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Recall: Validation and Verification

❑ Validation :  
➢ Does the system meet the clients requirements ?  
➢ Will the performance be sufficient ? 
➢ Will the usability be sufficient ? 

Do we build the right system ? 

❑ Verification:  
➢ Does the system meet the specification ? 
➢ Does it correspond to a (mathematical, formal) model ? 

Do we build the system right ?   Is it « correct » ?	   	 	 	 	 	
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How to do Validation ?

❑ Tests  and Experiments over Systems  
 (Integrated artefacts consisting of  
  software and hardware …) 
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How to do Verification ?

❑ Test and Proof on the basis of formal  
specifications  (e.g., à la OCL, MOAL, ACSL, ... !)  
against programs or systems ... 
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Recall: Verification Costs in an SE Process

❑ costs ?                  35 - 50 % of the global effort ? 

❑ all “real” (large) software has remaining bugs … 

❑ The cost of bug ? 
➢ the cost to reveal and fix it … 

or: 
	the cost of a legal battle it may cause... 
or	 the potential damage to the image  
	(difficult to evaluate, but veeeery real) 
or	 costs as a result to come later on the market 

➢ on the other side – you can't test infinitely, and verification 
is again 10 times more costly than thoroughly testing !
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Verification Costs

❑ Conclusion:  
➢ verification and software quality is vitally  

important, and also critical in the development 

➢ to do it cost-effectively, it requires 
□ a lot of expertise on products and process 
□ a lot of knowledge over methods, 

tools, and tool chains ...
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Overview on the part on « Test »

❑ WHAT IS TESTING ? 
❑ A taxonomy on types of tests 

➢ Static Test  / Dynamic (Runtime) Test  
➢ Structural Test / Functional Test 
➢ Statistic Tests 

❑ Functional Test;  Link to UML/OCL 
➢ Dynamic Unit Tests, Static Unit Tests,  
➢ Coverage Criteria 

❑ Structural Tests 
➢ Control Flow and Data Flow Graphs 
➢ Tests and executed paths. Undecidability. 
➢ Coverage Criteria
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What is testing ?

❑ It is an approximation to verification 
❑ Main interest: finding bugs early, 

➢ either in the model 
➢ or in the program 
➢ or in both 

❑ A systematic test is: 
➢ process programs and specifications  

and to compute a set of test-cases  
under controlled conditions. 

➢ ideally: testing is complete if a certain criteria, 
the adequacy criteria is reached.
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Limits of testing ?

❑ We said, test is an approximation to verification, 
usually easier (and less expensive)  

❑ Note: Sometimes it is easier to verify than 
to test. In particular: 

➢ low-level OS implementations: memory allocation,  garbage collection 
memory virtualization, … crypt-algorithms, ... 
	  

➢ non-deterministic programs with no control over the non-determinism. 
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Taxomomy: Static  / Dynamic Tests

❑ static: running a program before deployment on 
data carefully constructed by the analyst (in a 
testing environment) 

➢ analyse the result on the basis of all components 
➢ working on some classes of executions symbolically 

= representing infinitely many executions 

❑ dynamic: running the programme (or component) 
after deployment, on “real data” as imposed by 
the application domain 

➢ experiment with the real behaviour 
➢ essentially used for post-hoc ananalysis and debugging
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Taxonomy: Unit / Sequence / Reactive Tests

❑ unit: testing of a local component (function, module), 
typically only one step of the underlying state. 
(In functional programs, thats essentially all what 
you have to do!) 

❑ sequence: testing of a local component (function, 
module), but typicallY sequences of executions, 
which typically depend on internal state 

❑ reactive sequence: testing components by sequences 
of steps, but these sequences represent communication 
where later parts in the seqience depend on what has 
been earlier cummunicated 
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Taxonomy: Functional  / Structural Test

❑ functional: (also: black-box tests). Tests were 
generated 
on a specification of the component, the test focusses 
on input output behaviour. 

❑ structural: (also: white-box tests). Tests were 
generated on the basis of the structure or the 
program, i.e. using 
control-flow, data-flow paths or by using symbolic 
executions. 

❑ both: (also: grey-box testing). 
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Functional Dynamic Unit Test 

❑ We got the spec, but not the program, which is 
considered as a black box:

input output???

Ce que le programme devrait faire…
we focus on what the program should do !!!
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Functional Dynamic Unit Test : an example

The (informal) specification: 

	 Read a “Triangle Object” (with three sides of integral type), 
and test if it is isoscele, equilateral, or (default) arbitrary. 
 
Each length should be strictly positive. 

Give a specification, and develop a test set ...
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Functional Unit Test : An Example

The specification in UML/MOAL: 

	 	 Triangles
a, b, c: Integer

- mk(Integer,Integer,Integer):Triangle 
- is_Triangle(): {equ (*equilateral*), 
                  iso (*isosceles*), 
                  arb (*arbitrary*)}
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Functional Unit Test : An Example

We add the constraints of  
the analysis: 

	 	 
Triangles
a, b, c: Integer

- mk(Integer,Integer,Integer):Triangle 
- is_Triangle(): {equ (*equilateral*), 
                  iso (*isosceles*), 
                  arb (*arbitrary*)}

inv    0<a ∧ 0<b ∧ 0<c 
inv    c≤a+b ∧ a≤b+c ∧ b≤c+a 

operation t.is_Triangle():    
post    t.a=t.b ∧ t.b=t.c ⟶ result=equ 
post  (t.a≠t.b ∨ t.b≠t.c) ∧ 
    (t.a=t.b ∨ t.b=t.c ∨ t.a=t.c))⟶ result=iso
post  (t.a≠t.b ∨ t.b≠t.c ∨ t.a≠t.c))⟶ result=arb
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Functional Dynamic Unit Test : an example

Can we use specifications to perform Runtime-Test?


Yes!  Compile: 
 

context C::m(a
1
:C

1
,...,a

n
:C

n
) 

pre	: P(self,a
1
,...,a

n
)  

post 	 : Q(self,a
1
,...,a

n
,result) 

to some checking code (with “assert” as in Junit, VCC, Boogie, ...) 

check_C(); check_C
1
(); ... ; check_C

n
(); 

assert(P(self,a
1
,...,a

n
)); 

result=run_m(self,a
1
,...,a

n
); 

assert(Q(self,a
1
,...,a

n
,result));
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Functional Dynamic Unit Test : an example

Dynamic (Unit/Sequence/…) Runtime-Tests are:

• … easy to implement and enforce

• … work on real data and are extremely  

helpful for post-hoc crash-analysis,  
debugging, and forensics.


• Runtime-tests conflict with efficiency

• But: they are NOT particularly useful  

during development, where we need  
systematic test-data EARLY.
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Can we do better ?

❑ We need a method that: 
➢ generates the tests from the model („model-based testing“): 

if the model changes, the tests follow. This would all simplify 
the maintenance problem of large test sets. 

➢ ... works for partial programs ... 
➢ ... works in the implementation phase  

(and gives immediate feedback to programmers) 

      and not at the deployment phase (so: runs very late) ... 
➢ ... gives clear criteria on the question: 

     „did we test enough“ ?
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Intuitive Test-Data Generation

❑ Consider the test specification (the “Test Case”): 
 
	 mk(x,y,z).isTriangle() ≡ X 
 

i.e. for which input (x,y,z) should an  
implementation of our contract yield which X ? 

Note that we define mk(0,0,0) to invalid, 
as well as all other invalid triangles ...
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Intuitive Test-Data Generation

❑ an arbitrary valid triangle: (3, 4, 5) 
❑ an equilateral triangle: (5, 5, 5) 

❑ an isoscele triangle and its permutations : 

(6, 6, 7), (7, 6, 6), (6, 7, 6) 

❑ impossible triangles and their permutations : 

(1, 2, 4), (4, 1, 2), (2, 4, 1)     -- x + y > z 

(1, 2, 3), (2, 4, 2), (5, 3, 2)     -- x + y = z (necessary?) 

❑ a zero length : (0, 5, 4), (4, 0, 5),  

❑ . . .   

❑ Would we have to consider negative values?
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Intuitive Test-Data Generation

❑ Ouf, is there a systematic and automatic  
way to compute all these tests ? 

❑ Can we avoid hand-written test-scripts ? 
Avoid the task to maintain them ? 

❑ And the question remains: 
 
  When did we test „enough“ ?
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Test-Data Generation

❑ Recall the test specification: 
	 mk(x,y,z).isTriangle() = r


≡    invTriangle(σ) ∧ preisTriangle(mk(x,y,z))(σ) ∧ 
     invTriangle(σ’) ∧ postisTriangle(mk(x,y,z),r)(σ,σ’)  

     (* see semantics of MOAL in Part III  *) 
 
Some Facts:

➢ From modifiesOnly({}) follows σ = σ’ hence 

       invTriangle(σ) = invTriangle(σ’) 

➢ From mk(x,y,z) ≠ null (see preisTriangle) and  from  invTriangle(σ) and  

mk(x,y,z) ∈ Triangle (σ) follows that:  
       0<x∧0<y∧0<z  ∧ x≤y+z ∧ y≤x+z ∧ z≤x+y       (≡ inv)
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Revision: Boolean Logic + Some Basic Rules

❑ ¬(a ∧ b)=¬ a ∨ ¬ b 	 	 	 	 (* deMorgan1 *) 
❑ ¬(a ∨ b)=¬ a ∧ ¬ b	 	 	 	 (* deMorgan2 *) 
❑ a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) 
❑ ¬(¬ a) = a , a ∨ ¬a = T, , a ∧ ¬a = F, 
❑ a ∧ b = b ∧ a;  a ∨ b = b ∨ a 
❑ a ∧ (b ∧ c) = (a ∧ b) ∧ c 
❑ a ∨ (b ∨ c) = (a ∨ b) ∨ c 
❑ a ⟶ b = (¬ a) ∨ b 
❑ (a=b ∧ P(a)) = P(b) 		 	 	 (* one point rule *) 

❑ let x = E in C(x)  = C(E)		 	 (* let elimination *) 
❑ if c then C else D = (c ∧ C) ∨ (¬ c ∧ D)  = (c ⟶ C) ∧ (¬ c ⟶ D)
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Test-Data Generation

❑ Recall the test specification: 
	 mk(x,y,z).isTriangle() = r


≡    invTriangle(σ) ∧ preisTriangle(mk(x,y,z))(σ) ∧ 
     invTriangle(σ’) ∧ postisTriangle(mk(x,y,z),r)(σ,σ’)  

     (* see semantics d’un appel de methopde, in MOAL II, page 22.  *) 
 
Some Facts:

➢ arb≠equ≠iso 
➢ postisTriangle(mk(x,y,z),r)(σ,σ) can be simplified to: 

    (x=y ∧ y=z ⟶ r=equ)  ∧ 
  ((x≠y ∨ y≠z) ∧ (x=y ∨ y=z ∨ x=z) ⟶ r=iso)  ∧ 

      ((x≠y ∧ y≠z ∧ x≠z) ⟶ r=arb) 
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Test-Data Generation

❑ Summing up: 
	 mk(x,y,z).isTriangle() = r


≡    invTriangle(σ) ∧ preisTriangle(mk(x,y,z))(σ) ∧ 
     invTriangle(σ’) ∧ postisTriangle(mk(x,y,z),r)(σ,σ’)  

    
⟹  (* the discussed facts *)  
 

inv ∧ 
(x=y ∧ y=z ⟶ r=equ)  ∧ 
((x≠y ∨ y≠z) ∧ (x=y ∨ y=z ∨ x=z)⟶ r=iso)  ∧ 

   (x≠y ∧ y≠z ∧ x≠z ⟶ r=arb) 
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Test-Data Generation

❑ Recall the test specification: 
	 inv ∧ (x=y ∧ y=z ⟶ r=equ)  ∧ 
    ((x≠y ∨ y≠z) ∧ (x=y ∨ y=z ∨ x=z)⟶ r=iso)  ∧ 

            (x≠y ∧ y≠z ∧ x≠z ⟶ r=arb)  
 
≡  (* elimination ⟶ , deMorgan*)  
 

inv ∧ 
(x≠y ∨ y≠z ∨ r=equ)  ∧ 
((x=y ∧ y=z) ∨ (x≠y ∧ y≠z ∧ x≠z) ∨ r=iso)  ∧ 

   (x=y ∨ y=z ∨ x=z ∨ r=arb) 
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Test-Data Generation

❑ This first part of the calculation could be called 
 
 PURIFICATION 
 
We eliminate UML, object-orientation, MOAL etcpp 
and reduce it to the pure logical core ... 

Now, under which precise conditions do we have 

➢ r = iso 
➢ r = arb 
➢ r = equ  ???

28



9/8/20 B. Wolff - Validation and Verification

Test-Data Generation

❑ This first part of the calculation could be called 
 
 PURIFICATION 
 
We eliminate UML, object-orientation, MOAL etcpp 
and reduce it to the pure logical core ... 
 
Can we transform  the spec into the form 

➢ A1 ∧ ... ∧ Ai ∧ r = iso 

➢ B1 ∧ ... ∧ Bk ∧ r = arb 

➢ C1 ∧ ... ∧ Cl ∧ r = equ                            ???
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Test-Data Generation

❑ This first part of the calculation could be called 
 
 PURIFICATION 
 
We eliminate UML, object-orientation, MOAL etcpp 
and reduce it to the pure logical core ... 
 
 
Can we transform the spec into a  

 

Disjunctive Normal Form (DNF)  ?
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Excursion

❑ Generalized Distribution Laws: 

(A1 ∨ A2) ∧ (B1 ∨ B2)	  = (A1 ∧ (B1 ∨ B2)) ∨ (A2 ∧ (B1 ∨ B2))  

= (A1 ∧ B1) ∨ (A2 ∧ B1) ∨ (A1 ∧ B2) ∨ (A2 ∧ B2) 

(A1 ∨ A2 ∨ A3) ∧ (B1 ∨ B2 ∨ B3) ∧ (C1 ∨ C2 ∨ C3)	   

= … 
= (A1 ∧ B1  ∧ C1) ∨ (A1 ∧ B1  ∧ C2) ∨ (A1 ∧ B1  ∧ C3) ∨   

  (A2 ∧ B1  ∧ C1) ∨ (A2 ∧ B1  ∧ C2) ∨ (A2 ∧ B1  ∧ C3) ∨ 

  ... 

  (A1 ∧ B3  ∧ C3) ∨ (A2 ∧ B3  ∧ C3) ∨ (A3 ∧ B3  ∧ C3)
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Test-Data Generation

❑ Recall the test specification: 
	 ... 
≡  inv ∧ 
	 (x≠y ∨ y≠z ∨ r=equ)  ∧ 
	 (x=y ∨ y=z ∨ x=z ∨ r=arb) ∧ 
	 ((x=y ∧ y=z) ∨ (x≠y ∧ y≠z ∧ x≠z) ∨ r=iso)  
≡   
inv ∧ 

((x≠y ∧ x=y)∨(x≠y ∧ y=z)∨(x≠y ∧ x=z)∨(x≠y ∧ r=arb))  ∨ 
((y≠z ∧ x=y)∨(y≠z ∧ y=z)∨(y≠z ∧ x=z)∨(y≠z ∧ r=arb))  ∨ 
((r=equ∧x=y)∨(r=equ∧y=z)∨(r=equ∧x=z)∨(r=equ∧r=arb))  ∨ 
((x=y ∧ y=z) ∨ (x≠y ∧ y≠z ∧ x≠z) ∨ r=iso)

distrib
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Test-Data Generation

❑ Recall the test specification: 
	 … 
≡  inv ∧ 
	 (x≠y ∨ y≠z ∨ r=equ)  ∧ 
	 (x=y ∨ y=z ∨ x=z ∨ r=arb) ∧ 
	 ((x=y ∧ y=z) ∨ (x≠y ∧ y≠z ∧ x≠z) ∨ r=iso)  

        ≡  (* elimination contradictions *)  
     inv ∧ 

((x≠y ∧ x=y)∨(x≠y ∧ y=z)∨(x≠y ∧ x=z)∨(x≠y ∧ r=arb)  ∨ 
 (y≠z ∧ x=y)∨(y≠z ∧ y=z)∨(y≠z ∧ x=z)∨(y≠z ∧ r=arb)  ∨ 
 (r=equ∧x=y)∨(r=equ∧y=z)∨(r=equ∧x=z)∨(r=equ∧r=arb))  ∨ 
((x=y ∧ y=z) ∨ (x≠y ∧ y≠z ∧ x≠z) ∨ r=iso)
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Test-Data Generation

❑ Recall the test specification: 
	 ... 
≡  (* elimination contradictions *)  
inv ∧ 

((x≠y ∧ y=z)∨(x≠y ∧ x=z)∨(x≠y ∧ r=arb)  ∨ 
 (y≠z ∧ x=y)∨(y≠z ∧ x=z)∨(y≠z ∧ r=arb)  ∨ 
 (r=equ∧x=y)∨(r=equ∧y=z)∨(r=equ∧x=z))  ∧ 

   ((x=y ∧ y=z) ∨ (x≠y ∧ y≠z ∧ x≠z) ∨ r=iso) 
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Test-Data Generation

❑ ≡  (* generalized distribution 2nd/3rd  ((9 * 3 = 27 cases !)*)  
inv ∧ 

((x≠y∧y=z∧x=y∧y=z)∨(x≠y∧x=z∧         
                    x=y∧y=z)∨(x≠y∧r=arb∧x=y∧y=z)  ∨ 
 (y≠z∧x=y∧x=y∧y=z)∨(y≠z∧x=z∧ 
                    x=y∧y=z)∨(y≠z∧r=arb∧x=y∧y=z)  ∨ 
 (r=equ∧x=y∧x=y∧y=z)∨(r=equ∧ 
                    y=z∧x=y∧y=z)∨(r=equ∧x=z∧x=y∧y=z)) ∨ 
((x≠y∧y=z∧x≠y∧y≠z∧x≠z)∨(x≠y∧x=z∧x≠y∧y≠z∧x≠z)∨(x≠y∧r=arb
∧ x≠y∧y≠z∧x≠z)∨(y≠z∧x=y∧x≠y∧y≠z∧x≠z)∨(y≠z∧x=z∧x≠y∧y≠z∧ 
x≠z)∨(y≠z∧r=arb∧x≠y∧y≠z∧x≠z)∨(r=equ∧x=y∧x≠y∧y≠z∧x≠z)∨(
r=equ∧y=z∧x≠y∧y≠z∧x≠z)∨(r=equ∧x=z∧x≠y∧y≠z∧ x≠z)) ∨ 
((x≠y ∧ y=z∧r=iso)∨(x≠y ∧ x=z∧r=iso)∨(x≠y∧r=arb∧r=iso)  
 ∨(y≠z∧x=y∧r=iso)∨(y≠z∧x=z∧r=iso)∨(y≠z∧r=arb∧r=iso)  ∨ 
 (r=equ∧x=y∧r=iso)∨(r=equ∧y=z∧r=iso)∨(r=equ∧x=z∧r=iso))
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Test-Data Generation

❑ ≡  (* elimination of the contradictions and redundancies *)  
inv ∧ 

((x≠y∧y=z∧x=y∧y=z)∨(x≠y∧x=z∧         
                    x=y∧y=z)∨(x≠y∧r=arb∧x=y∧y=z)  ∨ 
 (y≠z∧x=y∧x=y∧y=z)∨(y≠z∧x=z∧ 
                    x=y∧y=z)∨(y≠z∧r=arb∧x=y∧y=z)  ∨ 
 (r=equ∧x=y∧x=y∧y=z)∨(r=equ∧ 
                    y=z∧x=y∧y=z)∨(r=equ∧x=z∧x=y∧y=z)) ∨ 
((x≠y∧y=z∧x≠y∧y≠z∧x≠z)∨(x≠y∧x=z∧x≠y∧y≠z∧x≠z)∨(x≠y∧r=arb
∧ x≠y∧y≠z∧x≠z)∨(y≠z∧x=y∧x≠y∧y≠z∧x≠z)∨(y≠z∧x=z∧x≠y∧y≠z∧ 
x≠z)∨(y≠z∧r=arb∧x≠y∧y≠z∧x≠z)∨(r=equ∧x=y∧x≠y∧y≠z∧x≠z)∨(
r=equ∧y=z∧x≠y∧y≠z∧x≠z)∨(r=equ∧x=z∧x≠y∧y≠z∧ x≠z)) ∨ 
((x≠y ∧ y=z∧r=iso)∨(x≠y ∧ x=z∧r=iso)∨(x≠y∧r=arb∧r=iso)  
 ∨(y≠z∧x=y∧r=iso)∨(y≠z∧x=z∧r=iso)∨(y≠z∧r=arb∧r=iso)  ∨ 
 (r=equ∧x=y∧r=iso)∨(r=equ∧y=z∧r=iso)∨(r=equ∧x=z∧r=iso))
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Test-Data Generation

❑ ≡  (* cleanup, distribution *)  
    (inv ∧ x=y ∧ x=y ∧ y=z ∧ r=equ) ∨	 	 	 (1) 

 (inv ∧ x≠y ∧ y≠z ∧ x≠z ∧ r=arb ) ∨		 	 (2) 
 (inv ∧ x≠y ∧ y=z ∧ r=iso) ∨	 	 	 	 	 (3) 
 (inv ∧ x≠y ∧ x=z ∧ r=iso) ∨	 	 	 	 	 (4) 
 (inv ∧ y≠z ∧ x=y ∧ r=iso) ∨	 	 	 	 	 (5) 
 (inv ∧ y≠z ∧ x=z ∧ r=iso)		 	 	 	 	 (6) 

❑ Test-Case-Construction by DNF Method 

        yields six abstract test cases 

    relating input x y z to output r

❑ Note: In general, output r is not necessarily  

uniquely defined as in our example ...  
The spec can be non-deterministic admitting several results.
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Test-Data Generation

❑ Test-Data-Selection: 
For each abstract test-case, we construct one  
concrete test, by choosing values that make 
the abstract test case true (« that satisfies the 
abstract test case ») 
 

case x y z result
(1) 3 3 3 equ
(2) 3 4 6 arb
(3) 4 5 5 iso
(4) 5 4 5 iso
(5) 5 5 4 iso
(6) 4 3 4 iso
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Test-Data Generation

❑ Intuitively, what does it mean that we “covered” 
the DNF by tests

❑ Any basic predicate (“literal”) has been 

used at least one time

❑ … provided it is not contradictory (“A=False”)

❑ … provided that it is not redundant (“A=True”)

❑ … provided it is not implied by another 

   literal, i.e. it is subsumed (“B ⟶  A”)
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Test-Data Generation

❑ A First Summary on the Test-Generation Method:

➢ PHASE I: Stripping the Domain-Language (UML-MOAL) away, 

“purification”  
➢ PHASE II: Abstract Test Case Construction by  

“DNF computation” 
➢ PHASE III: Constraint Resolution (by solvers like CVC4 or Z3)  “Test Data Selection” 
➢ COVERAGE CRITERION: 

DNF - coverage of the Spec; for each abstract test-case  
one concrete test-input is constructed.   
(ISO/IEC/IEEE 29119 calls this: Equivalence class testing)  

❑ Remark: During Codiung phase, when the Spec does not 
change, the test-data-selection can be repeated easily  
creating always different test sets ...
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Test-Data Generation

❑ Variants:

➢ Alternative to PHASE II (DNF construction): 

Predicate Abstraction and Tableaux-Exploration. 
 
Reconsider the (purified) specification: 
 
      inv ∧ 
    (x=y ∧ y=z ⟶ r=equ)  ∧ 
    ((x≠y ∨ y≠z) ∧ (x=y ∨ y=z ∨ x=z)⟶ r=iso)  ∧ 

       (x≠y ∧ y≠z ∧ x≠z ⟶ r=arb)  
 
It is possible to abstract this spec to a fairly small 
number of „base predicates“ ... They should be logically 
independent and not contain the output variable...
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Test-Data Generation

❑ Variants:

➢ Alternative to PHASE II (DNF construction): 

Predicate Abstraction and Tableaux-Exploration. 
 
Reconsider the (purified) specification: 
 
      inv ∧ 
    (A ∧ B ⟶ r=equ)  ∧ 
    ((¬ A ∨ ¬ B) ∧ (A ∨ B ∨ C)⟶ r=iso)  ∧ 

       (¬ A ∧ ¬ B ∧ ¬ C ⟶ r=arb)  
 
where A ↦ x=y, B ↦ y=z, C ↦ x=z 
 
(actually: A and B imply C)  
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Test-Data Generation

❑ Variants:

➢ ... Now we can construct a tableau and get by simplification:

case A B C spec reduces to
(1) T T T ● r=equ

(2) T T F ● r=equ  (!!!)

(3) T F T ● r=iso

(4) T F F ● r=iso

(5) F T T ● r=iso

(6) F T F ● r=iso

(7) F F T ● r=iso

(8) F F F ● r=arb
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Test-Data Generation

❑ Variants:

➢ PHASE III: Borderline analysis. 

Principle: we replace in our DNF inequalities by  
„the closest values that make the spec true“ 
 
   x≠y     ↦  x = y + 1 ∨ x = y - 1   

     x ≤ y     ↦  x = y ∨ x < y 
 
  x < y   ↦  x = y - 1     etc. 

➢ ... and recompute the DNF. In general,  
this gives a much finer mesh ...
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Test-Data Generation

❑ Variants:

➢ PHASE I: Test for exceptional behaviour. 

 
We negate the precondition and to DNF generation  
on the precondition only. 
 
Test objectives could be: 

□ should raise an exception if public

□ should not diverge
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Test-Data Generation

❑ How to handle Recursion ? 
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Test-Data Generation

❑ How to handle Recursion ? 
In UML/MOAL, recursion occurs (at least) 
at two points: 

➢ at the level  

of data 
	  
  

1

LList       
lgth:Integer 
sum():Integer

next
0..1

Note that this excludes 
cyclic lists !!!

invariant:  
invLList   ≡ ∀node∈LList.  
          node.lgth =if node.next = null  
                     then 1 
	 	 	           else next.lgth + 1 
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Test-Data Generation

❑ How to handle Recursion ? 
 
In UML/MOAL, recursion occurs (at least)  
at two points: 
➢ at the level of oper- 

ations (post-conds 
may contain calls ...) 
	  
  

Note that arb(S) gives an  
arbitrary  member of S: arb(S)∈S.  
Since from x=arb({y})follows x=y;  
thus sum(l) is (uniquely) defined. 

LList       
lgth:Integer 
sum():Integer

next
0..1

query contract (modifiesOnly({})):  
definition pre

sum
(l) ≡ True 

definition post
sum

(l,res)≡ res=if l.next=null then l.lgth 

	 	                    else l.lgth + l.next.sum() 
definition sum(l)≡ arb{r|pre

sum
(l) ∧ post

sum
(l,r)} 
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Test-Data Generation

❑ Prerequisite: We present the invariant as recursive predicate. 
 
definition invLList_Core n σ ≣(n.lgth(σ) = if n.next(σ)=null then 1  

                                    else n.next.lgth(σ) + 1) 

we have: 
        invLList  (σ) =  ∀n∈LList(σ). invLList_Core n σ  

and 
	     invLList_Core(n)(σ)= (if n.next(σ)=null then n.lgth(σ) = 1  

                         else n.lgth(σ) =n.next.lgth(σ) + 1  
                              ∧ n.next(σ)∈LList(σ)  
                              ∧ invLList_Core(n.next)(σ)) 

Furthermore we have: 
                sum(l)(σ’,σ) = if l.next(σ)=null then l.lgth(σ) 
	 	                  else l.lgth(σ) + sum(l.next)(σ’,σ) 

We have σ’=σ (why?).  We will again apply (σ’,σ) - convention. 

49



9/8/20 B. Wolff - Validation and Verification

Test-Data Generation

❑ Consider the test specification: 
 
	 X.sum() ≣ Y                 (for some X∈LList, i.e. X≠null)  
 
≣ inv

LList
(X) ∧ pre

sum
(X)∧ post

sum
(X,Y) 

 

where: 

 	 pre
sum

(X)≣ true 

 	    post
sum

(X,Y)≣ (if X.next = null then Y = X.lgth 

	 	            else Y = X.lgth + sum(X.next)) 
       ≣  (X.next=null ∧ Y = X.lgth) 
        ∨ (X.next≠null ∧ Y = X.lgth+sum(X.next)  
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Test-Data Generation

❑ DNF computation yields already the test cases: 
 
	 X.sum() ≣ Y		 	     (for some X∈LList, i.e. X≠null) 
 
⟹  invLList_Core(X) ∧ postsum(X,Y)) 
≣  (if X.next=null then X.lgth = 1  
    else X.lgth =X.next.lgth+1 ∧ X.next∈LList ∧ invLList_Core(X.next)) ∧ 
       (if X.next = null then Y = X.lgth 
	 	              else Y = X.lgth + sum(X.next)) 

≣ (if c then C else D elim, DNF)  
   (X.next=null ∧ X.lgth=1 ∧ Y = X.lgth) 

   ∨ (X.next≠null ∧ X.lgth =X.next.lgth+1  
       ∧ X.next∈LList ∧ invLList_Core(X.next)  

       ∧ Y = X.lgth+sum(X.next)) 

       

New 
Test-

Case!!
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Test-Data Generation

❑ Intermediate Summary: test-cases known so far ? 
 
 

i:LList 
lgth=1

null

X Y

1

... ...

... ...
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Test-Data Generation

❑ Prerequisite: We present the invariant as recursive 
predicate.


 
invLList_Core(n)= (if n.next=null then n.lgth = 1  

              else n.lgth =n.next.lgth + 1  
                   ∧ n.next∈LList ∧ invLList_Core(n.next)) 

❑  sum(l) = if l.next=null then l.lgth 
	 	    else l.lgth + sum(l.next) 

 
 

sum(l) = if X.next.next=null then X.next.lgth 
	 	    else X.next.lgth + sum(X.next.next)
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Test-Data Generation

❑ DNF computation yields already the test cases: 
 
	 X.sum() ≣ Y	 	 	     (for some X∈LList, i.e. X≠null) 
 
⟹  ... ≣  ...  
≣ (unfolding sum and invLList_Core)  
   (X.next=null ∧ X.lgth=1 ∧ Y = X.lgth) 

   ∨ (X.next≠null ∧ X.lgth=X.next.lgth+1 ∧ X.next∈LList  
       ∧ (if X.next.next=null then X.next.lgth = 1  
              else X.next.lgth =X.next.next.lgth + 1  
                   ∧ X.next.next∈LList ∧ invLList_Core(X.next.next))  

       ∧ (Y = X.lgth+(if X.next.next=null then X.next.lgth 
	 	                else X.next.lgth + sum(X.next.next)))
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Test-Data Generation

❑ DNF computation yields already the test cases: 
 
	 X.sum() ≣ Y	 	 	     (for some X∈LList, i.e. X≠null) 
 
⟹  ... ≣  ...  
≣ (DNF partial)  
   (X.next=null ∧ X.lgth=1 ∧ Y = X.lgth) 

   ∨ (X.next≠null ∧ X.lgth=X.next.lgth+1 ∧ X.next∈LList  

       ∧ ((X.next.next=null ∧ X.next.lgth = 1 ∧ Y = X.lgth+X.next.lgth)  

          ∨(X.next.next≠null ∧ X.next.lgth=X.next.next.lgth+1  

             ∧ X.next.next∈LList ∧ invLList_Core(X.next.next)  

             ∧ Y = X.lgth+ X.next.lgth + sum(X.next.next)) 
          )

55



9/8/20 B. Wolff - Validation and Verification

Test-Data Generation

❑ DNF computation yields already the test cases: 
 
	 X.sum() ≣ Y	 	 	     (for some X∈LList, i.e. X≠null) 
 
⟹  ... ≣  ...  
≣ (DNF partial)  
   (X.next=null ∧ X.lgth=1 ∧ Y = X.lgth) 

   ∨ (X.next≠null ∧ X.lgth=X.next.lgth+1 ∧ X.next∈LList  
       ∧ X.next.next=null ∧ X.next.lgth=1 ∧  Y = X.lgth+X.next.lgth))  
     ∨ (X.next≠null ∧ X.lgth=X.next.lgth+1 ∧ X.next∈LList  
       ∧ X.next.next≠null ∧ X.next.lgth=X.next.next.lgth+1  
             ∧ X.next.next∈LList ∧ invLList_Core(X.next.next)  

             ∧ Y = X.lgth+ X.next.lgth + sum(X.next.next))

New 
Test-

Case!!
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Test-Data Generation

❑ Intermediate Summary: test-cases known so far ? 
 
 

i:LList 
lgth=1

null

X Y

1

... 2

... ...

i:LList 
lgth=2

i:LList 
lgth=1 null
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Summary: Symbolic Test-Case Generation

❑  ... and we could continue forever  
➢ compile to semantics 

(-> convert in mathematical, logical notation) 
➢ use recursive predicates, recursive contracts 
➢ enter loop: 

□ unfold predicates one step 
□ compute DNF 
□ simplify DNF 
□ extract test-cases 

until we are satisfied, i.e. have „enough“  test cases ... 
➢ Select test-data: constraint resolution of test cases. 
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Test-Data Generation

❑ Observation: “all other cases” ... 
were represented by the clauses still  
containing recursive predicates.  

❑ Logically: we used a regularity hypothesis, i.e … 
 
(∀ X. |X|<k ⇒  X.sum() ≡ Y) 
	 	   ⇒   (∀ X. X.sum() ≡ Y) 

 
where we choose as “complexity mesure” |X| 
just X.lgth  and k (the number of unfoldings) 
was 2 ...
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Test-Data Generation

❑ Coverage Criterion for recursive specification:  
 
	 	 DNFk 

For all data up to complexity k, we constructed abstract   

test-cases and generated a test. 

In our example, the “complexity measure” is just the length  

of the LLists.
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Test-Data Generation

❑ What are the alternatives to symbolic 
test-case generation ? 
 
Must this really be so complicated ??? 
 
Well, think about the probability to  
“guess” input with a complex invariant 
or precondition, if you use “blind” 
random-generation of input...
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Test-Data Generation

❑ Summary 
➢ We have (sketched) a symbolic Test-Case 

Generation Procedure for UML/MOAL Specifications 
➢ It takes into account: 

□ object orientation 
□ data invariants (recursive predicates) 
□ recursive functions (via unfolding) 

➢ The process can be tool-supported 
(HOL-TestGen) 

➢ The process is intended for automation. 
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Test-Data Generation

❑ Summary 

Key-Ingredients are: 

➢ Unfolding predicates up to a given depth k 

➢ computing the Disjunctive Normal Form (DNFk) 

➢ Adequacy: 
Pick for each test-case (a conjoint in the DNFk) 

one test, i.e. one substitution for the free  
variables satisfying the test-case !
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