D6 : Tests

9/8/23

9/8/23 B. Wolff - GLA - Motivation

The V-Model

❑ We will use the V-Model as a kind of
“typical classical process-model”

Many processes are just a variant of it.

❑ However, there is no such thing like
“the process” in industry,

❑ … et chacun fait ca a sa sauce …

9/8/23 B. Wolff - GLA - Motivation

Alternatives to the V-Model

❑ IBM Rational Unified Process (RUP)

❑ Idea : Using UML and OCL integrated into the Deliverables (documents)
❑ Idea : Allows for semi-formal editing, more precise notation and therefore

better communication
❑ Analysis, Design and Code Documents CONTAIN standardised

diagrammatic specification elements (the “model”) which can be
automatically validated

❑ Code and Tests can partially be generated from design models
(Model-Driven Engineering (MDA))

9/8/23 B. Wolff - GLA - Motivation

Alternatives to the V-Model

Waterfall Model
[Benington 56, Royce 70]
Royce presented this model
as an example of a
flawed, non-working
models.

Category: Academic example.
Never works like this in practice.

9/8/23 B. Wolff - GLA - Motivation

Alternatives to the V-Model

❑ Spiral Model [Barry Boehm 88]
combines some key
aspect of the waterfall model
and rapid prototyping
methodologies, in an
effort to combine
advantages of
top-down and bottom-up
concepts.

Today mostly
a conceptual
reference; ideas
are retaken in
« agile development processes»

https://en.wikipedia.org/wiki/Waterfall_model
https://en.wikipedia.org/wiki/Rapid_application_development
https://en.wikipedia.org/wiki/Top-down_and_bottom-up_design

9/8/23 B. Wolff - GLA - Motivation

Alternatives to the V-Model

❑ Agile Software Development
[Beck et al 2001, V2: 2010]
AD advocates:

➢ adaptive planning,

➢ evolutionary, incremental

development,

➢ early delivery,

➢ continuous improvement,

➢ and it encourages rapid and

flexible response to change

Particular variants are called « Extreme Programming »
(with an emphasis on early, handwritten tests)

SCRUM (with emphasis on social organisation and

 continuous team-reviews)

9/8/23 B. Wolff - GLA - Motivation

Alternatives to the V-Model

➢ An amusing book analysing
and criticising Agile Methods
by one of the Peers of
Software Engineering
is :

