
 2026

Cycle Ingénieur – 2ème année 
Département Informatique

 

Verification and Validation 
Part IV : White-Box Testing  

 
Burkhart Wolff 

Département Informatique 
Université Paris-Saclay / LMF

21/1/26 B. Wolff - VnV - White-Box Tests

Towards Static Specification-based Unit Test

❑ How can we test during development  
(at coding time, even at design-time ?)

❑ How can we test “systematically”?

❑ What could be a test-generation method?

❑ What could be an algorithm to generate tests?

❑ What could be a coverage criterion ? 

(or: adequacy criterion,  
 telling that we “tested enough”)

2

21/1/26 B. Wolff - VnV - White-Box Tests

Idea:

❑ Let’s exploit the structure of the program !!! 
 
(and not, as before in specification based tests („black
box“-tests), depend entirely on the spec). 

❑ Assumption: Programmers make most likely errors in
branching points of a program (Condition, While-Loop, ...),
but get the program “in principle right”. 
(Competent programmer assumption) 

❑ Lets develop a test method that exploits this !

3

21/1/26 B. Wolff - VnV - White-Box Tests

Static Structural (“white-box”) Tests

❑ we select “critical” paths

❑ specification used to verify the obtained resultants
Idea:  
a path corresponds to one logical expression over initial values x0, y0, z0 . 
 corresponding to one test-case (comprising several test data ...)

	 ¬ Cond1(x0, y0, z0) ∧ ¬ Cond2(x0, y0, z0)

We are interested either in edges (control flow), or in nodes (data flow)

x0

y0

z0

results

x

y

z

Cond1(x,y,z)

Cond2(x,y,z)

4

21/1/26 B. Wolff - VnV - White-Box Tests

A Program for the triangle example

procedure triangle(j,k,l : positive) is

 eg: natural := 0;

begin

if 	j + k <= l or k + l <= j or l + j <= k then

put(“impossible”);

else if j = k then 	eg := eg + 1; end if;

 if j = l then 	eg := eg + 1; end if;

 if l = k then 	 eg := eg + 1; end if;

	 if eg = 0 then put(“arbitrary”);

 elsif 	 eg = 1 then put(“isocele”);

 else 	 put(“equilateral”);

 end if;

end if;

end triangle;

5

21/1/26 B. Wolff - VnV - White-Box Tests

What are tests adapted to this program ?

❑ try a certain number of execution “paths” 
(which ones ? all of them ?) 

❑ find input values to stimulate these paths 

❑ compare the results with expected values  
(i.e. the specification)

6

21/1/26 B. Wolff - VnV - White-Box Tests

Functional-test vs. structural test?

Both are complementary and complete each other:

❑ Structural Tests have weaknesses in principle:

➢ if you forget a condition, the specification will most likely reveal this !

➢ if your algorithm is incomplete, a test on the spec has at least  

a chance to find this ! (Example: perm generator with 3 loops)

7

21/1/26 B. Wolff - VnV - White-Box Tests

Functional-test vs. structural test?

Both are complementary and complete each other

❑ Structural Tests have weaknesses in principle: 
for a given specification, there are several possible 
implementations (working more or less differently from the spec):  

➢ sorted arrays : linear search ? binary search ?

➢ (x, n) → xn : successive multiplication ? quadratic multiplication ? 

	 Each implementation demands for different test sets ! 

8

21/1/26 B. Wolff - VnV - White-Box Tests

Equivalent programs ...

Program 1 :

	 S:=1; P:=N;

	 while P >= 1 loop S:= S*X; P:= P-1; end loop;

Program 2 :

	 S:=1; P:= N;

	 while P >= 1 loop

	 	 if P mod 2 /= 0 then P := P –1; S := S*X; end if;

	 	 S:= S*S; P := P div 2;

	 end loop;

Both programs satisfy the same spec but …

➢ one is more efficient, but more difficult to test.

➢ test sets for one are not necessarily “good” for the other, too !

9

21/1/26 B. Wolff - VnV - White-Box Tests

Control Flow Graphs

A graph with oriented edges root E and an exit S,

➢ the nodes be either “elementary instruction blocs”  

or “decision nodes” labelled by a predicate.

➢ the arcs indicate the control flow between the  

elementary instruction blocs and decision nodes (control flow)

➢ all blocs of predicates are accessible from E and lead to S 
(otherwise, dead code is to be supressed !)

elementary instruction blocs: a sequence of

➢ assignments

➢ update operations (on arrays, ..., not discussed here)

➢ procedure calls (not discussed here !!!)

• conditions and expressions are assumed to be side-effect free

10

21/1/26 B. Wolff - VnV - White-Box Tests

Computing Control Flow Graphs

❑ Identify longest sequences of assignments 
 
 

11

21/1/26 B. Wolff - VnV - White-Box Tests

Computing Control Flow Graphs

❑ Identify longest sequences of assignments 
 
Example: 
 

S:=1;  
P:=N; 
 
while P >= 1  
loop S:= S*X;  
 P:= P-1;  
end loop; 
 

12

21/1/26 B. Wolff - VnV - White-Box Tests

Computing Control Flow Graphs

❑ Identify longest sequences of assignments 
 
Example: 
 

S:=1;  
P:=N; 
 
while P >= 1  
loop S:= S*X;  
 P:= P-1;  
end loop; 
 

13

21/1/26 B. Wolff - VnV - White-Box Tests

Computing Control Flow Graphs

❑ Identify longest sequences of assignments

❑ eliminate if_then_else’s by branching

14

21/1/26 B. Wolff - VnV - White-Box Tests

Computing Control Flow Graphs

❑ Identify longest sequences of assignments

❑ Erase if_then_elses by branching

❑ Erase while_loops by loop-arc, entry-arc, exit-arc

15

21/1/26 B. Wolff - VnV - White-Box Tests

Computing Control Flow Graphs

❑ Identify longest sequences of assignments

❑ Erase if_then_elses by branching

❑ Erase while_loops by loop-arc, entry-arc, exit-arc

16

21/1/26 B. Wolff - VnV - White-Box Tests

Computing Control Flow Graphs

❑ Identify longest sequences of assignments 
Example: 
 

 
 
 
 
 
 

P>=1

S:= S*X;  
P:= P-1;

S:=1;  
P:=N;

17

21/1/26 B. Wolff - VnV - White-Box Tests

Computing Control Flow Graphs

❑ Identify longest sequences of assignments

❑ Erase if_then_elses by branching

❑ Erase while_loops by loops

❑ Add entry node and exit loop-arc, entry-arc, exit-arc 

A Control-Flow-Graph (CFG) is usually a by-product of 
a compiler ...

18

21/1/26 B. Wolff - VnV - White-Box Tests

❑ Example:  
Add entry node and exit loop-arc, entry-arc, exit-arc 
 
 S

EP>=1

S:= S*X;  
P:= P-1;

S:=1;  
P:=N;

19

21/1/26 B. Wolff - VnV - White-Box Tests

Q: What is the CFG  
 
 of the body of triangle ?

20

21/1/26 B. Wolff - VnV - White-Box Tests

Revisiting our triangle example ...

procedure triangle(j,k,l : positive) is

 eg: natural := 0;

begin

if 	j + k <= l or k + l <= j or l + j <= k then

put(“impossible”);

else if j = k then 	eg := eg + 1; end if;

 if j = l then 	eg := eg + 1; end if;

 if l = k then 	 eg := eg + 1; end if;

	 if eg = 0 then put(“quelconque”);

 elsif 	 eg = 1 then put(“isocele”);

 else 	 put(“equilateral”);

 end if;

end if;

end triangle;

21

21/1/26 B. Wolff - VnV - White-Box Tests

The non-structured control-flow graph of a program

B0 B1

B2

B3

B4

B5

B6B7

S

E

P1

P2

P3

P4

P5

P6

22

21/1/26 B. Wolff - VnV - White-Box Tests

A procedure with loop and return

procedure supprime (T: in out Table; p: in out integer;  
 x: in integer) is

 i: integer := 1;

begin

 while 	i <> p loop

 if 	T[i].val <> x then 	i := i + 1;

 elsif	 i = p - 1	 then	 p := p - 1; return;

	 else 	 T[i] := T[p-1]; p := p -1; return;

 end if;

 end loop;

end supprime;

23

21/1/26 B. Wolff - VnV - White-Box Tests

… and its control flow graph

Can we represent this 
program as control- 
 graph ???

B1

B2

B3

B4

S

E

P1

P2

P3

Sure …

24

21/1/26 B. Wolff - VnV - White-Box Tests

… and its control flow graph

 Are all paths actually 
possible executions ? 
Are they feasible paths ?

B0 B1

B2

B3

B4

B5

B6B7

S

E

P1

P2

P3

P4

P5

P

Consider: 
!"#$%#&'#&(#$(#&)#$)#&*#&+#,-

25

21/1/26 B. Wolff - VnV - White-Box Tests

Paths and Path Conditions

❑ Some Terminology:

➢ initial path./ = path of the CFG starting at "

➢ path.01 / = path of the CFG starting at " and ending in 23

4a path corresponds to a complete execution of the procedure)

➢ for an initial path /, a predicate over the parameters and state 
can be defined: the path-condition ΦM

➢ ΦM is exactly true over the initial values initiales of parameters  
(and global variables) if the program will run exactly / for these parameters

➢ faisable paths : / is feasible exactly if a for parameters and global 
variables concrete values exist such that / is executable.

	 	 	 	 i.e. the path condition ΦM is satisfiable

26

9/8/20 B. Wolff - GLA - White-Box Tests

Computing Path Conditions by Symbolic Execution

Let / be an initial path in the CFG of our program.

➢ we give symbolic values for each variable x0,y0,z0, ...

➢ we set the path condition Φ initially to the pre-condition

➢ We follow the path /, block for block:

➢ If the current block is an instruction block $:

 we execute symbolically $ by memorising the new possible values 
by predicates depending on x0,y0,z0, .. (“symbolically”)

➢ If the current block is a decision block &45'#666#578

➢ if we follow the « true » arc we set Φ := Φ ∧.&45'#666#578,

➢ if we follow the «false» arc we set Φ := Φ ∧.9&45'#666#578.  

:;<.5'#,#57.=><.?;<.@ABC0DEF.G=DH<@.10>..?;<.I>0J>=B.G=>E=CD<@

9/8/20 B. Wolff - GLA - White-Box Tests

Computing Path Conditions by Symbolic Execution

Scheme of an algorithm: 

path:=<input> 
Φ:=<precond> 
σ[0]:= {x ↦ x

0
,y ↦ y

0
,z ↦ z

0
} 

i:=0  

path=[] ?

hd path = 
dec. node ?

i:=i+1 
σ[0]:=<substitution of 
 block

hd path
 >  

path:=tl path 

S

E

σ[i+1]:=σ[i]; i:=i+1 
Φ:=Φ /\(cond

hd path
)σ[i] 

path:=tl path 

truelink?

T

T

T

F

F
F

σ[i+1]:=σ[i]; i:=i+1 
Φ:=Φ /\ 9(cond

hd path
)σ[i]  

path:=tl path 

21/1/26 B. Wolff - VnV - White-Box Tests

Execution

• 	 Execution is based on the notion of state. 
 
	 A state is a table (or: function) that maps 
	 a variable V to some value of a domain D. 
 
	 	 	 σ = V → D 

• As usual, we denote finite functions as follows:  
 
	 	 	 σ = { x ↦1, y ↦ 5, x ↦ 12 }

29

21/1/26 B. Wolff - VnV - White-Box Tests

Symbolic Execution

• 	 In static program analysis, it is in general not 
	 possible to infer concrete values of D. 
 
	 However, it can be inferred a set of possible values.

• For example, if we know that 
 
	 	 x ∈ {1..10} 
	 and we have an assignment x:= x+2, we know: 
 
	 	 x ∈ {3..12} 	 	 	 afterwards.

30

21/1/26 B. Wolff - VnV - White-Box Tests

Symbolic Execution

• 	 This gives rise to the notion of a symbolic state. 

	 	 	 σsym = V → Set(D) 

	 We denote the set of possible values by a  

 predicate over the initial state, so: 

 x ↦ (1 ≤ x
0
 ∧ x

0
≤ 10)

• thus, after x:= x+2, we know: 

 x ↦ (3 ≤ x
0
 ∧ x

0
≤ 12) 

31

21/1/26 B. Wolff - VnV - White-Box Tests

Symbolic States and Substitutions

• An Example substitution: 
 
	 	 (x + 2 * y) {x ↦ 1, y ↦ x0} 
 
	 = 1 + 2 * x0 

• An initial symbolic state is a map of the form: 
 
	 	 { x ↦ x0, y ↦ y0, z ↦ z0 }  
	

32

21/1/26 B. Wolff - VnV - White-Box Tests

Basic Blocks as Substitutions

x0, y0 and z0 represent the initial values of x, y et z.

i is supposed to be a un-initialized local variable.

i := x+y+1

z := z+i

Block

i ↦ i0
z ↦ z0
y ↦ y0+3*x0
x ↦ x0

Symbolic Pre-State σsym Symbolic Post-State σ’sym

i ↦ y0+ 4*x0+1
z ↦ z0+y0+4*x0+1

x ↦ x0
y ↦ y0+3*x0

Thus, we update the symbolic state whenever we pass a  
basic block on our path.

33

21/1/26 B. Wolff - VnV - White-Box Tests

Symbolic Execution

 x≥y

false

true

Φ ∧ (x≥y)σ

Thus, we update the path-condition whenever we pass a  
decision node on our path.

Φ ∧ ¬(x≥y)σ

σsym

34

21/1/26 B. Wolff - VnV - White-Box Tests

Example: A Symbolic Path Execution

Recall 

procedure supprime (T: in out Table; p: in out integer;  
 x: in integer) is

 i: integer := 1;

begin

 while 	i <> p loop

 if 	T[i] <> x then 	 i := i + 1;

 elsif	 i = p - 1 then	 p := p - 1; return;

	 else 	 T[i] := T[p-1]; p := p - 1; return;

 end if;

 end loop;

end supprime;

35

21/1/26 B. Wolff - VnV - White-Box Tests

Example: A Symbolic Path Execution

… and the corresponding  
control flow graph. 
 
 
We want to execute the path: 
 
	 !"#$'#&'#2-

B1

B2

B3

B4

S

E

P1

P2

P3

36

21/1/26 B. Wolff - VnV - White-Box Tests

Example: A Symbolic Path Execution

 
We want to execute the path: 
 

i ↦
x ↦

p0p ↦
T0T ↦

X0

i0

Φ ↦ True
!"#		$'#	 	 	 &'#	2-

Φ ↦ True

i ↦
x ↦

p0p ↦
T0T ↦

X0

1

Φ ↦¬(i<>p)σΒ1

i ↦
x ↦

p0p ↦
T0T ↦

X0

1 i ↦
x ↦

p0p ↦
T0T ↦

X0

1

Φ ↦ 1 = p0

37

21/1/26 B. Wolff - VnV - White-Box Tests

Example: A Symbolic Path Execution

Result:

Test-Case:  
	 	 	 	 For the path /K!"#$'#&'#2-

 	 	 	 we have the path condition Φ ↦ p0 = 1 
 
 

x ↦
p ↦
T ↦

1

mtTab

17

A concrete Test, 
satisfying Φ  

38

21/1/26 B. Wolff - VnV - White-Box Tests

Example: A Symbolic Path Execution

… and the corresponding  
control flow graph. 
 
 
We want to execute the path: 
 
	 !"#$'#&'#&(#$(#&'#2-

B1

B2

B3

B4

S

E

P1

P2

P3

39

21/1/26 B. Wolff - VnV - White-Box Tests

Example: A Symbolic Path Execution
 

We want to execute the path: 
!"#.........$'#......&'#..........&(#..........$(#............&'#..........2-

i ↦
x ↦

p0p ↦
T0

 Φ ↦

x0

i0

p0

T0

x0

1

T ↦

 True True

(i<>p)σΒ1

≡ p0 ≠ 1

p0

T0

x0

1

(T[i]≠x)σΒ1

p0≠1 ∧

p0

T0

x0

1

p0≠1 ∧
T0[1]≠x0

p0

T0

x0

(i+1)σΒ1

p0≠1 ∧
T0[1] ≠ x0
∧¬(i<>p)σΒ2

p0

T0

x0

 2

p0≠1 ∧
T0[1] ≠ x0
∧ 2=p0

p0

T0

x0

 2

40

21/1/26 B. Wolff - VnV - White-Box Tests

Example: A Symbolic Path Execution

Result: Test-Case for Path  

/.K..!"#$'#&'#&(#$(#&'#2-

 	 	 	 Path Condition: Φ :=  

 
 

T0[1]≠X0 ∧ p0=2

x ↦
p ↦
T ↦ [3]

17

2
A concrete Test, 

satisfying Φ  

41

21/1/26 B. Wolff - VnV - White-Box Tests

Paths and Test Sets

	 In (this version of) program-based testing 
a test case with a (feasable) path

❑ a test case ≈ a path M in the CFG

	 = a collection of values for variables (params and global) 

	 (+ the output values described by the specification)

❑ a test case set ≈ a finite set of paths of the CFG  
 = a finite set of input values and  
	 	 a set of expected outputs.

42

21/1/26 B. Wolff - VnV - White-Box Tests

Unfeasible paths and decidability

❑ In general, it is undecidable of a path is feasible ...

❑ In general, it is undecidable if a program will terminate ...

❑ In general, equivalence on two programs is undecidable …

❑ In general, a first-order formula over arithmetic is undecidable ...

❑ … Indecidable = it is known (mathematically proven) 

that there is no algorithm; this is worse than 

“we know none” !~ 

BUT: for many relevant programs, practically good solutions 
 exist (Z3, Simplify, CVC4, AltErgo ...)

43

21/1/26 B. Wolff - VnV - White-Box Tests

A Challenge-Example (The Collatz-Function):

... A HAIRY EXAMPLE:

while x <> 1 loop

 if pair(x) then x := x / 2;

 else x := 3 * x + 1;

 end if;

 end loop;

- does this function terminate for all x ?

- or equivalently: is end loop reached for all x ?

ANSWER : unknown
- this implies that we can not always know  
that infeasible paths exist !

44

21/1/26 B. Wolff - VnV - White-Box Tests

The Triangle Prog without Unfeasible Paths

procedure triangle(j,k,l)

begin

 if j k<=l or k+l<=j or l+j<=k then put(“impossible”);

 elsif j = k and k = l then put(“equilateral”);

 elsif j = k or k =l or j = l then put(“isocele”)

 else put(“quelconque”);

end if;

end; 

 

☞ In the contrary, there are programs where all paths are feasible 

☞ That is rare, however. 

☞ Worse: in practice the probability for a path to be feasible is  

 smaller the longer the path gets.

45

21/1/26 B. Wolff - VnV - White-Box Tests

The notion of a “coverage criterion”

A coverage criterion is a function mapping a CFG 
to a particular subset of its paths … 

• the set of paths covering all basic blocks

• the set of paths covering all instructions

• the set with all loops are traversed

• a particular subset of calls/labels occurring in  
the CFG has been covered

• …

46

21/1/26 B. Wolff - VnV - White-Box Tests

Well-known Coverage Criteria I

	 Criterion L.K.MDDN7@?>HF?E07@4LOP8Q 
 
 
For all nodes R in LOP.(basic instructions or decisions)  
exists a path in L that contains R

47

21/1/26 B. Wolff - VnV - White-Box Tests

Well-known Coverage Criteria II

	 Criterion L.K.MDD:>=7@E?E07@4LOP8Q 
 
For all arcs M in the LOP exists a  
path in L that uses M

48

21/1/26 B. Wolff - VnV - White-Box Tests

Well-known Coverage Criteria III

	 Criterion L.K.MDD&=?;@4LOP8: 
 
All possible paths ...

☹ Whenever there is a loop, L is infinite !

☞ S<=T<>.G=>E=7?Q.MDD&=?;@T(LOP).  

 We limit the paths through a loop to maximally k times …  

☞ S<.;=G<.=J=E7.=.1E7E?<.7HBC<>.01.I=?;@.

49

21/1/26 B. Wolff - VnV - White-Box Tests

A Hierarchy of Coverage Criteria

❑ AllPaths(CFG) ⊇  
	 AllPathsk(CFG) ⊇ 
	 	 MDD:>=7@E?E07@4LOP8 ⊇ 
	 	 	 AllInstructions(CFG)  
 

❑ Each of these implications reflects a proper containment;  
the other way round is never true.

50

21/1/26 B. Wolff - VnV - White-Box Tests

Using Coverage Criteria 1

Source du

Programme

Graphe de Flot

de Contrôle

Critère de couverture

(défini à l’avance)

Ensemble fini de chemins 
à parcourir pour satisfaire le critère

Ensemble fini de 
valeurs d’entrée Spécification

Ensemble des  
résultats espérés

Programme

compilé

Ensemble des  
résultats obtenus

Verdict: OK / KO

Prédicats de

cheminement résolus ?

Problème potentiel 
d’observation ?

❶

❷

51

21/1/26 B. Wolff - VnV - White-Box Tests

Summary

❑ We have developed a technique for program-based
tests

❑ ... based on symbolic execution

❑ ... used in tools like JavaPathFinder-SE or Pex

❑ Core-Concept: Feasible Paths in a Control Flow Graph

❑ Although many theoretical negative results on key

properties, good practical approximations are available

❑ CFG based Coverage Critieria give rise to a hierarchy

52

21/1/26 B. Wolff - VnV - White-Box Tests

Schmankerle

❑ Program: 

 

E7?.1.4E7?.=8.U

..E7?.E.K.%V

..E7?.?B.K.'V

..E7?.@HB.K.'V

..S;ED<4@HB.WK.=8.U

....E.K.EX'V

....?B.K.?BX(V

....@HB.K.?BX@HBV

..Y

..><?H>7.EV

Y

Specification: 

pre : a ≥ 0  
post: a≤result2 ∧ a < (result+1)2

53

21/1/26 B. Wolff - VnV - White-Box Tests

Schmankerle

❑ CFG de f: ❑ For example: 
AllInstructions(CFG)={[start,2,5,6,5,10,end]} 
AllTransitions(CFG)={[start,2,5,6,5,10,end]} 
AllPath3(CFG)={[start,2,5,10,end], 
 [start,2,5,6,5,10,end], 
 [start,2,5,6,6,5,10,end], 
 [start,2,5,6,6,6,5,10,end]} 
AllPath(CFG)={ k ∈ ℕ |  
 [start,2,5,(6)k,5,10,end]} 
 (infinite !)

54

21/1/26 B. Wolff - VnV - White-Box Tests

Example: A Symbolic Path Execution
 

We want to execute the path from AllPath3: 
!"#.........(#.......+#..........Z#.............+#............'%#..........2-

sum↦
tm ↦

i0i ↦
a0

 Φ ↦

tm0
sum0

0

a0

1

1

a ↦

 a0≥0 a0≥0

(sum≤a)σ2

∧ a0≥0

0

a0

1

1

a0≥0

1≤a0 ∧

1

a0

3

4

1≤a0 ∧
¬(sum≤a)σ6

1

a0

3

 4

1≤a0 ∧
4>a0

1

a0

3

 4

1≤a0 ∧
4>a0 ∧

1

a0

3

 4

res = 1

55

21/1/26 B. Wolff - VnV - White-Box Tests

Example: A Symbolic Path Execution

Result:

Test-Case:  
	 	 	 For the path /K[start,2,5,6,5,10,end]

 	 	 we have the path condition Φ ↦ 1≤a0 ∧ 4>a0  
 
 

a0 ↦ 3A concrete Test, satisfying Φ:  

Execution of program with this test vector 3:

Verification of the post-condition: post(3, 1) = true

f(3) = 1

56

20/1/26 B. Wolff - GLA - White-Box Tests

Addendum: Multiple-Condition-Decision-Coverage

Problem: Consider:

 
 
 
 
 
 
 
 
even transition coverage on the Byzantine condition  
(line 4-5) is very coarse and risks to miss the point ! 

20/1/26 B. Wolff - GLA - White-Box Tests

Addendum: Multiple-Condition-Decision-Coverage

Solution: We use the inherent control flow in C for || and && 
for a refined control flow graph !

 
 
 
 
 
 
 
now transition coverage (on the refined CFG) checks  
each condition individually for true and false.  
This kind of coverage is called MC/DC.

