2026
’ POLYTECH: Cycle Ingenieur — 2¢me annee
PARIS-SUD
Département Informatique
Verification and Validation

Part IV : An Introduction
to Testing

Burkhart Wolff
Département Informatique
Université Paris-Saclay / LMF

Recall: Validation and Verification

2 Validation :
= Does the system meet the clients requirements ?

= Will the performance be sufficient ?
> Will the usability be sufficient ?

Do we build the right system ?

4 Verification:
= Does the system meet the specification ?
= Does it correspond to a (mathematical, formal) model ?

Do we build the system right ? 1Is it « correct » ?

9/8/20 B. Wolff - Validation and Verification

How to do Validation ?

2 Tests and Experiments over Systems
(Integrated artefacts consisting of
software and hardware ...)

PolyTech 2026 VnV: Testing

How to do Verification ?

2 Test and Proof on the basis of formal
specifications (e.g., a la OCL, MOAL, ACSL, ... 1)
against programs or systems ...

PolyTech 2026 VnV: Testing

Recall: Verification Costs in an SE Process

2 costs? 35 - 50 % of the global effort ?

2 all “real” (large) software has remaining bugs ...

9 The cost of bug ?

= the cost to reveal and fix it ...
or:
the cost of a legal battle it may cause...
or the potential damage to the image
(difficult to evaluate, but veeeery real)
or costs as aresult to come later on the market

= on the other side — you can't test infinitely, and verification
is again 10 times more costly than thoroughly testing !

PolyTech 2026 VnV: Testing

Verification Costs

2 Conclusion:
= verification and software quality is vitally

important, and also critical in the development

> to do it cost-effectively, it requires
a lot of expertise on products and process

a lot of knowledge over methods,
tools, and tool chains ...

PolyTech 2026 VnV: Testing

Overview on the part on « Test »

4 WHATIS TESTING ?

2 A taxonomy on types of tests
> Static Test / Dynamic (Runtime) Test

= Structural Test / Functional Test
> Statistic Tests

3 Functional Test; Link to UML/OCL
= Dynamic Unit Tests, Static Unit Tests,
= Coverage Criteria

9 Structural Tests

> Control Flow and Data Flow Graphs
> Tests and executed paths. Undecidability.

= Coverage Criteria

PolyTech 2026 VnV: Testing

What is testing ?

a2 Tt is an approximation to verification
4 Main interest: finding bugs early,
= either in the model

= orin the program

> orinboth

4 A systematic test is:

= process programs and specifications
and to compute a set of test-cases
under controlled conditions.

= jdeally: testing is complete if a certain criteria,
the adequacy criteria is reached.

PolyTech 2026 VnV: Testing

Limits of testing ?

2 We said, test is an approximation to verification,
usually easier (and less expensive)

2 Note: Sometimes it is easier to verify than
to test. In particular:

=~ low-level OS implementations: memory allocation, garbage collection

memory virtualization, ... crypt-algorithms, ...

= non-deterministic programs with no control over the non-determinism.

PolyTech 2026 VnV: Testing

Taxomomy: Static / Dynamic Tests

2 static: running a program before deployment on
data carefully constructed by the analyst (in a
testing environment)
= analyse the result on the basis of all components

= working on some classes of executions symbolically
= representing infinitely many executions

2 dynamic: running the programme (or component)
after deployment, on “real data” as imposed by
the application domain
= experiment with the real behaviour
= essentially used for post-hoc ananalysis and debugging

PolyTech 2026 VnV: Testing 10

Taxonomy: Unit / Sequence / Reactive Tests

2 unit: testing of a local component (function, module),
typically only one step of the underlying state.
(In functional programs, thats essentially all what
you have to do!)

1 sequence: testing of a local component (function,
module), but typicallY sequences of executions,
which typically depend on internal state

2 reactive sequence: testing components by sequences
of steps, but these sequences represent communication
where later parts in the segience depend on what has
been earlier cummunicated

PolyTech 2026 VnV: Testing 11

Taxonomy: Functional / Structural Test

2 functional: (also: black-box tests). Tests were
generated
on a specification of the component, the test focusses
on input output behaviour.

2 structural: (also: white-box tests). Tests were
generated on the basis of the structure or the
program, i.e. using
control-flow, data-flow paths or by using symbolic
executions.

2 both: (also: grey-box testing).

PolyTech 2026 VnV: Testing 12

Functional Dynamic Unit Test

2 We got the spec, but not the program, which is
considered as a black box:

input output

we focus on what the program should do !!!

PolyTech 2026 VnV: Testing 13

Functional Dynamic Unit Test : an example

The (informal) specification:

Read a “"Triangle Object” (with three sides of integral type),
and test if it is isoscele, equilateral, or (default) arbitrary.

Each length should be strictly positive.

Give a specification, and develop a test set ...

PolyTech 2026 VnV: Testing 14

Functional Unit Test : An Example

The specification in UML/MOAL:

Triangles

a, b, c: Integer

- mk (Integer, Integer, Integer) :Triangle

- 1s Triangle(): {equ (*equilateral™),
1so (*1sosceles¥™),
arb (*arbitrary*)}

PolyTech 2026 VnV: Testing

Functional Unit Test : An Example

%
O<a A O<b A O<c

c<a+b A asb+c A b=c+a

We add the constraints of inv
the analysis: n
Triangles —
a, b, c: Integer

~
N

- mk (Integer, Integer, Integer) :Triangle

- is-Triangle(): {equ (*equilateral™),
RN 1so (*isosceles¥*),
I arb (*arbitrary*) }

operation tis_Triangle():
post

post (t.a#t.b V t.b#t.c)

post

ta=t.b A t.b=t.c — result=equ
A

(t.a=t.b V t.b=t.c V t.a=t.c))— result=iso
(t.a#t.b V t.b#t.c V t.a#t.c))— result=arb

N

PolyTech 2026 VnV: Testing

16

Functional Dynamic Unit Test : an example

Can we use specifications to perform Runtime-Test?

Yes! Compile:

context C::m(a_ :C,...,a :C)
1 1 n n
pre : P(self,al,...,ag
post : Q(self,al,...,an,result)

to some checking code (with “assert” as in Junit, VCC, Boogie, ...)

check C(); check C (); ... ; check C ();
assert(P(self,al,...,an));
result=run_m(self,a1,...,an);
assert(Q(self,al,...,an,result));

PolyTech 2026 VnV: Testing

17

Functional Dynamic Unit Test : an example

Dynamic (Unit/Sequence/...) Runtime-Tests are:

e .. easy fo implement and enforce

e .. work on real data and are extremely
helpful for post-hoc crash-analysis,
debugging, and forensics.

® Runtime-tests conflict with efficiency

e But: they are NOT particularly useful
during development, where we need
systematic test-data EARLY.

PolyTech 2026 VnV: Testing

18

Can we do better ?

2 We need a method that:

= generates the tests from the model (.model-based testing"):
if the model changes, the tests follow. This would all simplify
the maintenance problem of large test sets.

= ...works for partial programs ...

= ...works in the implementation phase
(and gives immediate feedback to programmers)

and not at the deployment phase (so: runs very late) ...
= ... gives clear criteria on the question:

.did we test enough” ?

PolyTech 2026 VnV: Testing 19

Intuitive Test-Data Generation

2 Consider the test specification (the "Test Case”):

mKk(X,y,z).isTriangle() = X

i.e. for which input (X,y,z) should an
implementation of our contract yield which X ?

Note that we define mk(0,0,0) to invalid,
as well as all other invalid triangles ...

PolyTech 2026 VnV: Testing

20

Intuitive Test-Data Generation

2 an arbitrary valid triangle: (3, 4, B)

4 an equilateral triangle: (5, 5, 5)
2 anisoscele triangle and its permutations :

(6,6,7),(7,6,6),(6,7,6)

2 impossible triangles and their permutations :
(1,2,4),(4,1,2),(2,4,1) --x+y>z
1,2,3),(2,4,2),(5,3,2) --x+y=2z(necessary?)

4 azerolength: (0,5, 4),(4,0,5),

4 Would we have to consider negative values?

PolyTech 2026 VnV: Testing

21

Intuitive Test-Data Generation

2 Ouf, is there a systematic and automatic
way to compute all these tests ?

Q Can we avoid hand-written test-scripts ?
Avoid the task to maintain them ?

2 And the question remains:

When did we test ,,enough™ ?

PolyTech 2026 VnV: Testing

22

Test-Data Generation

2 Recall the test specification:
mk(x,y,z).isTriangle() = r
= inVTriangIe(G) A preisTriangIe(mk(x’y’z))(a) A
inv (o) a post (mk(x,y,z),r)(o,0")

Triangle

(* see semantics of MOAL in Part IIT *)

isTriangle

Some Facts:

> From modifiesOnly({}) follows o = 6’ hence

inVTriangIe(O) = inVTriangIe(O,)
= From mk(x,y,z) # null (see preisTriangle) and from mVTriangIe(G) and
mk(x,y,z) € Triangle (o) follows that:
0<xANO<yA0<z A xSy+z AN yS<x+z N zS<x+y (= inv)
9/8/20 B. Wolff - Validation and Verification

23

Revision: Boolean Logic + Some Basic Rules

|
2 7(aab)=mav-b (* deMorgan1 ¥)

2 "(avb)=maa"b (* deMorgan2 *)
2 aa(bvc)=(aab)v(anac)

2 ~"(ma)=a,avTa=T,,ana=F,

9 aanb=bara; avb=bva

2 aa(bac)=(anb)ac

2 av(bvc)=(avb)vec

4 a—b=("a)vb

2 (a=b A P(a)) = P(b) (* one point rule *)
2 Jletx=EinC(x) = C(E) (* let elimination *)
Q = =(c = —

9/8/20 B. Wolff - Validation and Verification
24

Test-Data Generation

4 Recall the test specification:
mKk(x,y,z).isTriangle() = r

iI"'VTriangIe(O) A I:)reisTriangIe(mk(X’y’Z))(O) A

ianr‘icxngle(O,) A pOSTisTr'iangle(mk(x'y'Z)'r)(O’O’)

(* see semantics d'un appel de methopde, in MOAL II, page 22. *)

Some Facts:

> arb#equ#1so

~ post. (mk(x,y,z),r)(0,0) can be simplified to:

isTriangle
(x=y AN y=2 — r=equ) A
((x#y V v#z) N (x=y V y=z V x=2z) — r=iso) A

((X#y AN yv#z N x#z) — r=arb)

9/8/20 B. Wolff - Validation and Verification
25

Test-Data Generation

d Summing up:
mk(x,y,z).isTriangle() =r
= INVqangle(0) A Pre€griangielMK(X,Y,Z))(0)
IV iangle(0) A POST i riangle(MK(X.Y ,2) r)(0,0")

— (* the discussed facts *)

inv A
(x=y AN yv=2 — r=equ) A
((x#y V yv#z) AN (x=y V y=z V x=2)— r=iso) A

(x#y N v#z N x#z2 — r=arb)

9/8/20 B. Wolff - Validation and Verification

26

Test-Data Generation

Q Recall the test specification:
inv A (x=y AN yv=z — r=equ) A
((x#y V v#z) AN (x=y V y=z V x=2z)— rziso) A

(x#y AN v#z N x#z — r=arb)

= (* elimination — , deMorgan*)

inv A
(x#y V y#z V r=equ) A
((x=y N y=z) V (x#y N y#z N x#z) V r=iso) A

(x=y V y=2z V x=z V rzarb)

9/8/20 B. Wolff - Validation and Verification

27

Test-Data Generation

QA This first part of the calculation could be called
PURIFICATION

We eliminate UML, object-orientation, MOAL etcpp
and reduce it to the pure logical core ..

Now, under which precise conditions do we have
=~ r=iso
= r=arb

= r=equ ???

9/8/20 B. Wolff - Validation and Verification

28

Test-Data Generation

Q2 This first part of the calculation could be called
PURIFICATION

We eliminate UML, object-orientation, MOAL etcpp
and reduce it to the pure logical core ..

Can we transform the spec into the form

= A/N..N AN Tr=iso
= B ALANB APr=arb

= C/A..NC A r=equ 27?

9/8/20 B. Wolff - Validation and Verification

29

Test-Data Generation

Q2 This first part of the calculation could be called
PURIFICATION

We eliminate UML, object-orientation, MOAL etcpp
and reduce it to the pure logical core ..

Can we transform the spec into a

Disjunctive Normal Form (DNF) ?

9/8/20 B. Wolff - Validation and Verification

30

Excursion

]
2 Generalized Distribution Laws:

(A, vA)A(B,vB,) =(Ar(B,vB,) Vv(A,A(B,vB,)
= (A, AB) v(A,AB,) v(A AB,) v(A,AB,)

(A, vA,vA) A (B, vB,vB,) A (C, vC,vC))

= (A AB, AC) v(AAB, AC,) v(AAB, AC)) v
(A,AB, AnC) v(A,AB, AC) v(A,AB, AC)) v

(A;AB; ACy) v(A,AB, A C,) v(A;AB, A Cy)

9/8/20 B. Wolff - Validation and Verification

Test-Data Generation

1 Recall the test specification:
distrib

= 1nv A

(x#y V y#z V r=equ) A
(X=y V y=2z V x=z V r=arb)A

((x=y N y=z) V (x#y N y#z N x#z) V r=iso)

((X#y AN x=y)V(x#fy AN y=z)V (X#¥y A x=z)V (X#y A rzarb)) vV
((y#z AN x=y)V(y#z N y=z)V(y#z N x=z)V(y#z A r=arb)) '}
((V(r= equAy—z)V(r=eqqu=z)V(rzequArzarb)) vV
((X=y N y=z) V (x#y N y#z N x#z) V r=iso)

9/8/20 B. Wolff - Validation and Verification
32

Test-Data Generation

4 Recall the test specification:

= 1inv A
(x#y V y#z V rzequ) A
(X=y V y=z V x=z V r=arb)A
((X=y AN y=z) V (x#y N y#z N x#z) V r=iso)

= (* elimination contradictions *)
inv A
((x#y AN x=y)V(Xx#fy N y=z)V (Xx#y N x=z)V (Xx#¥#y AN r=arb) V
(yv#z N x=y)V(y#z N y=z)V(y#z N x=z)V(y#¥z N r=arb) V
(r=eqqu=y)V(r=equAy=z)V(r=eqqu=z)V(r=equAr=arb)) Vv
((X=y N y=z) V (x#y N y#z N x#z) V r=iso)

9/8/20 B. Wolff - Validation and Verification

33

4

Test-Data Generation

Recall the test specification:

= (* elimination contradictions *)
inv A
((x£y AN y=2)V(x#£y A x=z)V(x#y A r=arb) V
(yv#z N x=y)V(y#z N x=z)V(y#z N r=arb) V
(r=eqqu=y)V(r=equAy=z)V(r=eqqu=z)) A
((X=y N yv=z) V (x#y N y#z N x#z) V r=iso)

9/8/20 B. Wolff - Validation and Verification

34

Test-Data Generation

Q = (* generalized distribution 2nd/3rd ((9 * 3 = 27 cases !)*)
inv A
((x#yAy=zAx=yAy=z)V(x#yAx=zA
x=yAy=z)V (X#yAr=arbAx=yAy=z) V
(v#FzAx=yAx=yAy=2z)V (y#zAx=2zNA
x=yANy=2z)V (y#zAr=arbAx=yAy=z) V
(r=equlAx=yAx=yAy=z)V (r=equh
y=zAx=yAy=z)V(r=eqqu=zAx=yAy=z))V
((x#yAy=zAx#yAy¢zAx#z)V(X#yAx=zAx¢yAy¢zAx#z)V(X#yAr=arb

N XFYANYFZAXFZ)V (VFZAX=YAXFYANYFZAXFZ) V (yFZAX=2Z2AXFYANyFZ A
XF#FZ2)V(y#zAr=arbAx#yAy#zAx#z) V (r=equAX=yAxX#FYAYy#FzZAx#Zz) V (

r=eqUAy=zAx#YyAy#zAx#z)V (r=equlAx=zAx#yANy#zA x#z))v
((x#y AN yv=zAr=1s0)V (X¥y AN x=zAr=1s0)V (Xx#yAr=arbAr=1s0)
V(y#zAx=yAr=1s0)V (y#zAx=zAr=1so0)V (y#zAr=arbAr=1iso) V
(r=equAX=yAr=iso)V(r=equAy=zAr=iso)V(r=eqqu=zAr=iso))

9/8/20 B. Wolff - Validation and Verification
35

Test-Data Generation

L
[

(* elimination of the contradictions and redundancies *)
inv A
((X#yAy=zAx=yAy=z)V(X#yAx=zA
x=yAy=z) V (X#fyAr=arbAx=yAy=z) V
(v#FzZAx=yAx=yAy=2z)V (y#zAx=2z N\
x=yAy=z)V (y#zAr=arbAx=yAy=z) V
(r=equAx=yAx=yAy=z)V (r=equl

y=zAx=yAy=z)V(r=eqqu=zAx=yAy=z))V
((x#yAy=zAx¢yAy¢zAx#z)V(x#yAx=zAx¢yAy#zAx#z)V(x#yArzarb
N XFYANYFZAXFZ)V (YFZAX=YAXFYANYFZAXF2) V (VFZAX=2AXFYANyFZ A
X#FZ2)V (y#FzZAr=arbAx#yAy#zAx#z) V (r=equiAx=yAX#YAy#zZAx#z) V (
r=equAy=zAx#yAy#zAx#z)V (r=equAx=zAx#yAy#zA X#Z))V

((X#y N y=zAr=1is0)V (x#y N x=zAr=iso)V (x#yAr=arbAr=iso)
V(y#zAx=yAr=is0)V (y#zAx=zAr=1so) V (y#zAr=arbAr=1iso) V

(r=eqqu=yAr=iso)V(r=equAy=zAr=iso)V(r=eqqu=zAr=iso))

9/8/20 B. Wolff - Validation and Verification
36

Test-Data Generation

A = (* cleanup, distribution *)

inv A x=y N x=y N y=z AN r=equ) V
Xty N y#z N x#z N r=arb) V
x#y N y=z N r=iso) V
x#y N x=z N r=iso) V
yv#z N x=y AN r=iso) V
v#zZ N x=z N r=1s0)

|_|

)

<
> > > > >
o U W N R

2 Test-Case-Construction by DNF Method

yields six abstract test cases
relating input X y z fo output r

2 Note: In general, output r is not necessarily
uniquely defined as in our example ...
The spec can be non-deterministic admitting several results.

9/8/20 B. Wolff - Validation and Verification
37

Test-Data Generation

4

Test-Data-Selection:

For each abstract test-case, we construct one
concrete test, by choosing values that make

the abstract test case true (« that satisfies the
abstract test case »)

case
(1)
(2)
(3)
(4)
(5)
(6)

X
3
3
4
)
)
4

result
equ
arb
iSO
iSO
iSO

W o b~ O bW
~ B~ O 01 O W N

iSO

9/8/20

B. Wolff - Validation and Verification

38

Test-Data Generation

A Intuitively, what does it mean that we “covered”
the DNF by tests

2 Any basic predicate (“literal”) has been
used at least one time

9 .. provided it is not contradictory ("A=False”)
2 .. provided that it is not redundant (“A=True")
2 .. provided it is not implied by another

literal, i.e. it is subsumed ("B — A")

9/8/20 B. Wolff - Validation and Verification

39

Test-Data Generation

2 A First Summary on the Test-Generation Method:
=~ PHASE I: Stripping the Domain-Language (UML-MOAL) away,
“purification”
=~ PHASE II: Abstract Test Case Construction by
"DNF computation”
= PHASE IITI: Constraint Resolution (by solvers like CVC4 or Z3) "Test Data Selection’

=~ COVERAGE CRITERION:
DNF - coverage of the Spec; for each abstract test-case
one concrete test-input is constructed.
(ISO/IEC/IEEE 29119 calls this: Equivalence class testing)
2 Remark: During Codiung phase, when the Spec does not
change, the test-data-selection can be repeated easily
creating always different test sets ...

9/8/20 B. Wolff - Validation and Verification
40

Test-Data Generation

2 Variants:

>

Alternative to PHASE II (DNF construction):
Predicate Abstraction and Tableaux-Exploration.

Reconsider the (purified) specification:

inv A
(X=y AN yv=2 — r=equ) A
((X#y V y#z) AN (x=y V y=z V x=2z)— r=iso) A
(x#y N yv#z N x#z — r=arb)
It is possible to abstract this spec to a fairly small

number of ,base predicates” ... They should be logically
independent and not contain the output variable...

9/8/20

B. Wolff - Validation and Verification
41

Test-Data Generation

J Variants:

> Alternative to PHASE II (DNF construction):
Predicate Abstraction and Tableaux-Exploration.

Reconsider the (purified) specification:

inv A
(A ANB — r=equ) A
(-AV-B) A (AVBVC)— r=iso) A

(-2 AN-BA-C — r=arb)

where A » x=y, B » y=z, C p» X=z

(actually: A and B imply C)

9/8/20 B. Wolff - Validation and Verification

42

Test-Data Generation

2 Variants:
> .. Now we can construct a tableau and get by simplification:

case A B C spec reduces to
(1) T T T . r=equ

(2) T T F . r=equ (!!!)
(3) T F T « r=1s0

(4) T F F . r=iso

(5) F T T . r=iso

(6) F T F - r=iso

(7) F F T . r=iso

(8) F F F . r=arb

9/8/20 B. Wolff - Validation and Verification

43

Test-Data Generation

J Variants:

> PHASE III: Borderline analysis.
Principle: we replace in our DNF inequalities by
.the closest values that make the spec true”

XFY P X =y +1Vx=y -1
x Ly P x =y V x <y
x <y P X =v -1 etc.

= .. and recompute the DNF. In general,
this gives a much finer mesh ...

9/8/20 B. Wolff - Validation and Verification

Test-Data Generation

2 Variants:
> PHASE I: Test for exceptional behaviour.

We negate the precondition and to DNF generation
on the precondition only.

Test objectives could be:

should raise an exception if public

should not diverge

9/8/20 B. Wolff - Validation and Verification

45

Test-Data Generation

J

How to handle Recursion ?

9/8/20 B. Wolff - Validation and Verification

46

Test-Data Generation

How to handle Recursion ?
In UML/MOAL, recursion occurs (at least)

at fwo points:

=~ at the level

of data

Note that this excludes
cyclic lists !

0..1
next

LList
lgth:Integer
sum():Int%ger

\

invariant; \ e

inv . = Vnode€LList.
node.lgth =i1f node.next = null
then 1
else next.lgth + 1

9/8/20

B. Wolff - Validation and Verification
47

Test-Data Generation

2 How to handle Recursion ?

In UML/MOAL, recursion occurs (at least)

at two points:

= at the level of oper-

ations (post-conds

may contain calls ...)

0..1
next
LList
lgth:Integer
sum ().: Integer
query contract (modifiesOnly({})): R
definition pre_ (1) = True

deﬁmﬁonpostmm(l,res)z res=if l.next=null then 1l.lgth

Note that arb (S) gives an
arbitrary member of S: arb (S)

else 1.1gth + 1l.next.sum()
definition sum(1)= arb{r|pre_ (1) A post_ (1,r)}

=S.

Since from x=arb ({y}) follows x=y; B. Wolff - Validation and Verification
thus sum (1) is (uniquely) defined. 48

3

Test-Data Generation

Prerequisite: We present the invariant as recursive predicate.

definition NV et core

else n.next.lgth (o)

we have:
inv . (o) = Vn€LList (o). inquLCmen o
and
'nW¢m3bm(n)(o): (1f n.next (o)=null then n.lgth (o)

else n.lgth (o) =n.next.lgth (o)
A n.next (o) ELList (o)
A inv

LList Core (n.next) (o))

Furthermore we have:
sum(1l) (o’,0) = if 1l.next (o)=null then 1.1gth (o)

else 1l.1gth(o) + sum(l.next) (o', o)

n o =(n.lgth(o) = 1f n.next(o)=null then 1

We have 6 =0 (why?). We will again apply (6',0) - convention.

9/8/20 B. Wolff - Validation and Verification

49

Test-Data Generation

2 Consider the test specification:
Xsum() =Y (for some XeLList, i.e. X#null)
= invLList (X) A pre_ (X) A postSum (X,Y)
where:
pre_ (X) = true
post_ (X,Y)= (if X.next = null then Y = X.lgth
else Y =X.lgth + sum(X.next))
= (X.next=null A Y = X.lgth)
V (X.nextznull A Y = X.lgth+sum(X.next)
9/8/20 B. Wolff - Validation and Verification

50

Test-Data Generation

4 DNF computation yields already the test cases:

Xsum() =Y (for some XelList, i.e. X#null)

- lnvLList_Core (X) pOStsum (X,Y))

New
= (if X.next=null then X.lgth =1 Test-

else X.lgth =X.next.lgth+l A X.next€LList A inv (X.next))

Casell

LList_Core

(if X.next = null then Y = X.lgth

else Y =X.lgth + sum(X.next))

= (if c then C else D elim, DNF)

[(X.next=null A X.lgth=1 AY = X.lgth) }

vV (X.next#null A X.lgth =X.next.lgth+l

A X.next€ELList A InVLList_Core(X'neXt)

AY = X.lgth+sum(X.next))

9/8/20 B. Wolff - Validation and Verification
51

J

Test-Data Generation

Intermediate Summary: test-cases known so far ?
X Y
i:LList
9/8/20 B. Wolff - Validation and Verification

52

J

Test-Data Generation

Prerequisite: We present the invariant as recursive
predicate.
inVuBLCmeU1)= (if n.next=null then n.lgth =1
else n.lgth =n.next.lgth + 1
A n.next€LList Ainwlm(bm(n.next))

sum(l) = if l.next=null then 1l.lgth

else 1l.1lgth + sum(l.next)
sum(l) = 1f X.next.next=null then X.next.lgth

else X.next.lgth + sum(X.next.next)

9/8/20 B. Wolff - Validation and Verification

53

9

Test-Data Generation

DNF computation yields already the test cases:

X.sum()

Y (for some XelList, i.e. X#null)

l

(unfolding sum and inv,, i core)

(X.next=null A X.lgth=1 AY = X.lgth)

vV (X.next#null A X.lgth=X.next.lgth+l A X.next€LList

A (1if X.next.next=null then X.next.lgth = 1

else X.next.lgth =X.next.next.lgth + 1

A X.next.next€LList Ainvu. (X.next.next))
ist Core

A (Y = X.1lgth+t(if X.next.next=null then X.next.lgth
else X.next.lgth + sum(X.next.next)))

9/8/20 B. Wolff - Validation and Verification

54

Test-Data Generation

2 DNF computation yields already the test cases:

X.sum()

Y (for some XelList, i.e. X#null)

J

(DNF partial)

(X.next=null A X.lgth=1 AY = X.lgth)

vV (X.next#null A X.lgth=X.next.lgth+l A X.next€LList
A ((X.next.next=null AX.next.lgth = 1 AY = X.lgth+X.next.lgth)

v (X .next.next#null A X.next.lgth=X.next.next.lgth+1l

A X.next.nextELList A inv X.next.next)

LList_Core(
AY = X.lgth+t X.next.lgth + sum(X.next.next))

9/8/20 B. Wolff - Validation and Verification
55

Test-Data Generation

|
2 DNF computation yields already the test cases:

Xsum() =Y (for some XelList, i.e. X#null)
= = New
G E et
= (DNF partial) Case!!

(X.next=null AX.lgth=1 AY = X.lgth)

vV (X.next#null A X.lgth=X.next.lgth+l A X.nextEI/st

A X.next.next=null AX.next.lgth=1 A Y = X.lgth+X.next.lgth))

V (X.NexXt#Null A X.lIgth=X.next.lgthtl A X.nextELList
A X.next.next#null A X.next.lgth=X.next.next.lgth+1l

A X.next.next€LList A InVLList_Core(X.next.next)

AY = X.lgth+ X.next.lgth + sum(X.next.next))

9/8/20 B. Wolff - Validation and Verification
56

Test-Data Generation

4 Intermediate Summary: test-cases known so far ?

X Y
i: LList
iy [1
i:LList | [i:LList
_{Igth=2J (igth=1 | null 2

9/8/20 B. Wolff - Validation and Verification

Q

Summary: Symbolic Test-Case Generation

... and we could continue forever

= compile to semantics
(-> convert in mathematical, logical notation)

= use recursive predicates, recursive contracts
= enter loop:
° unfold predicates one step
compute DNF
simplify DNF
extract test-cases
until we are satisfied, i.e. have .enough” test cases ...

> Select test-data: constraint resolution of test cases.

9/8/20 B. Wolff - Validation and Verification
58

Test-Data Generation

2 Observation: “all other cases” ...
were represented by the clauses still
containing recursive predicates.

2 Logically: we used a reqularity hypothesis, i.e ..

(V X. | X|]<k = X.sum() =Y)
= (V X. X.sum() =Y)

where we choose as "complexity mesure” |X|
just X.gth and k (the number of unfoldings)
was 2 ...

9/8/20 B. Wolff - Validation and Verification

59

Test-Data Generation

2 Coverage Criterion for recursive specification:

DNF,

For all data up to complexity k, we constructed abstract
test-cases and generated a test.

In our example, the "complexity measure” is just the length

of the LLists.

9/8/20 B. Wolff - Validation and Verification

60

Test-Data Generation

(I

What are the alternatives to symbolic
test-case generation ?

Must this really be so complicated ???

Well, think about the probability to
“guess” input with a complex invariant
or precondition, if you use "blind"
random-generation of input...

9/8/20 B. Wolff - Validation and Verification

61

Test-Data Generation

-1 Summary

= We have (sketched) a symbolic Test-Case
Generation Procedure for UML/MOAL Specifications

> It takes into account:
> object orientation
- data invariants (recursive predicates)
° recursive functions (via unfolding)

= The process can be tool-supported
(HOL-TestGen)

= The process is intended for automation.

9/8/20 B. Wolff - Validation and Verification

62

Test-Data Generation

-4 Summary

Key-Ingredients are:
= Unfolding predicates up to a given depth k

= computing the Disjunctive Normal Form (DNFk)

= Adequacy:
Pick for each test-case (a conjoint in the DNF)

one test, i.e. one substitution for the free
variables satisfying the test-case |

9/8/20 B. Wolff - Validation and Verification

63

