

Verification and Validation

Part IV : White-Box Testing

Burkhart Wolff

Département Informatique

Université Paris-Saclay / LMF

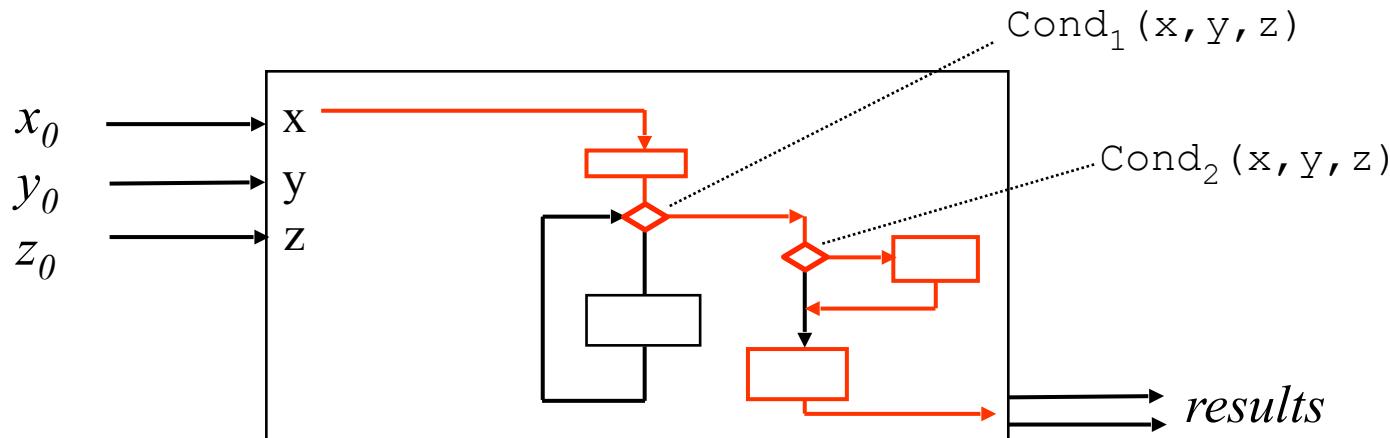
Towards **Static** Specification-based Unit Test

- ❑ How can we test during development
(at coding time, even at design-time ?)
- ❑ How can we test "systematically"?
 - ❑ What could be a test-generation method?
 - ❑ What could be an algorithm to generate tests?
 - ❑ What could be a coverage criterion ?
(or: adequacy criterion,
telling that we "tested enough")

Idea:

- ❑ Let's exploit the structure of the program !!!
(and not, as before in specification based tests („black box“-tests), depend entirely on the spec).
- ❑ **Assumption:** Programmers make most likely errors in branching points of a program (Condition, While-Loop, ...), but get the program “in principle right”.
(Competent programmer assumption)
- ❑ Lets develop a test method that exploits this !

Static Structural ("white-box") Tests



❑ we select "critical" paths

Idea:

❑ specification used to verify the obtained resultants
corresponding to one test-case (comprising several test data ...)

$$\neg Cond_1(x_0, y_0, z_0) \wedge \neg Cond_2(x_0, y_0, z_0)$$

We are interested either in edges (control flow), or in nodes (data flow)

A Program for the triangle example

```
procedure triangle(j,k,l : positive) is
  eg: natural := 0;
begin
  if j + k <= l or k + l <= j or l + j <= k then
    put("impossible");
  else if j = k then eg := eg + 1; end if;
    if j = l then eg := eg + 1; end if;
    if l = k then eg := eg + 1; end if;
    if eg = 0 then put("arbitrary");
  elsif eg = 1 then put("isocele");
  else put("equilateral");
  end if;
end if;
end triangle;
```

What are tests adapted to this program ?

- ❑ try a certain number of execution “paths”
(which ones ? all of them ?)
- ❑ find input values to stimulate these paths
- ❑ compare the results with expected values
(i.e. the specification)

Functional-test vs. structural test?

Both are complementary and complete each other:

- Structural Tests have weaknesses in principle:
 - if you forget a condition, the specification will most likely reveal this !
 - if your algorithm is incomplete, a test on the spec has at least a chance to find this ! (Example: perm generator with 3 loops)

Functional-test vs. structural test?

Both are complementary and complete each other

- Structural Tests have weaknesses in principle:
for a given specification, there are several possible implementations (working more or less differently from the spec):
 - *sorted arrays : linear search ? binary search ?*
 - *$(x, n) \rightarrow x^n$: successive multiplication ? quadratic multiplication ?*

Each implementation demands for different test sets !

Equivalent programs ...

Program 1 :

```
S:=1; P:=N;  
while P >= 1 loop S:= S*X; P:= P-1; end loop;
```

Program 2 :

```
S:=1; P:= N;  
while P >= 1 loop  
    if P mod 2 /= 0 then P := P -1; S := S*X; end if;  
    S:= S*S; P := P div 2;  
end loop;
```

Both programs satisfy the same spec but ...

- one is more efficient, but more difficult to test.
- test sets for one are not necessarily "good" for the other, too !

Control Flow Graphs

A graph with oriented edges root E and an exit S,

- the nodes be either "elementary instruction blocs" or "decision nodes" labelled by a predicate.
- the arcs indicate the control flow between the elementary instruction blocs and decision nodes (control flow)
- all blocs of predicates are accessible from E and lead to S (otherwise, dead code is to be suppressed !)

elementary instruction blocs: a sequence of

- assignments
- update operations (on arrays, ..., not discussed here)
- procedure calls (not discussed here !!!)
- conditions and expressions are assumed to be side-effect free

Computing Control Flow Graphs

- Identify longest sequences of assignments

Computing Control Flow Graphs

- Identify longest sequences of assignments

Example:

S := 1 ;

P := N ;

```
while P >= 1
  loop S := S * X;
        P := P - 1;
  end loop;
```

Computing Control Flow Graphs

- Identify longest sequences of assignments

Example:

```
S := 1;  
P := N;
```

```
while P >= 1  
loop  S := S * X;  
      P := P - 1;  
end loop;
```

Computing Control Flow Graphs

- ❑ Identify longest sequences of assignments
- ❑ eliminate if_then_else's by branching

Computing Control Flow Graphs

- ❑ Identify longest sequences of assignments
- ❑ Erase if_then_elses by branching
- ❑ Erase while_loops by loop-arc, entry-arc, exit-arc

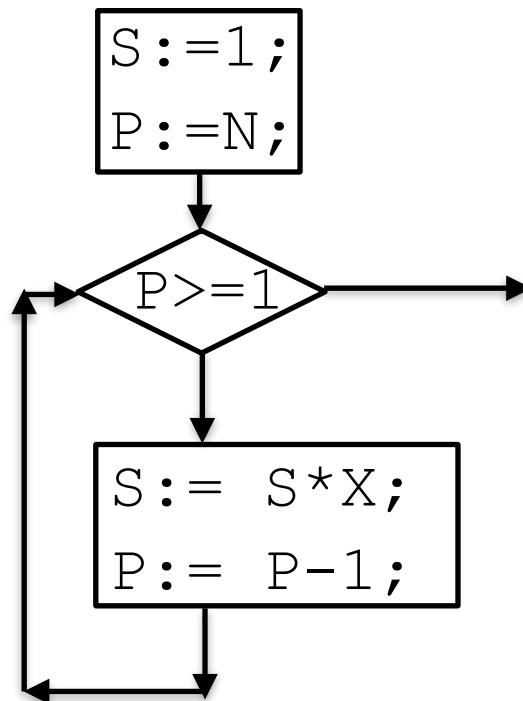
Computing Control Flow Graphs

- ❑ Identify longest sequences of assignments
- ❑ Erase if_then_elses by branching
- ❑ Erase while_loops by loop-arc, entry-arc, exit-arc

Computing Control Flow Graphs

- Identify longest sequences of assignments

Example:



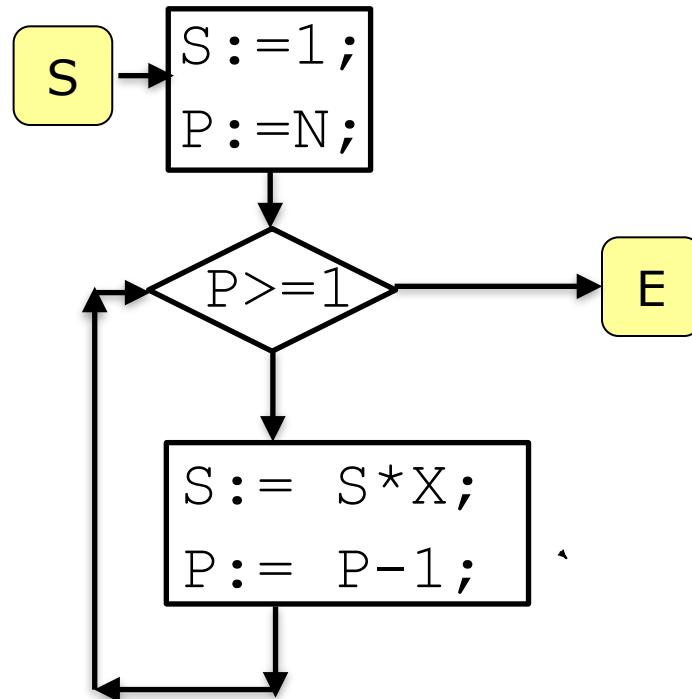
Computing Control Flow Graphs

- ❑ Identify longest sequences of assignments
- ❑ Erase if_then_elses by branching
- ❑ Erase while_loops by loops
- ❑ Add entry node and exit loop-arc, entry-arc, exit-arc

A Control-Flow-Graph (CFG) is usually a by-product of a compiler ...

□ Example:

Add entry node and exit loop-arc, entry-arc, exit-arc

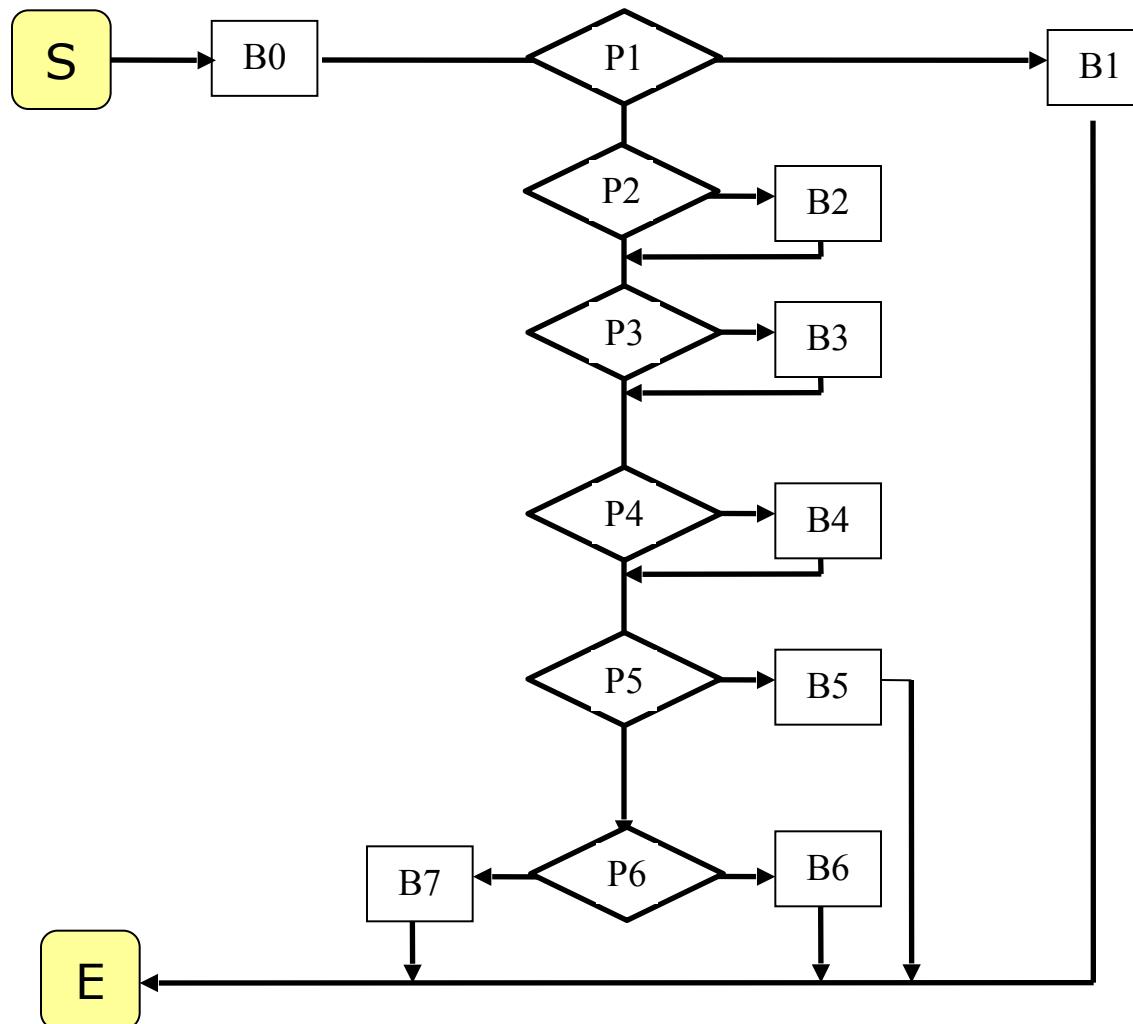


Q: What is the CFG
of the body of triangle ?

Revisiting our triangle example ...

```
procedure triangle(j, k, l : positive) is
  eg: natural := 0;
begin
  if j + k <= l or k + l <= j or l + j <= k then
    put("impossible");
  else if j = k then eg := eg + 1; end if;
  if j = l then eg := eg + 1; end if;
  if l = k then eg := eg + 1; end if;
  if eg = 0 then put("quelconque");
  elsif eg = 1 then put("isocele");
  else put("equilateral");
  end if;
end if;
end triangle;
```

The non-structured control-flow graph of a program



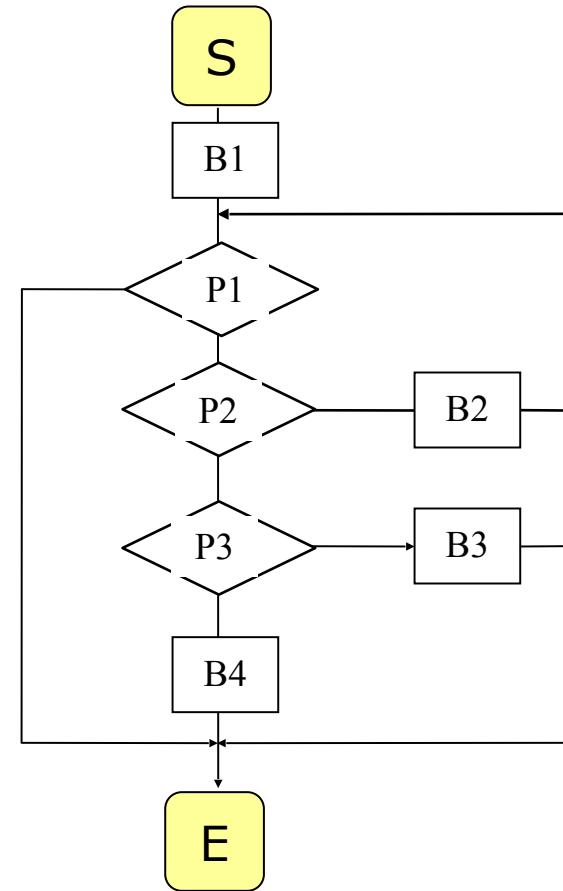
A procedure with loop and return

```
procedure supprime (T: in out Table; p: in out integer;
                     x: in integer) is
  i: integer := 1;
begin
  while i <> p loop
    if T[i].val <> x then i := i + 1;
    elsif i = p - 1 then p := p - 1; return;
    else T[i] := T[p-1]; p := p - 1; return;
    end if;
  end loop;
end supprime;
```

... and its control flow graph

Can we represent this program as control-graph ???

Sure ...

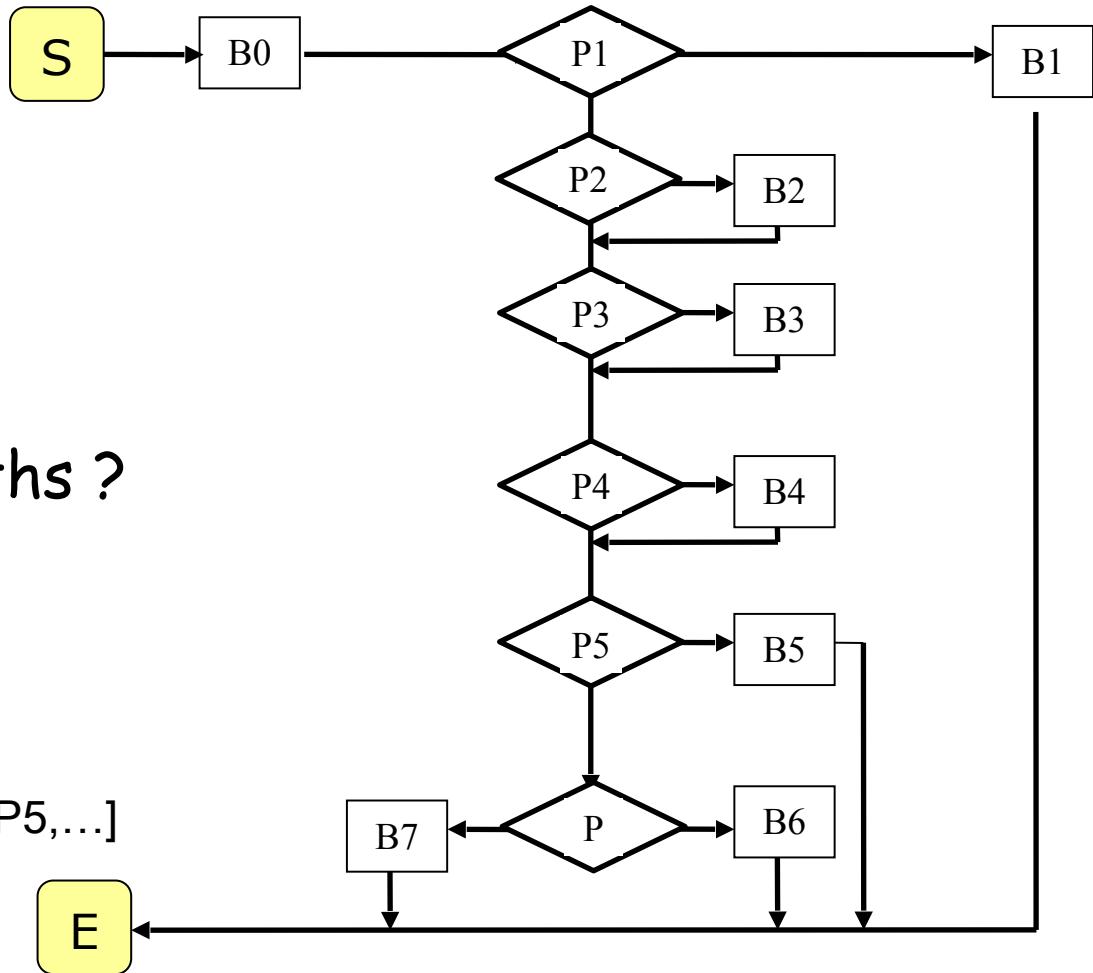


... and its control flow graph

Are all paths actually possible executions ?
Are they **feasible** paths ?

Consider:

[S,B0,P1,P2,B2,P3,B3,P4,P5,...]



Paths and Path Conditions

Some Terminology:

- *initial path* M = path of the CFG starting at S
- *path* of M = path of the CFG starting at S and ending in E
(a path corresponds to a **complete** execution of the procedure)
- for an initial path M , a **predicate** over the parameters and state can be defined: the **path-condition** Φ_M
- Φ_M is exactly true over the **initial values initiales** of parameters (and global variables) if the program will run **exactly** M for these parameters
- **faisable paths** : M is **feasible** exactly if for parameters and global variables concrete values exist such that M is executable.
i.e. the path condition Φ_M is satisfiable

Computing Path Conditions by Symbolic Execution

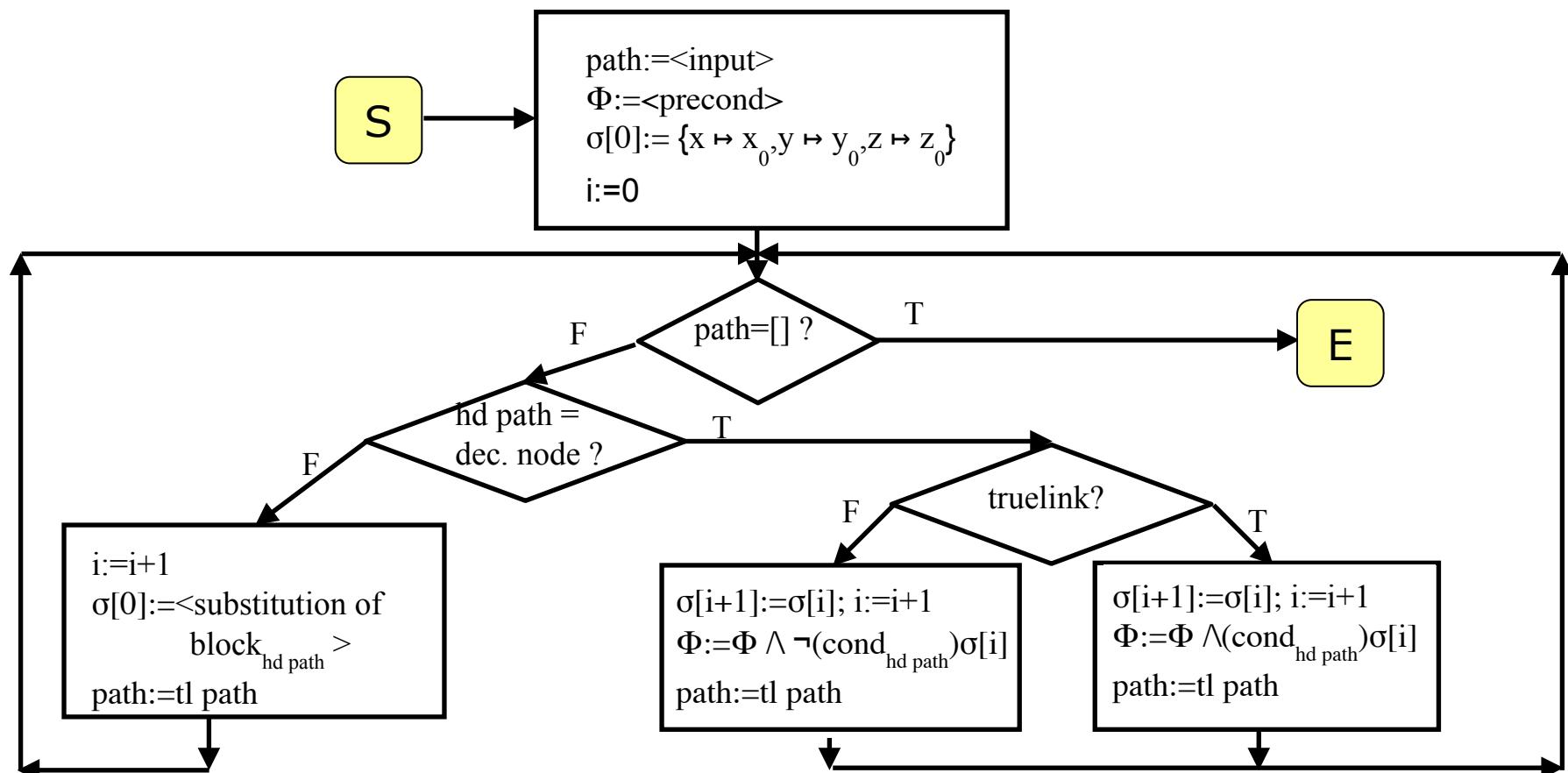
Let M be an initial path in the CFG of our program.

- we give symbolic values for each variable x_0, y_0, z_0, \dots
- we set the path condition Φ initially to the pre-condition
- We follow the path M , block for block:
 - If the current block is an **instruction** block B :
we execute symbolically B by memorising the new possible values
by predicates depending on x_0, y_0, z_0, \dots ("symbolically")
 - If the current block is a **decision** block $P(x_1, \dots, x_n)$
 - if we follow the « true » arc we set $\Phi := \Phi \wedge P(\underline{x_1}, \dots, \underline{x_n})$,
 - if we follow the « false » arc we set $\Phi := \Phi \wedge \neg P(\underline{x_1}, \dots, \underline{x_n})$.

The $\underline{x_1}, \dots, \underline{x_n}$ are the symbolic values for the program variables

Computing Path Conditions by Symbolic Execution

Scheme of an algorithm:



Execution

- Execution is based on the notion of state.

A state is a table (or: function) that maps a variable V to some value of a domain D .

$$\sigma = V \rightarrow D$$

- As usual, we denote finite functions as follows:

$$\sigma = \{ x \mapsto 1, y \mapsto 5, z \mapsto 12 \}$$

Symbolic Execution

- In static program analysis, it is in general not possible to infer concrete values of D.

However, it can be inferred **a set of possible values**.

- For example, if we know that

$$x \in \{1..10\}$$

and we have an assignment $x := x + 2$, we know:

$$x \in \{3..12\}$$

afterwards.

Symbolic Execution

- This gives rise to the notion of a **symbolic state**.

$$\sigma_{\text{sym}} = V \rightarrow \text{Set}(D)$$

We denote the set of possible values by a predicate over the initial state, so:

$$x \mapsto (1 \leq x_0 \wedge x_0 \leq 10)$$

- thus, after $x := x + 2$, we know:

$$x \mapsto (3 \leq x_0 \wedge x_0 \leq 12)$$

Symbolic States and Substitutions

- An Example substitution:

$$(x + 2 * y) \{x \mapsto 1, y \mapsto x_0\}$$

$$= 1 + 2 * x_0$$

- An initial symbolic state is a map of the form:

$$\{ x \mapsto x_0, y \mapsto y_0, z \mapsto z_0 \}$$

Basic Blocks as Substitutions

Symbolic Pre-State σ_{sym}

$x \mapsto x_0$
$y \mapsto y_0 + 3 * x_0$
$z \mapsto z_0$
$i \mapsto i_0$

Block

```
i := x+y+1  
z := z+i
```

Symbolic Post-State σ'_{sym}

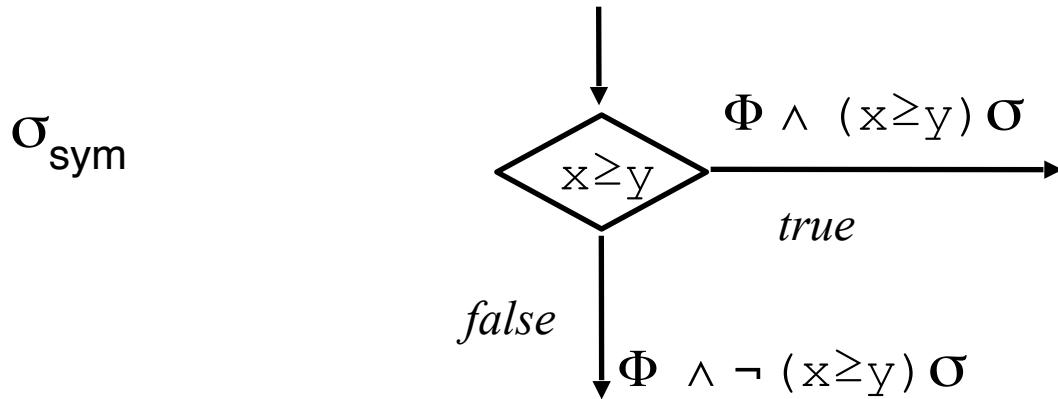
$x \mapsto x_0$
$y \mapsto y_0 + 3 * x_0$
$z \mapsto z_0 + y_0 + 4 * x_0 + 1$
$i \mapsto y_0 + 4 * x_0 + 1$

x_0 , y_0 and z_0 represent the initial values of x , y et z .

i is supposed to be a un-initialized local variable.

Thus, we update the symbolic state whenever we pass a basic block on our path.

Symbolic Execution



Thus, we update the path-condition whenever we pass a decision node on our path.

Example: A Symbolic Path Execution

Recall

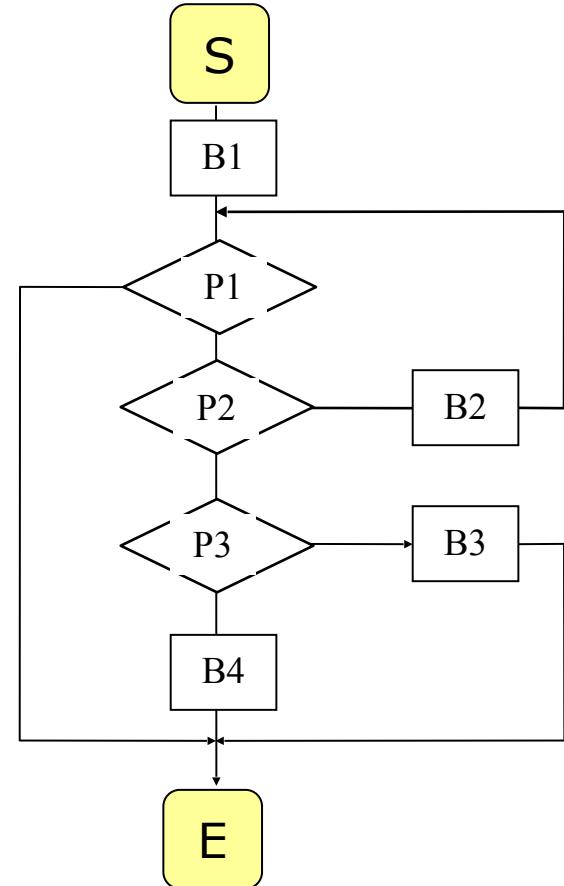
```
procedure supprime (T: in out Table; p: in out integer;
                      x: in integer) is
  i: integer := 1;
begin
  while i <> p loop
    if T[i] <> x then i := i + 1;
    elsif i = p - 1 then p := p - 1; return;
    else T[i] := T[p-1]; p := p - 1; return;
    end if;
  end loop;
end supprime;
```

Example: A Symbolic Path Execution

... and the corresponding control flow graph.

We want to execute the path:

[S,B1,P1,E]



Example: A Symbolic Path Execution

We want to execute the path:

[S,	B1,	P1,	E]
$\Phi \mapsto \text{True}$	$\Phi \mapsto \text{True}$	$\Phi \mapsto \neg (i < > p) \sigma_{B1}$	$\Phi \mapsto 1 = p_0$
$T \mapsto T_0$	$T \mapsto T_0$	$T \mapsto T_0$	$T \mapsto T_0$
$p \mapsto p_0$	$p \mapsto p_0$	$p \mapsto p_0$	$p \mapsto p_0$
$x \mapsto X_0$	$x \mapsto X_0$	$x \mapsto X_0$	$x \mapsto X_0$
$i \mapsto i_0$	$i \mapsto 1$	$i \mapsto 1$	$i \mapsto 1$

Example: A Symbolic Path Execution

Result:

Test-Case:

For the path $M=[S, B1, P1, E]$

we have the path condition $\Phi \mapsto p_0 = 1$

A concrete Test,
satisfying Φ

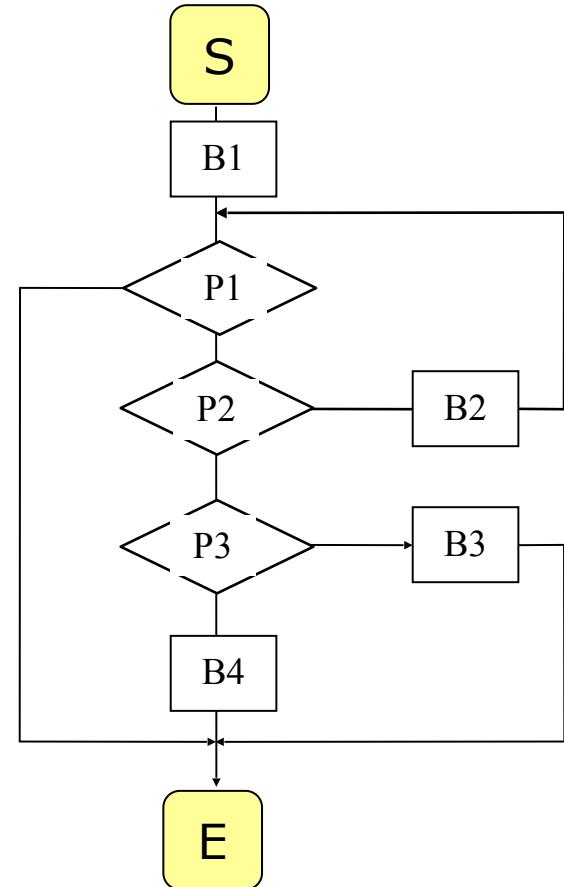
T	↳	mtTab
p	↳	1
x	↳	17

Example: A Symbolic Path Execution

... and the corresponding control flow graph.

We want to execute the path:

[S,B1,P1,P2,B2,P1,E]



Example: A Symbolic Path Execution

We want to execute the path:

[S, B1, P1, P2, B2, P1, E]

$\Phi \rightarrow$ True	True	$(i < > p) \sigma_{B1}$ $\equiv p_0 \neq 1$	$p_0 \neq 1 \wedge$ $T[i] \neq x$	$p_0 \neq 1 \wedge$ $T_0[1] \neq x_0$	$p_0 \neq 1 \wedge$ $T_0[1] \neq x_0$ $\wedge \neg (i < > p) \sigma_{B1} \wedge 2 = p_0$	$p_0 \neq 1 \wedge$ $T_0[1] \neq x_0$ $\wedge \neg (i < > p) \sigma_{B1} \wedge 2 = p_0$
$T \rightarrow T_0$	T_0	T_0	T_0	T_0	T_0	T_0
$p \rightarrow p_0$	p_0	p_0	p_0	p_0	p_0	p_0
$x \rightarrow x_0$	x_0	x_0	x_0	x_0	x_0	x_0
$i \rightarrow i_0$	1	1	1	$(i+1) \sigma_{B1}$	2	2

Example: A Symbolic Path Execution

Result: Test-Case for Path

$$M = [S, B1, P1, P2, B2, P1, E]$$

Path Condition: $\Phi := T_0[1] \neq x_0 \wedge p_0 = 2$

A concrete Test,
satisfying Φ

T \mapsto	[3]
p \mapsto	2
x \mapsto	17

Paths and Test Sets

In (this version of) program-based testing
a test case with a (feasible) path

- ❑ a test case \approx a path M in the CFG
 - = a collection of values for variables (params and global)
(+ the output values described by the specification)
- ❑ a test case set \approx a finite set of paths of the CFG
 - = a finite set of input values and
a set of expected outputs.

Unfeasible paths and decidability

- ❑ In general, it is undecidable of a path is feasible ...
- ❑ In general, it is undecidable if a program will terminate ...
- ❑ In general, equivalence on two programs is undecidable ...
- ❑ In general, a first-order formula over arithmetic is undecidable ...
- ❑ **... Indecidable = it is known (mathematically proven) that there is no algorithm; this is worse than “we know none” !~**

BUT: for many relevant programs, practically good solutions exist (Z3, Simplify, CVC4, AltErgo ...)

A Challenge-Example (The Collatz-Function):

... A HAIRY EXAMPLE:

```
while x <> 1 loop
    if pair(x) then x := x / 2;
    else x := 3 * x + 1;
    end if;
end loop;
```

- does this function terminate for all x ?
- this implies **ANSWER: unknown**
- or equivalently: is **end loop** reached for all x ?
that infeasible paths exist !

The Triangle Prog without Unfeasible Paths

```
procedure triangle(j,k,l)
begin
  if j <=k or k+l<=j or l+j<=k then put("impossible");
  elsif j = k and k = l then put("equilateral");
  elsif j = k or k = l or j = l then put("isocele");
  else put("quelconque");
end if;
end;
```

- ☞ In the contrary, there are programs where all paths are feasible
- ☞ That is rare, however.
- ☞ Worse: in practice the probability for a path to be feasible is smaller the longer the path gets.

The notion of a “coverage criterion”

A coverage criterion is a function mapping a *CFG*
to a particular subset of its paths ...

- the set of paths covering all basic blocks
- the set of paths covering all instructions
- the set with all loops are traversed
- a particular subset of calls/labels occurring in
the *CFG* has been covered
- ...

Well-known Coverage Criteria I

Criterion C = AllInstructions(CFG):

For all nodes N in CFG (basic instructions or decisions)
exists a path in C that contains N

Well-known Coverage Criteria II

Criterion C = AllTransitions(CFG):

For all arcs A in the CFG exists a path in C that uses A

Well-known Coverage Criteria III

Criterion C = AllPaths(CFG):

All possible paths ...

⌚ Whenever there is a loop, C is infinite !

👉 weaker variant: AllPaths_k(CFG).

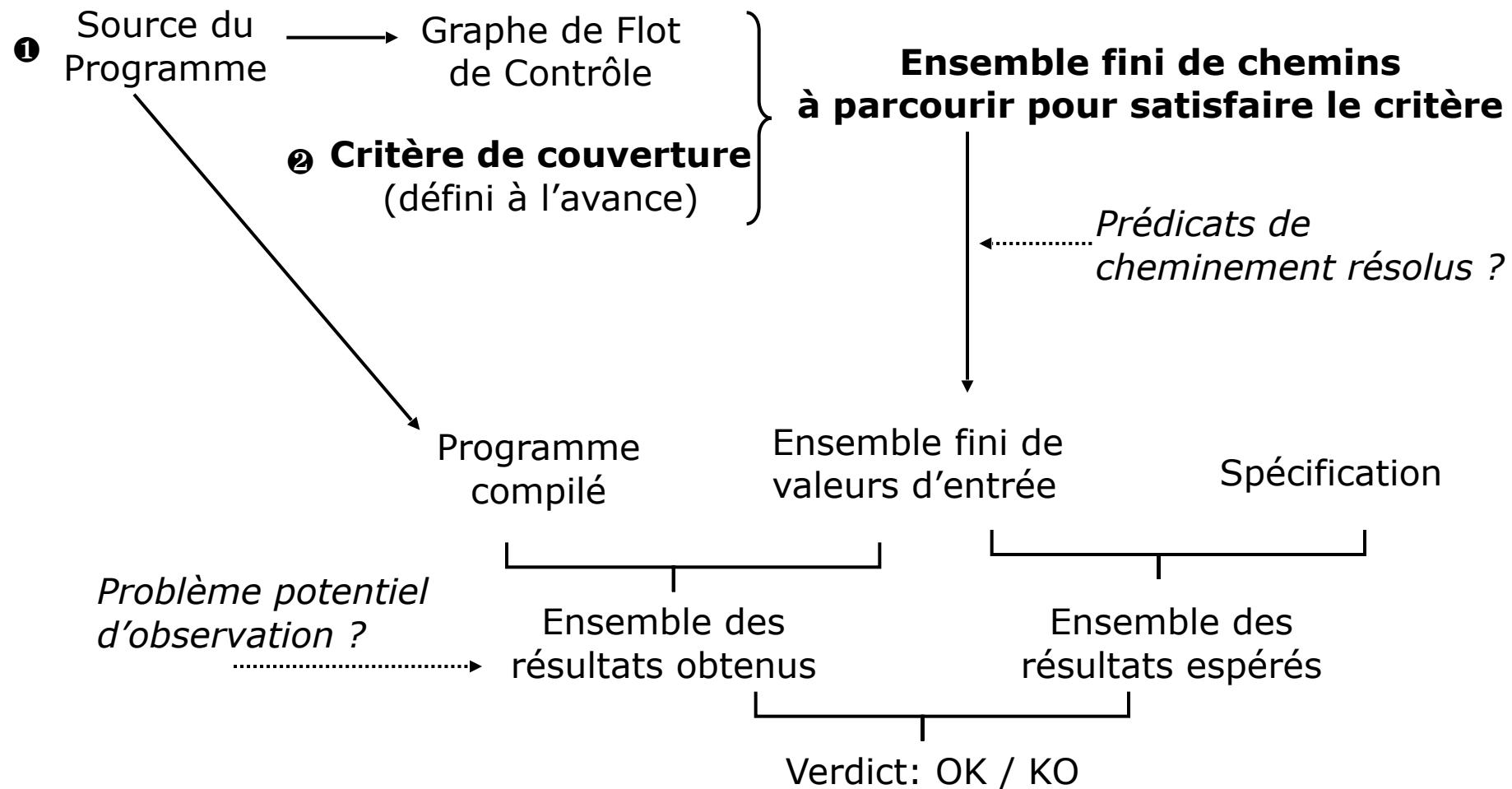
We limit the paths through a loop to maximally k times ...

👉 we have again a finite number of paths

A Hierarchy of Coverage Criteria

- ❑ $\text{AllPaths}(\text{CFG}) \supseteq$
 $\text{AllPaths}_k(\text{CFG}) \supseteq$
 $\text{AllTransitions}(\text{CFG}) \supseteq$
 $\text{AllInstructions}(\text{CFG})$
- ❑ Each of these implications reflects a proper containment; the other way round is never true.

Using Coverage Criteria 1



Summary

- We have developed a technique for program-based tests
- ... based on symbolic execution
- ... used in tools like JavaPathFinder-SE or Pex
- Core-Concept: Feasible Paths in a Control Flow Graph
- Although many theoretical negative results on key properties, good practical approximations are available
- CFG based Coverage Criteria give rise to a hierarchy

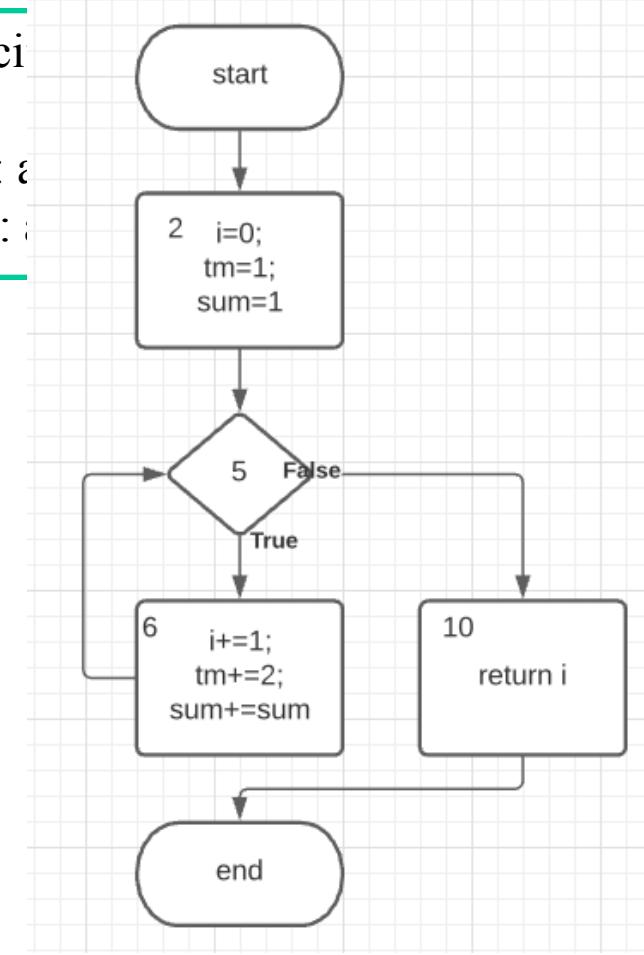
Schmankerle

❑ Program:

```
int f (int a) {  
    int i = 0;  
    int tm = 1;  
    int sum = 1;  
    while(sum <= a) {  
        i = i+1;  
        tm = tm+2;  
        sum = tm+sum;  
    }  
    return i;  
}
```

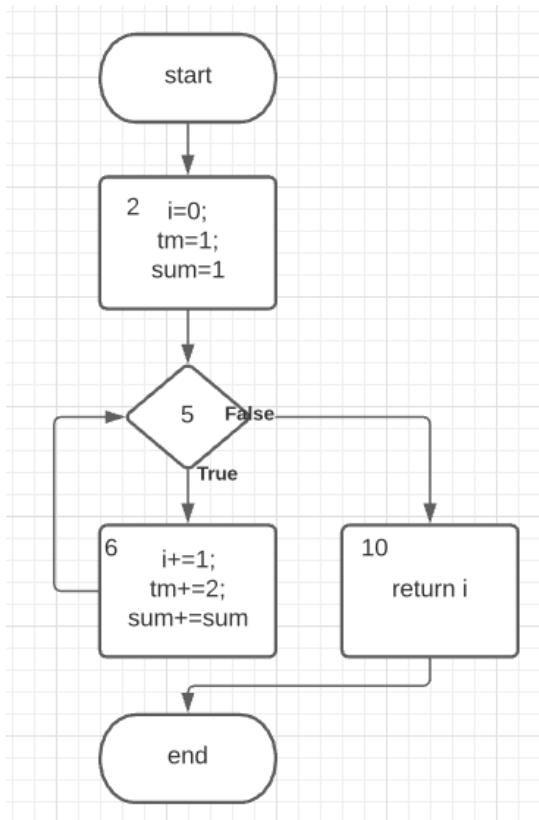
Speci

pre : a
post: i



Schmankerle

□ CFG de f:



□ For example:

AllInstructions(CFG) = {[start, 2, 5, 6, 5, 10, end]}

AllTransitions(CFG) = {[start, 2, 5, 6, 5, 10, end]}

AllPath₃(CFG) = {[start, 2, 5, 10, end],
[start, 2, 5, 6, 5, 10, end],
[start, 2, 5, 6, 6, 5, 10, end],
[start, 2, 5, 6, 6, 6, 5, 10, end]}

AllPath(CFG) = { k ∈ ℑ |
[start, 2, 5, (6)^k, 5, 10, end]}
(infinite !)

Example: A Symbolic Path Execution

We want to execute the path from AllPath₃:

[S, 2, 5, 6, 5, 10, E]

$\Phi \mapsto$ $a_0 \geq 0$	$a_0 \geq 0$	$(\text{sum} \leq a) \sigma_2$ $\wedge a_0 \geq 0$	$1 \leq a_0 \wedge$ $a_0 \geq 0$	$1 \leq a_0 \wedge$ $\neg (\text{sum} \leq a) \sigma_6$	$1 \leq a_0 \wedge$ $4 > a_0$	$1 \leq a_0 \wedge$ $4 > a_0 \wedge$ res = 1
$a \mapsto a_0$	a_0	a_0	a_0	a_0	a_0	a_0
$i \mapsto i_0$	0	0	1	1	1	1
$tm \mapsto tm_0$	1	1	3	3	3	3
$\text{sum} \mapsto \text{sum}_0$	1	1	4	4	4	4

Example: A Symbolic Path Execution

Result:

Test-Case:

For the path $M = [\text{start}, 2, 5, 6, 5, 10, \text{end}]$

we have the path condition $\Phi \mapsto 1 \leq a_0 \wedge 4 > a_0$

A concrete Test, satisfying Φ :

$$a_0 \mapsto 3$$

Execution of program with this test vector 3: $f(3) = 1$

Verification of the post-condition: $\text{post}(3, 1) = \text{true}$

Addendum: Multiple-Condition-Decision-Coverage

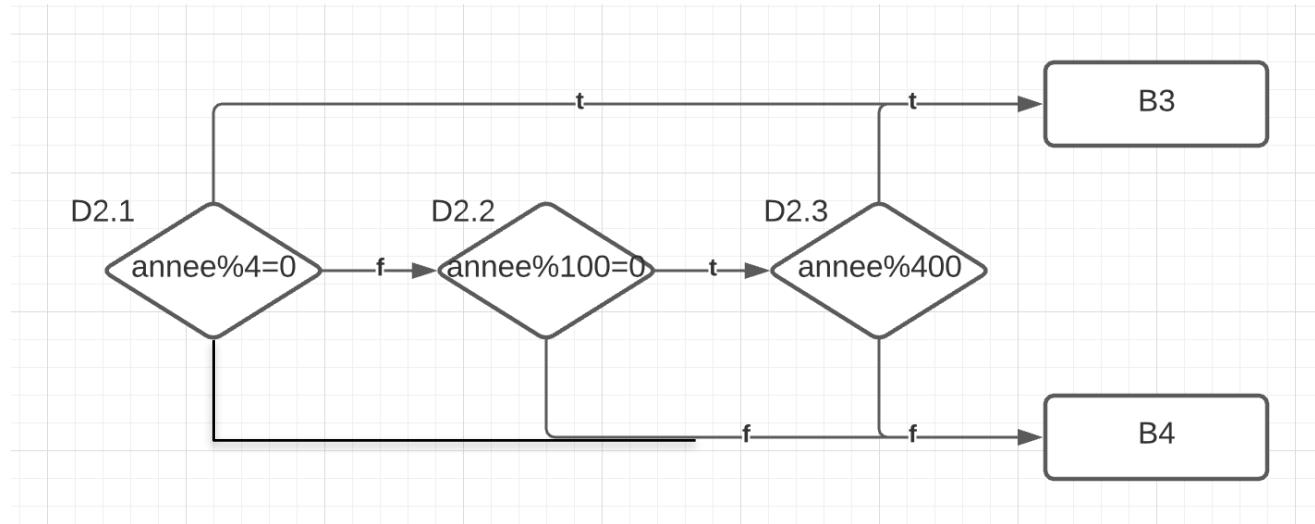
Problem: Consider:

```
if(m1 == m2) {  
    res = j2 - j1;  
} else {  
    if((annee%4 == 0) || (annee%100 == 0 && annee%400 != 0)) {  
        daysin[2] = 29;  
    } else {  
        daysin[2] = 28;  
    }  
    res = j2 + (daysin[m1] - j1);  
    for(int i = m1+1; i < m2; i++) {  
        res = res + daysin[i];  
    }  
}
```

even transition coverage on the Byzantine condition
(line 4-5) is very coarse and risks to miss the point !

Addendum: Multiple-Condition-Decision-Coverage

Solution: We use the inherent control flow in C for `||` and `&&` for a refined control flow graph !



now transition coverage (on the refined CFG) checks each condition individually for true and false.
This kind of coverage is called MC/DC.