

Verification and Validation

Part III : Formal Specification with
UML/MOAL

Burkhart Wolff
Département Informatique
Université Paris-Saclay / LMF
usr.lmf.cnrs.fr/~wolff/teaching.html

Plan of the Chapter

- ❑ Syntax & Semantics of our own language

MOAL

- ❑ mathematical
- object-oriented
- UML-annotation
- language

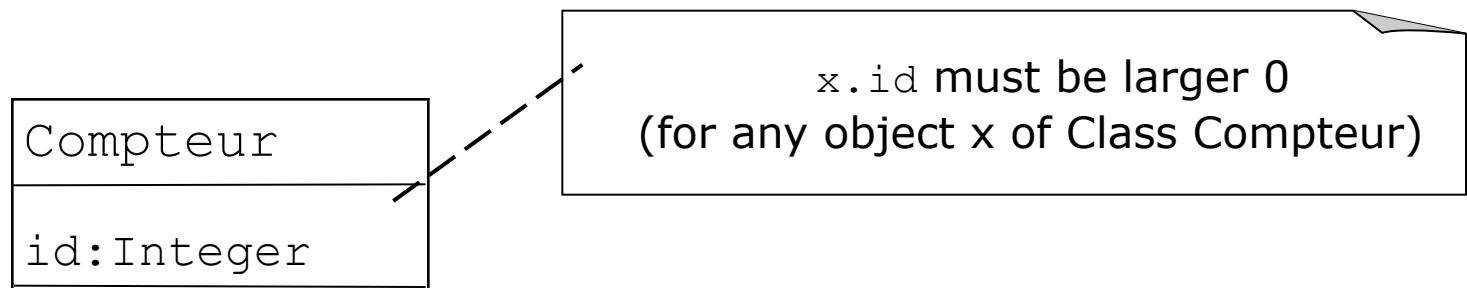
(conceived as the „essence“ of annotation
languages like OCL, JML, Spec#, ACSL, ...)

Plan of the Chapter

- ❑ Concepts of MOAL
 - Basis: Logic and Set-theory
 - MOAL is a Typed Language
 - Basic Types, Sets, Pairs and Lists
 - Object Types from UML
 - Navigation along UML attributes and associations
(Idea from OCL and JML)
- ❑ Purpose :
 - Class Invariants
 - Method Contracts with Pre- and Post-Conditions
 - Annotated Sequence Diagrams for Scenarios, . . .

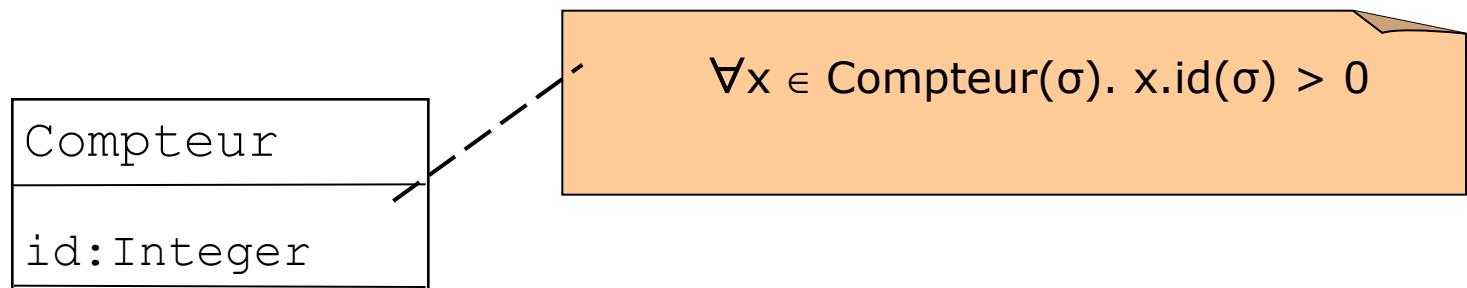
Motivation: Why Logical Annotations

- More precision needed
(like JML, VCC) that constrains an underlying **state σ**



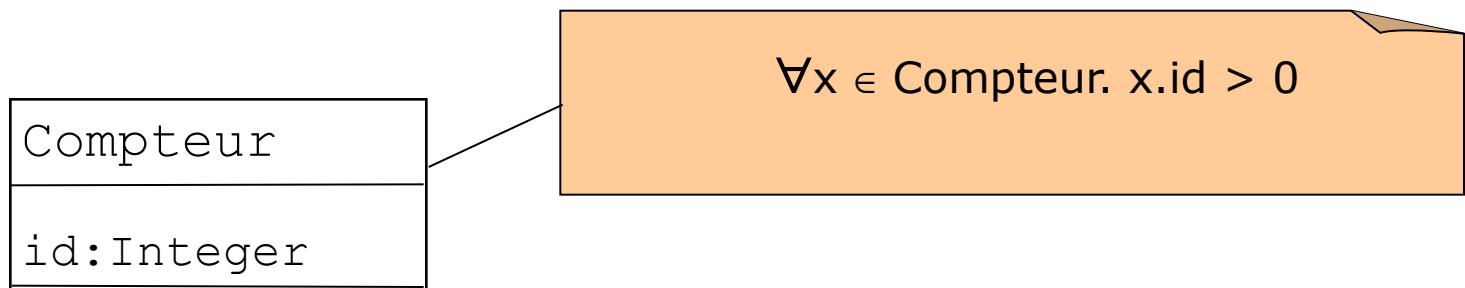
Motivation: Why Logical Annotations

- More precision needed
(like JML, VCC) that constrains an underlying **state σ**



Motivation: Why Logical Annotations

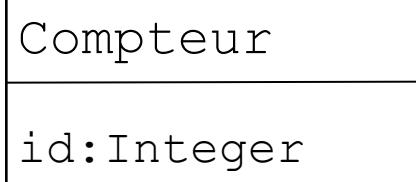
- ❑ More precision needed
(like JML, VCC) that constrains an underlying **state σ**



... by abbreviation convention if no confusion arises.

Motivation: Why Logical Annotations

- ❑ More precision needed
(like JML, VCC) that constrains an underlying **state σ**



definition $\text{inv}_{\text{Compteur}}(\sigma) \equiv \forall x \in \text{Compteur}(\sigma). x.\text{id}(\sigma) > 0$

... or by convention

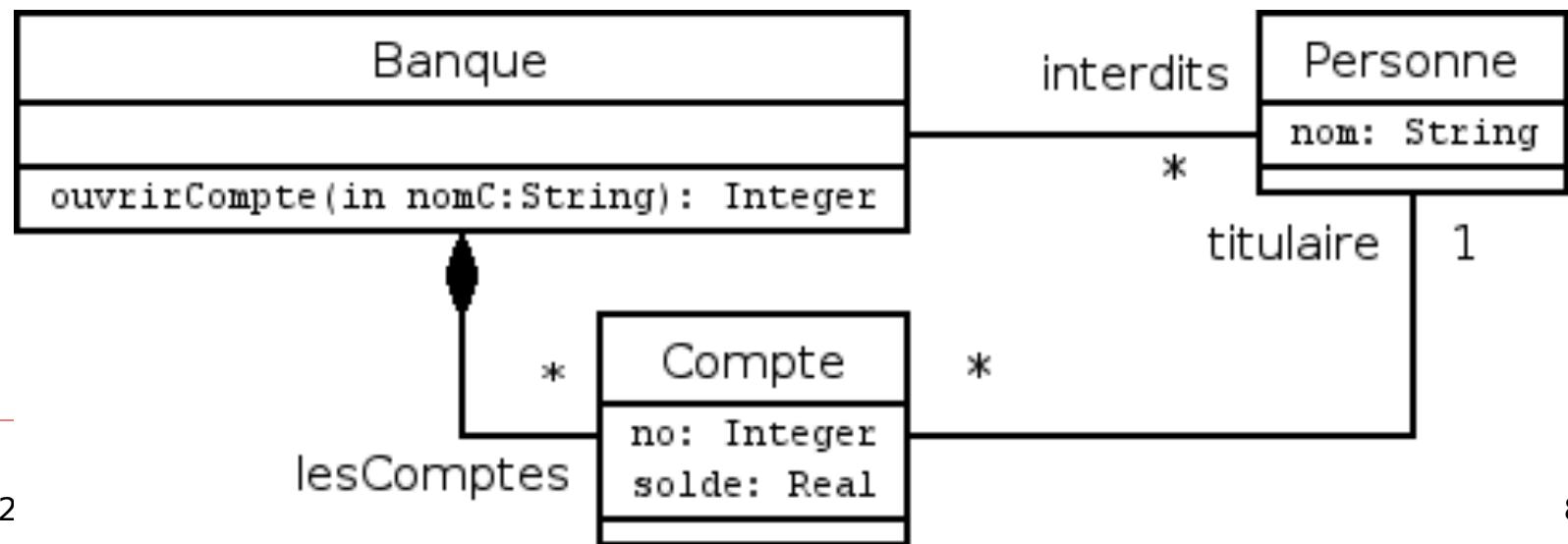
definition $\text{inv}_{\text{Compteur}} \equiv \forall x \in \text{Compteur}. x.\text{id} > 0$

... or as mathematical definition in a separate document

A first Glance to an Example: Bank

Opening a bank account. Constraints:

- ❑ there is a blacklist
- ❑ no more overdraft than 200 EUR
- ❑ there is a present of 15 euros in the initial account
- ❑ account numbers must be distinct.



A first Glance to an Example: Bank (2)

```
definition unique ≡ isUnique(.no) (Compte)
definition noOverdraft ≡ ∀c ∈ Compte. c.id ≥ -200

definition preouvrirCompte (b:Banque, nomC:String) ≡
    ∀p ∈ Personne. p.nom ≠ nomC

definition postouvrirCompte (b:Banque, nomC:String, r::Int) ≡
    | {p ∈ Personne | p.nom = nomC ∧ isNew(p)} | = 1
    ∧ | {c ∈ Compte | c.titulaire.nom = nomC} | = 1
    ∧ ∀c ∈ Compte. c.titulaire.nom = nomC
        → c.solde = 15 ∧ isNew(c)
    ...
    ...
```

MOAL: a specification language?

- In the following, we will discuss the

MOAL Language in more detail ...

Syntax and Semantics of MOAL

- The usual logical language:

- True, False
- negation : $\neg E$,
- or: $E \vee E'$, and: $E \wedge E'$, implies: $E \rightarrow E'$
- $E = E'$, $E \neq E'$,
- if C then E else E' endif
- let $x = E$ in E'
- Quantifiers on sets and lists:

$$\forall x \in \text{Set. } P(x)$$
$$\exists x \in \text{Set. } P(x)$$

Syntax and Semantics of MOAL

- MOAL is (like OCL or JML) a typed language.

- Basic Types:

Boolean, Integer, Real, String

- Pairs:

$X \times Y$

- Lists:

List(X)

- Sets:

Set(X)

Syntax and Semantics of MOAL

- The arithmetic core language.
expressions of type Integer or Real:

- 1, 2, 3 ... resp. 1.0, 2.3, pi.
- $- E$, $E + E'$,
- $E * E'$, E / E' ,
- $\text{abs}(E)$, $E \text{ div } E'$, $E \text{ mod } E' \dots$

Syntax and Semantics of MOAL

- The expressions of type String:

- $S \text{ concat } S'$
- $\text{size}(S)$
- $\text{substring}(i, j, S)$
- 'Hello'

Syntax and Semantics of MOAL Sets

- $|S|$ size as Integer
- $\text{isUnique}(f)(S) \equiv \forall x, y \in S. f(x) = f(y) \rightarrow x = y$
- $\{\}, \{a, b, c\}$ empty and finite sets
- $e \in S, e \notin S$ is element, not element
- $S \subseteq S'$ is subset
- $\{x \in S \mid P(x)\}$ filter
- $S \cup S', S \cap S'$ union, intersection
between sets of same type
- Integer, Real, String ...
are symbols for the set
of all Integers, Reals,

Syntax and Semantics of MOAL Pairs

- (X, Y) pairing
- $\text{fst}(X, Y) = X$ projection
- $\text{snd}(X, Y) = Y$ projection

Syntax and Semantics of MOAL Lists

Lists S have the following operations:

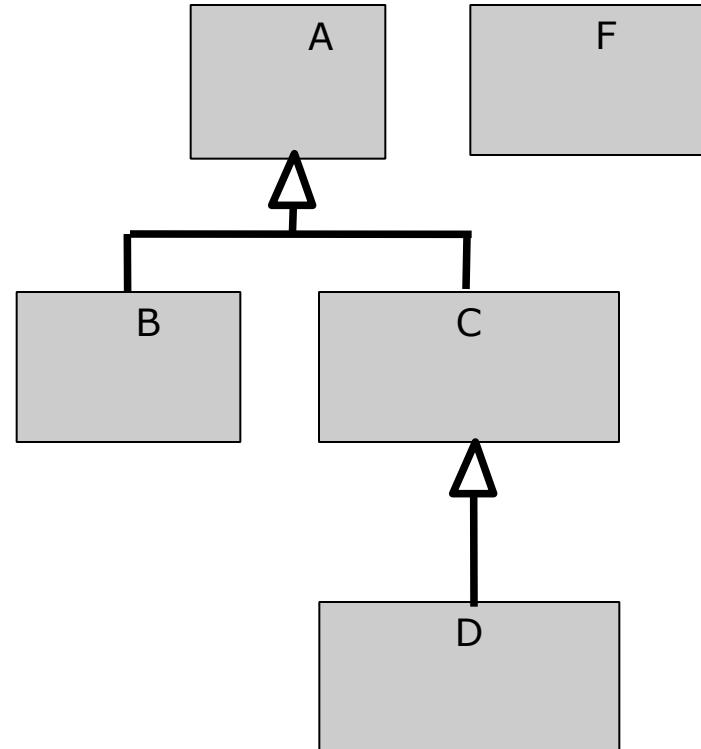
- $x \in L$ -- is element (overload!)
- $|S|$ -- length as Integer
- $\text{head}(L), \text{last}(L)$
- $\text{nth}(L, i)$ -- for i between 0 et $|S|-1$
- $L @ L'$ -- concatenate
- $e \# S$ -- append at the beginning
- $\forall x \in \text{List}. \ P(x)$ -- quantifiers :
- $[x \in L \mid P(x)]$ -- filter
- $[1, 2, 3]$ -- denotations of lists

Syntax and Semantics of Objects

- Objects and Classes follow the semantics of UML
 - inheritance / subtyping
 - casting
 - objects have an id
 - NULL is a possible value in each class-type
 - for any class A, we assume a function:

$A(\sigma)$

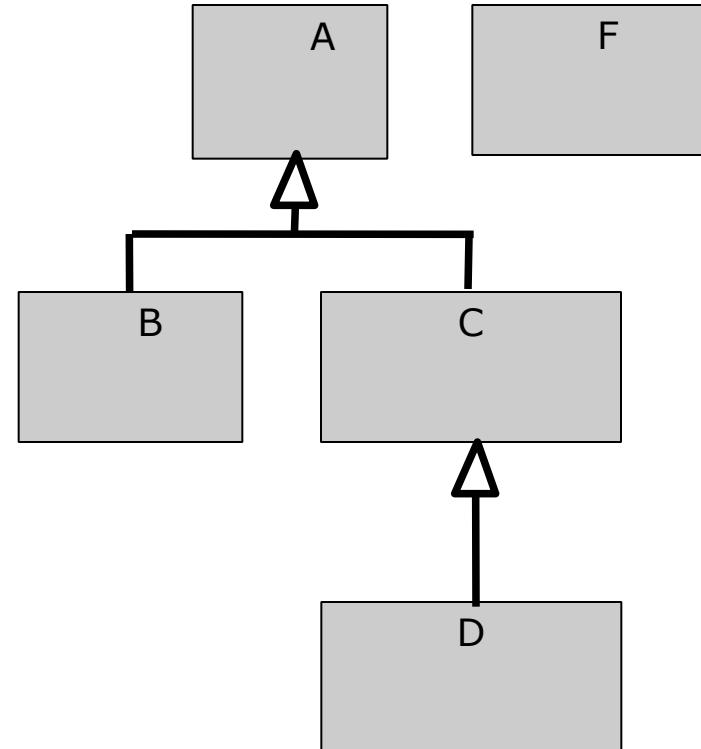
which returns the set of instances of class A in state σ



Syntax and Semantics of Objects

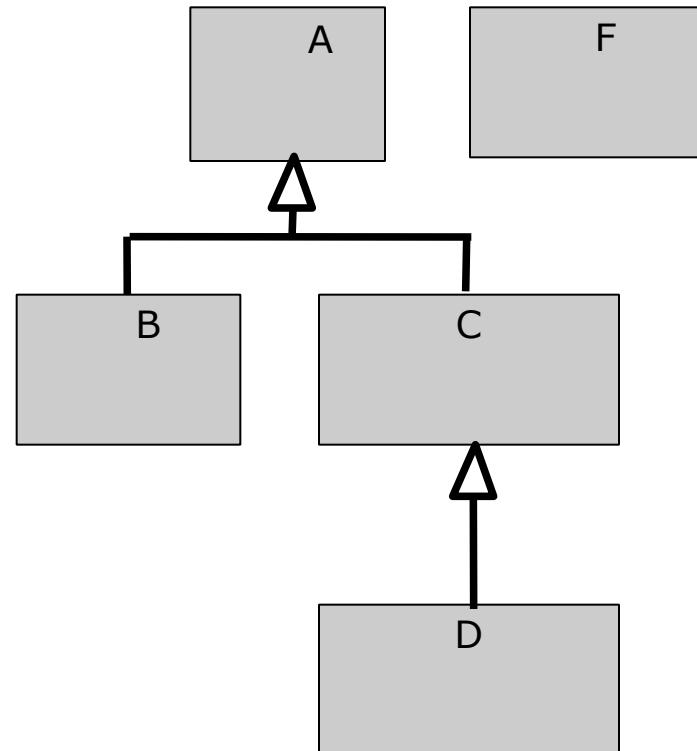
- Objects and Classes follow the semantics of UML

Recall that we will drop the index (σ) whenever it is clear from the context



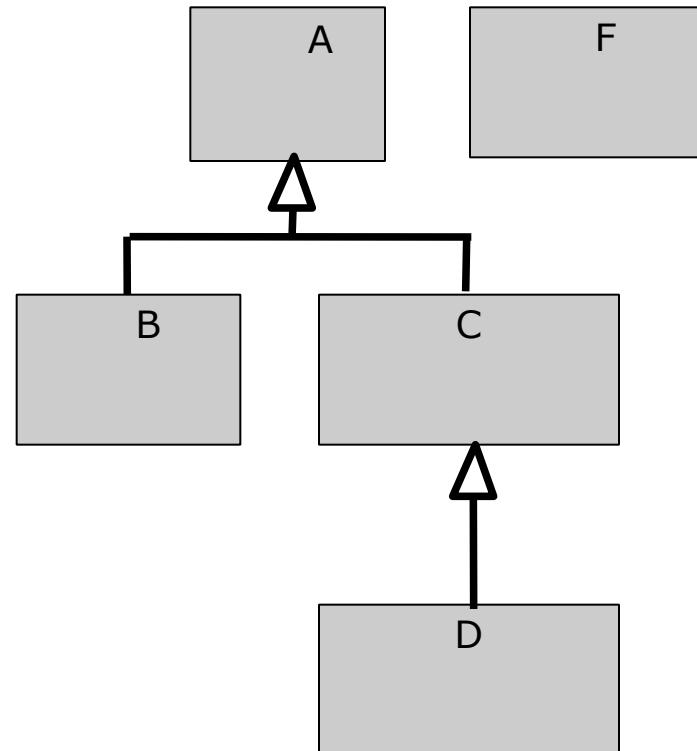
Syntax and Semantics of Objects

- ❑ As in all typed object-oriented languages casting allows for converting objects.
- ❑ Objects have two types:
 - the « apparent type »
(also called static type)
 - the « actual type »
(the type at creation)
 - casting changes the apparent type along the class hierarchy, but not the actual type



Syntax and Semantics of Objects

- Assume the creation of objects
 - a in class A, b in class B,
 - c in class C, d in class D,
- Then casting:
 - $\langle F \rangle b$ is illtyped
 - $\langle A \rangle b$ has apparent type A,
but actual type B
 - $\langle A \rangle d$ has apparent type A,
but actual type D



Syntax and Semantics of OCL / UML

- We will also apply cast-operators to an entire set: So

$\langle A \rangle_B(\sigma)$ (or just: $\langle A \rangle_B$)

- is the set of instances of B casted to A.

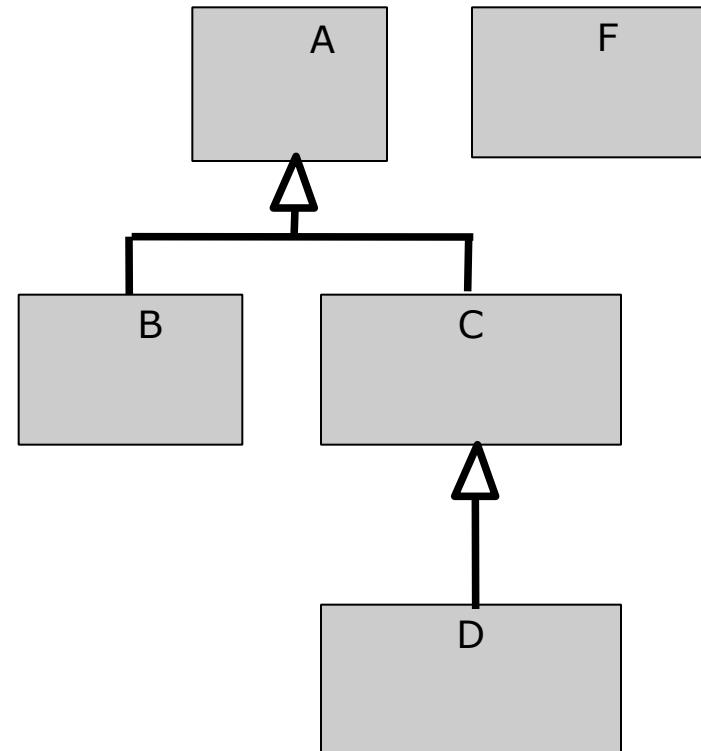
- We have:

$$\langle A \rangle_B \cup \langle A \rangle_C \subseteq A$$

but:

$$\langle A \rangle_B \cap \langle A \rangle_C = \emptyset$$

and also: $\langle A \rangle_D \subseteq A$ (for all states σ)



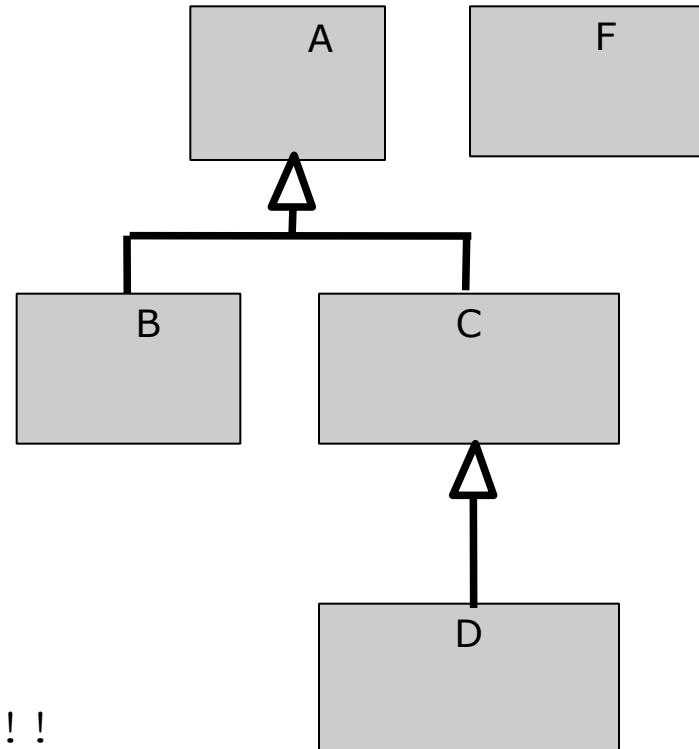
Syntax and Semantics of Objects

- Instance sets can be used to determine the actual type of an object:

$b \in B$

corresponds to Java's instanceof or OCL's isKindOf. Note that casting does NOT change the actual type:

$\langle A \rangle b \in B$, and $\langle B \rangle \langle A \rangle b = b$!!!



Syntax and Semantics of Objects

□ Summary:

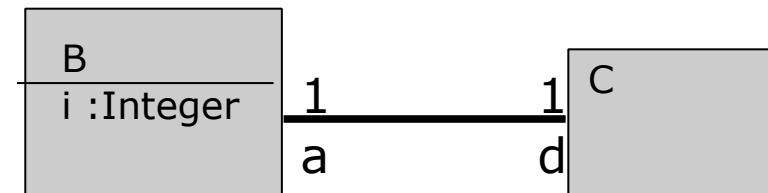
- there is the concept of **actual** and **apparent** type
(anywhere outside of Java: **dynamic** and **static** type)
- type tests check the former
- type casts influence the latter,
but not the former
- up-casts possible
- down-casts invalid
- consequence:
up-down casts are identities.

Syntax and Semantics of Object Attributes

- Objects represent structured, typed memory in a state σ . They have attributes.

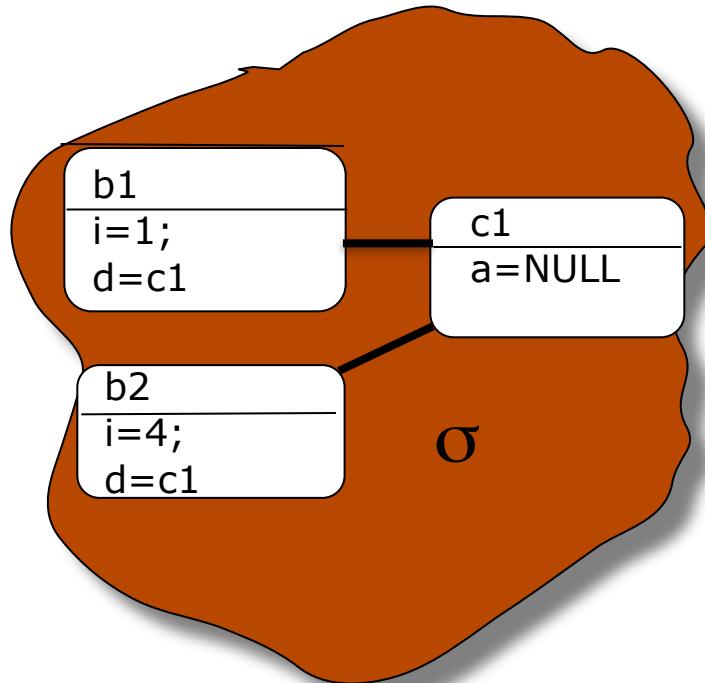
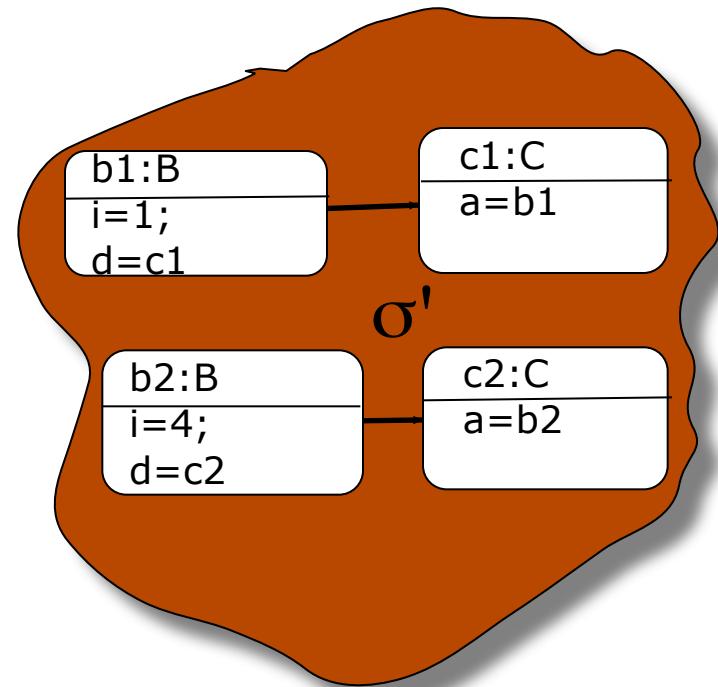
Attributes can have class types.

- Reminder: In class diagrams, this situation is represented traditionally by Associations (equivalent)



Syntax and Semantics of Object Attributes

- Example:
attributes of class type in states σ' and σ .



Syntax and Semantics of Object Attributes

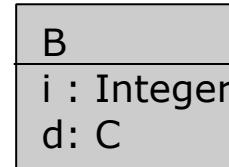
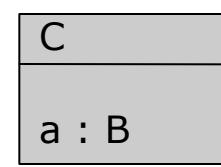
- each attribute is represented by a function in MOAL.

The class diagram right corresponds to declaration of accessor functions:

$.i(\sigma) :: B \rightarrow \text{Integer}$

$.a(\sigma) :: C \rightarrow B$

$.d(\sigma) :: B \rightarrow C$



- Applying the σ -convention, this makes navigation expressions possible:

➤ $b1.d :: C$
 $c1.a :: B$

$b1.d.a.d.a \dots$

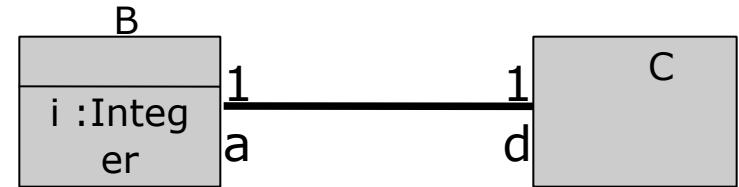
Syntax and Semantics of Object Attributes

- Object assessor functions are
„dereferentiations of pointers in a state“
- Accessor functions of class type are
strict wrt. **NULL**.
 - $\text{NULL.d} = \text{NULL}$
 $\text{NULL.a} = \text{NULL}$
 - Note that navigation expressions depend
on their underlying state:
 $b1.d(\sigma) . a(\sigma) . d(\sigma) . a(\sigma) = \text{NULL}$
 $b1.d(\sigma') . a(\sigma') . d(\sigma') . a(\sigma') = b1 \quad !!!$

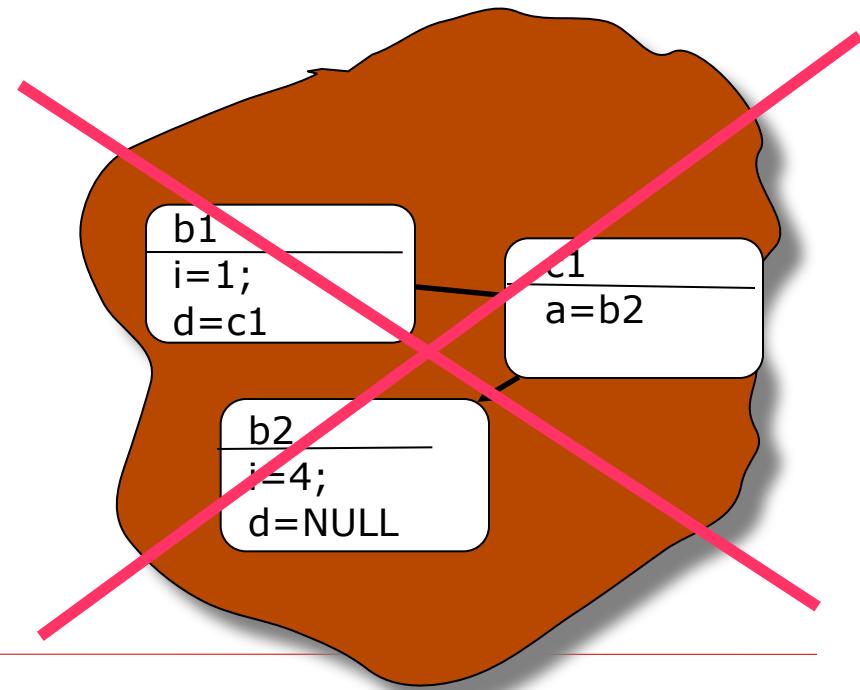
(cf. Object Diagram pp 27)

Syntax and Semantics of Object Attributes

- Note that associations are meant to be « relations » in the mathematical sense.



Thus, states (object-graphs) of this form do not represent the 1:1 association:



Syntax and Semantics of Object Attributes

- This is reflected by 2

« association integrity
constraints ».

For the 1-1-case, they are:

- definition $\text{ass}_{B.d.a} \equiv \forall x \in B. x.d.a = x$
- definition $\text{ass}_{C.a.d} \equiv \forall x \in C. x.a.d = x$

Syntax and Semantics of Object Attributes

- Object assessor functions are
„dereferentiations of pointers in a state“
- Accessor functions of class type are
strict wrt. NULL.
 - $\text{NULL.d} = \text{NULL}$
 $\text{NULL.a} = \text{NULL}$
 - Note that navigation expressions depend
on their underlying state:
 $b1.d(\sigma) . a(\sigma) . d(\sigma) . a(\sigma) = \text{NULL}$
 $b1.d(\sigma') . a(\sigma') . d(\sigma') . a(\sigma') = b1 \quad !!!$

(cf. Object Diagram pp 28)

Syntax and Semantics of Object Attributes

- ❑ Attributes can be List or Sets of class types:

B
i: Integer
d: Set(C)

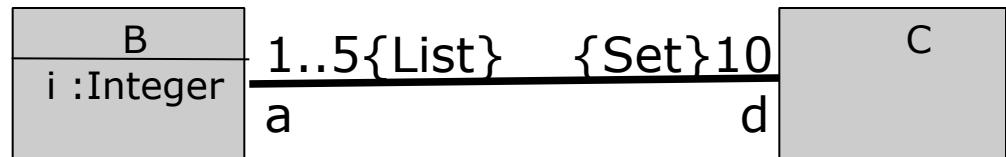
C
a : List(B)

- ❑ Reminder: In class diagrams, this situation is represented traditionally by Associations (equivalent)

- ❑ In analysis-level Class Diagrams, the type information is still omitted; due to overloading of $\forall_{x \in X} . P(x)$ etc. this will not hamper us to specify ...

Syntax and Semantics of Object Attributes

- Cardinalities in Associations can be translated canonically into MOCL invariants:



- definition $\text{card}_{B.d} \equiv \forall x \in B. |x.d| = 10$
- definition $\text{card}_{C.a} \equiv \forall x \in C. 1 \leq |x.a| \leq 5$

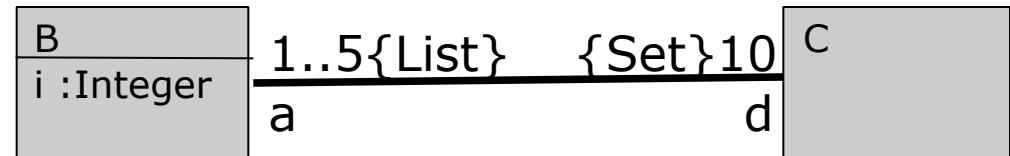
Syntax and Semantics of Object Attributes

- ❑ Accessor functions are defined as follows for the case of NULL:

- $\text{NULL}.d = \{\}$ -- mapping to the neutral element
- $\text{NULL}.a = []$ -- mapping to the neutral element.

Syntax and Semantics of Object Attributes

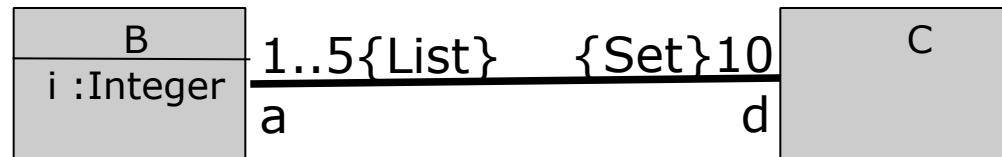
- Cardinalities in Associations can be translated canonically into MOCL invariants:



- definition $\text{card}_{B.d} \equiv \forall x \in B. |x.d| = 10$
- definition $\text{card}_{C.a} \equiv \forall x \in C. 1 \leq |x.a| \leq 5$

Syntax and Semantics of Object Attributes

- The corresponding association integrity constraints for the ***-***-case are:



- definition $\text{ass}_{B.d.a} \equiv \forall x \in B. x \in x.d.a$
- definition $\text{ass}_{C.a.d} \equiv \forall x \in C. x \in x.a.d$

Operations in UML and MOAL

- Many UML diagrams talk over a sequence of states (not just individual global states)

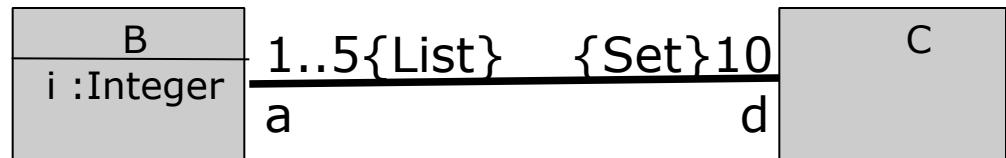
- This appears for the first time in so-called **contracts** for (Class-model) methods:

B
i : Integer
m(k:Integer) : Integer

- The « method » **m** can be seen as a « transaction » of a **B** object transforming the underlying pre-state σ_{pre} in the state « after » **m** yielding a post-state σ .

Syntax and Semantics of Object Attributes

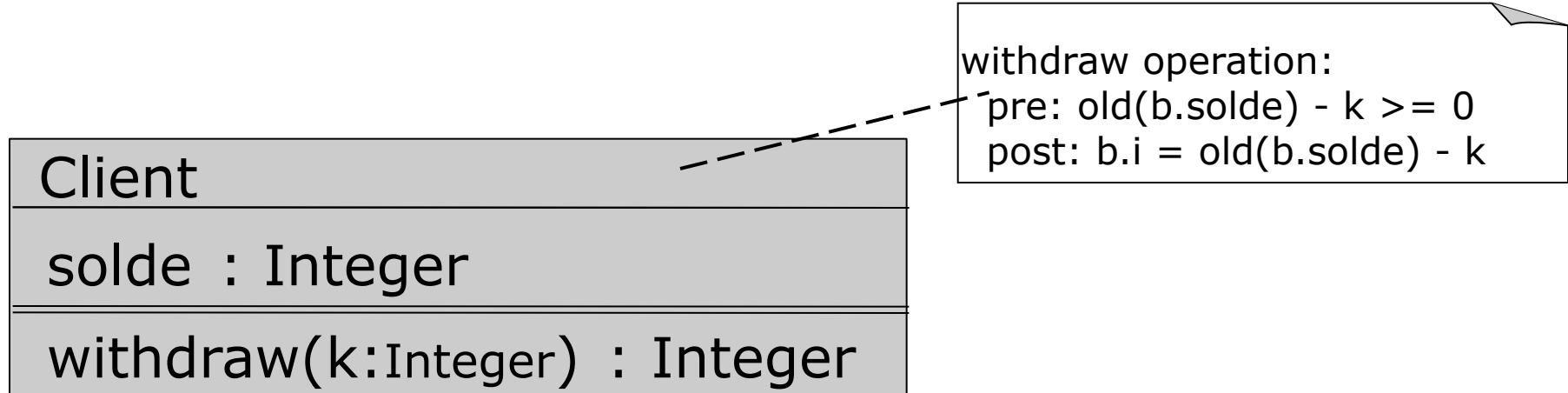
- Cardinalities in Associations can be translated canonically into MOCL invariants:



- definition $\text{card}_{B.d} \equiv \forall x \in B. |x.d| = 10$
- definition $\text{card}_{C.a} \equiv \forall x \in C. 1 \leq |x.a| \leq 5$

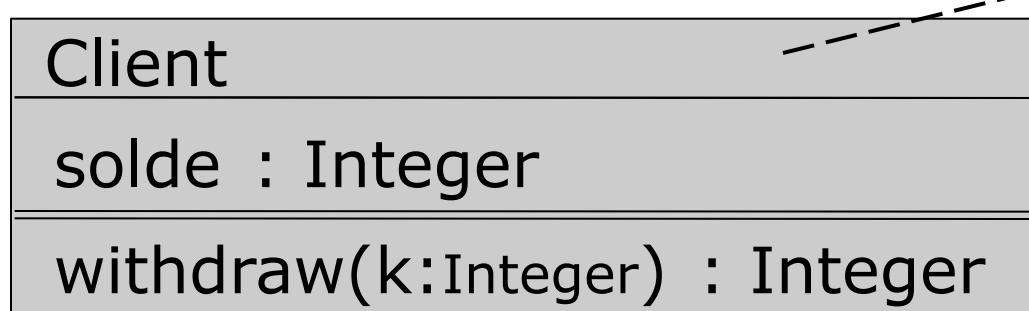
Operations in UML and MOAL

- Syntactically, contracts are annotated like this (JML-ish):



Operations in UML and MOAL

- ... or like this (OCL-ish):



```
context c.withdraw(k):  
pre: c.solde@pre - k >= 0  
post: c.solde = c.solde@pre - k
```

Operations in UML and MOAL Contracts

- This appears for the first time in so-called **contracts** for (Class-model) methods:
- The « method » **add** can be seen as a « transaction » of a **B** object transforming the underlying pre-state σ_{pre} in the state « after » **add** yielding a post-state σ .

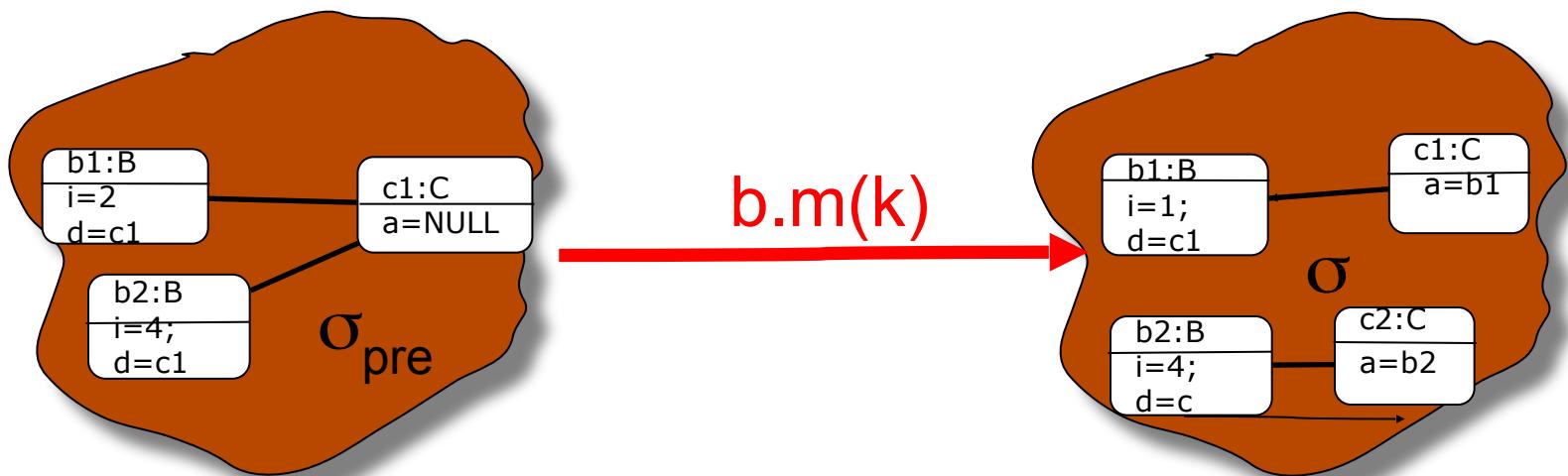
B

i : Integer

add(k:Integer) : Integer

Syntax and Semantics of MOAL Contracts

- Again: This is the view of a transaction (like in a database), it completely abstracts away intermediate states or time. (This possible in other models/calculi, like the Hoare-calculus, though).



Syntax and Semantics of MOAL Contracts

□ Consequence:

- The pre-condition is a formula referring to the σ_{pre} and the method arguments b_1, a_1, \dots, a_n only.
- the post-condition is only assured if the pre-condition is satisfied
- otherwise the method
 - ...may do anything on the state and the result,
may even behave correctly, may non-terminate !
 - raise an exception
(recommended in Java Programmer Guides
for public methods to increase robustness)

Syntax and Semantics of MOAL Contracts

- **Consequence:**
 - The post-condition is a formula referring to both σ_{pre} and σ , the method arguments b_1, a_1, \dots, a_n and the return value captured by the variable `result`.
 - any transition is permitted that satisfies the post-condition (provided that the pre-condition is true)

Syntax and Semantics of MOAL Contracts

❑ Consequence:

- The semantics of a method call:

$b1.m(a_1, \dots, a_n)$

is thus:

$pre_m(b1, a_1, \dots, a_n)(\sigma_{pre})$

→

$post_m(b1, a_1, \dots, a_n, result)(\sigma_{pre}, \sigma)$

- Note that moreover all global class invariants have to be added for both pre-state σ_{pre} and post-state σ !

For an entire transition, the following must hold:

$Inv(\sigma_{pre}) \wedge pre_m(b1, a_1, \dots, a_n)(\sigma_{pre}) \wedge post(b1, a_1, \dots, a_n, result)(\sigma_{pre}, \sigma) \wedge Inv(\sigma)$

Syntax and Semantics of MOAL Contracts

Example: (partial contract)

Client

solde : Integer

withdraw(k:Integer)

class invariant:
c.solde ≥ 0 for all clients c.

operation c.withdraw(k) :
pre: $k \geq 0 \wedge \text{old}(c.\text{solde}) - k \geq 0$
post: $c.\text{solde} = \text{old}(c.\text{solde}) - k$

- definition $\text{inv}_{\text{Client}}(\sigma) \equiv \forall c \in \text{Client}(\sigma). 0 \leq c.\text{solde}(\sigma)$
- definition $\text{pre}_{\text{withdraw}}(c, k)(\sigma) \equiv 0 \leq k \wedge 0 \leq c.\text{solde}(\sigma) - k$
- definition $\text{post}_{\text{withdraw}}(c, k, \text{result})(\sigma_{\text{pre}}, \sigma) \equiv c.\text{solde}(\sigma) = c.\text{solde}(\sigma_{\text{pre}}) - k$

Syntax and Semantics of MOAL Contracts

- ❑ Notation (which we call : σ -convention):
 - In order to relax notation, we will drop the σ and use for applications to σ_{pre} the old-notation:

Client(σ) becomes Client

Client(σ_{pre}) becomes old(Client)

c.solde(σ_{pre}) becomes old(c.solde)

etc.

Syntax and Semantics of MOAL Contracts

Example: (partial contract)

Client

solde : Integer

withdraw(k:Integer)

class invariant:
c.solde ≥ 0 for all clients c.

operation c.withdraw(k) :
pre: $k \geq 0 \wedge \text{old}(c.\text{solde}) - k \geq 0$
post: $c.\text{solde} = \text{old}(c.\text{solde}) - k$

- definition $\text{inv}_{\text{Client}} \equiv \forall c \in \text{Client}. 0 \leq c.\text{solde}$
- definition $\text{pre}_{\text{withdraw}}(c, k)(\sigma) \equiv 0 \leq k \wedge 0 \leq c.\text{solde} - k$
- definition $\text{post}_{\text{withdraw}}(c, k, \text{result}) \equiv c.\text{solde} = \text{old}(c.\text{solde}) - k$

σ - convention

Syntax and Semantics of MOAL Contracts

Example (total contract):

Client

solde : Integer

withdraw(k:Integer) : {ok,nok}

class invariant:
c.solde ≥ 0 for all clients c.

operation c.withdraw(k) :
pre: True
post: if $k \geq 0 \wedge \text{old}(c.\text{solde}) \geq k$
then $c.\text{solde} = \text{old}(c.\text{solde}) - k \wedge$
result = ok
else $c.\text{solde} = \text{old}(c.\text{solde}) \wedge$
result = nok

- definition $\text{inv}_{\text{Client}} \equiv \forall c \in \text{Client}. 0 \leq c.\text{solde}$
- definition $\text{pre}_{\text{withdraw}}(c, k)(\sigma_{\text{pre}}) \equiv \text{True}$
- definition $\text{post}_{\text{withdraw}}(c, k, \text{result})(\sigma_{\text{pre}}, \sigma) \equiv$
if $0 \leq k \wedge k \leq c.\text{solde}(\sigma_{\text{pre}})$
then $c.\text{solde}(\sigma) = c.\text{solde}(\sigma_{\text{pre}}) - k \wedge \text{result} = \text{ok}$
else $c.\text{solde}(\sigma) = c.\text{solde}(\sigma_{\text{pre}}) \wedge \text{result} = \text{nok}$

Syntax and Semantics of MOAL Contracts

Example (total contract):

```
Client
solde : Integer
withdraw(k:Integer) : {ok,nok}
```

class invariant:
c.solde ≥ 0 for all clients c.

operation c.withdraw(k) :
pre: True
post: if $k \geq 0 \wedge \text{old}(c.\text{solde}) \geq k$
then $c.\text{solde} = \text{old}(c.\text{solde}) - k \wedge$
result = ok
else $c.\text{solde} = \text{old}(c.\text{solde}) \wedge$
result = nok

➤ definition $\text{inv}_{\text{Client}} \equiv \forall c \in \text{Client} \ 0 \leq c.\text{solde}$
➤ definition $\text{pre}_{\text{withdraw}}(c, k) \equiv \text{True}$
➤ definition $\text{post}_{\text{withdraw}}(c, k, \text{result}) \equiv$
if $0 \leq k \wedge k \leq \text{old}(c.\text{solde})$
then $c.\text{solde} = \text{old}(c.\text{solde}) - k \wedge \text{result} = \text{ok}$
else $c.\text{solde} = \text{old}(c.\text{solde}) \wedge \text{result} = \text{nok}$

Semantics of MOAL Contracts

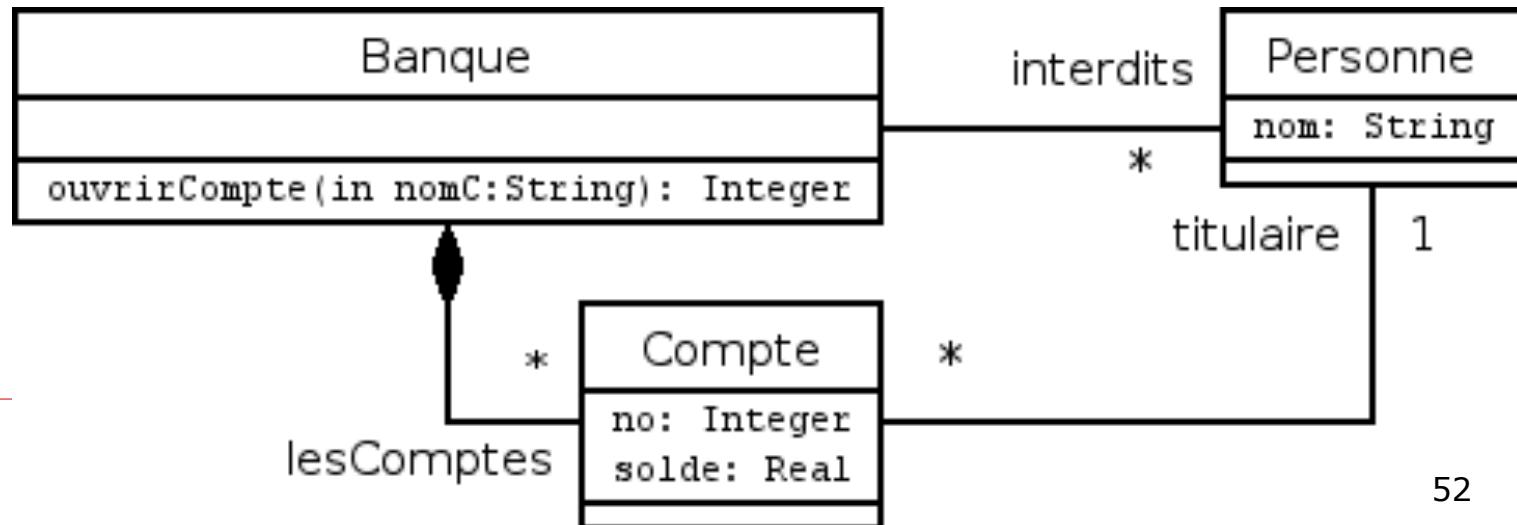
- Two predicates are helpful when defining contracts. They exceptionally refer to both $(\sigma_{\text{pre}}, \sigma)$
 - $\text{isNew}(p)(\sigma_{\text{pre}}, \sigma)$ is true only if object p of class C does not exist in σ_{pre} but exists in σ
 - $\text{modifiesOnly}(S)(\sigma_{\text{pre}}, \sigma)$ is only true iff
 - all objects in σ_{pre} are **except those in S** identical in σ
 - all objects in σ exist either in S or are contained in S

With this predicate, one can express : „and nothing else changes“. It is also called «framing condition».

A Revision of the Example: Bank

Opening a bank account. Constraints:

- ❑ there is a blacklist
- ❑ no more overdraft than 200 EUR
- ❑ there is a present of 15 euros in the initial account
- ❑ account numbers must be distinct.



A Revision of the Example: Bank (2)

```
definition preouvrirCompte(b:Banque, nomC:String)≡
     $\forall p \in \text{Personne}. p.\text{nom} \neq \text{nomC}$ 

definition postouvrirCompte(b:Banque, nomC:String, r:Integer)≡
    |{p ∈ Personne | p.nom = nomC}| = 1
     $\wedge \forall p \in \text{Personne}. p.\text{nom} = \text{nomC} \rightarrow \text{isNew}(p)$ 
     $\wedge | \{c \in \text{Compte} | c.\text{titulaire}.\text{nom} = \text{nomC}\} | = 1$ 
     $\wedge \forall c \in \text{Compte}. c.\text{titulaire}.\text{nom} = \text{nomC} \rightarrow c.\text{solde} = 15$ 
     $\wedge \text{isNew}(c)$ 
     $\wedge b.\text{lesComptes} = \text{old}(b.\text{lesComptes})$ 
         $\cup \{c \in \text{Compte} | c.\text{titulaire}.\text{nom} = \text{nomC}\}$ 
     $\wedge b.\text{interdits} = \text{old}(b.\text{interdits})$ 
         $\cup \{p \in \text{Personne} | p.\text{nom} = \text{nomC}\}$ 
     $\wedge \text{modifiesOnly}(\{b\} \cup \{c \in \text{Compte} | c.\text{titulaire}.\text{nom} = \text{nomC}\}$ 
         $\cup \{p \in \text{Personne} | p.\text{nom} = \text{nomC}\})$ 
```

Operations in UML and MOAL

□ Completing the Example:

Client

solde : Integer

deposit(k:Integer) : {ok,nok}

withdraw(k:Integer) : {ok,nok}

solde() : Integer

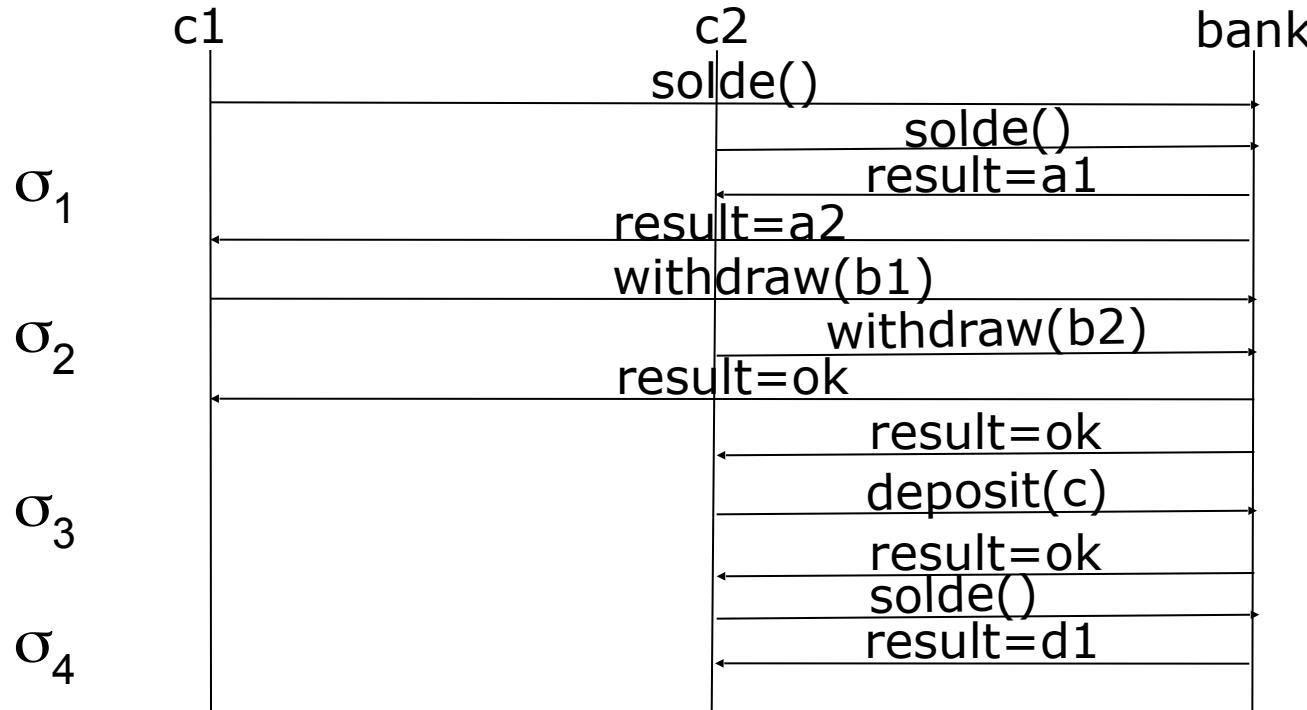
operation deposit(k) :
pre: True
post: if $k \geq 0$
then $c.solde = \text{old}(c.solde) + k$ ^
result = ok
else $c.solde = \text{old}(c.solde)$ ^
result = ok

operation c.withdraw(k) :
pre: True
post: if $k \geq 0 \wedge \text{old}(c.solde) \geq k$
then $c.solde = \text{old}(c.solde) - k$ ^
result = ok
else $c.solde = \text{old}(c.solde)$ ^
result = ok

solde query:
post: result = old(b.solde)

Operations in UML and MOAL

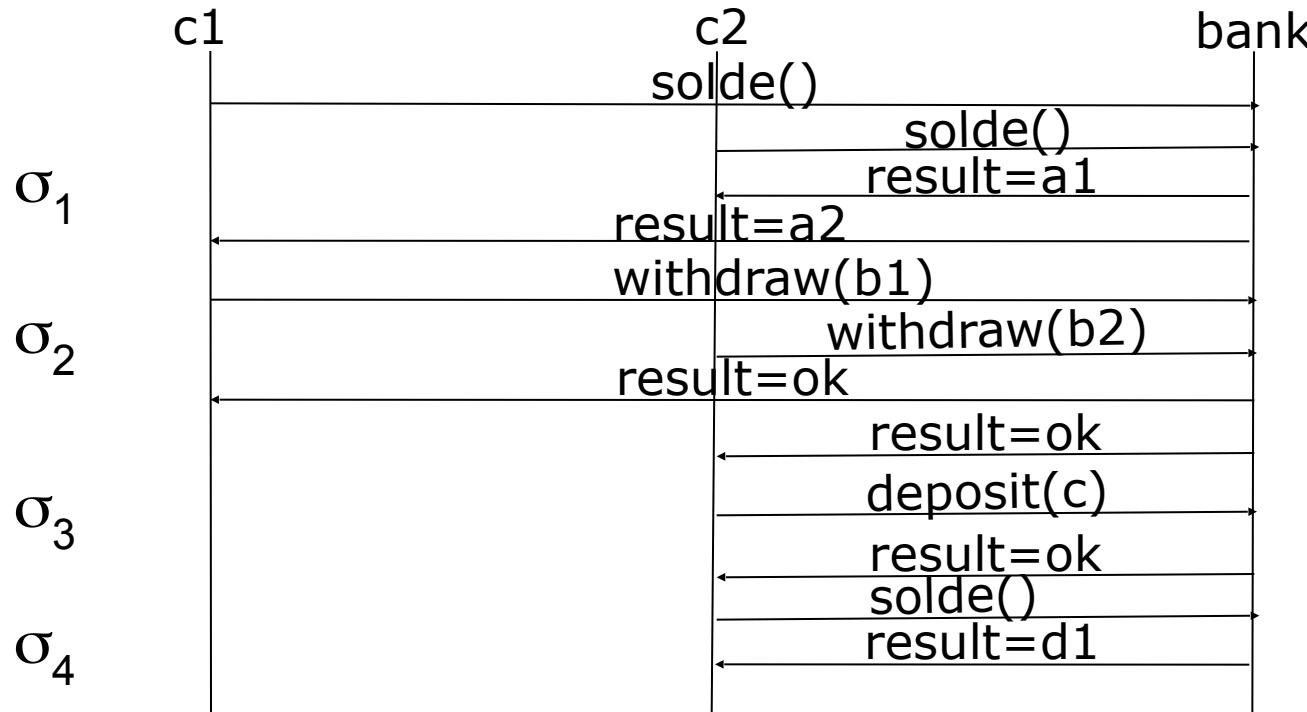
❑ Abstract Concurrent Test Scenario:



assert $c1.solde(\sigma_4) = a2 - b1 \wedge b1 \geq 0 \wedge a2 \geq b1$

Operations in UML and MOAL

❑ Abstract Concurrent Test Scenario:



Any instance of b_1 and a_1 is a test ! This is a „Test Schema“ !
Note: b_1 can be chosen dynamically during the test !

Summary

- ❑ MOAL makes the UML to a real, formal specification language
- ❑ MOAL can be used to annotate Class Models, Sequence Diagrams and State Machines
- ❑ Working out, making explicit the constraints of these Diagrams is an important technique in the transition from Analysis documents to Designs.
