2025/26
POLYTECH: Cycle Ingenieur — 2¢me annee
O PARIS-SUD

Département Informatique

Verification and Validation
Part III : Formal Specification with
UML/MOAL

Burkhart Wolff
Département Informatique
Université Paris-Saclay / LMF
usr.Imf.cnrs.fr/~wolff/teaching.html

Plan of the Chapter

2 Syntax & Semantics of our own language

MOAL

2 mathematical
= object-oriented
> UML-annotation

= language

(conceived as the ,essence" of annotation
languages like OCL, JML, Spec#, ACSL, ...)

PolyTech 2026 VnV: Modelling in UML/MOAL

Plan of the Chapter

2 Concepts of MOAL

>

>

>

>

>

Basis: Logic and Set-theory
MOAL is a Typed Language

Basic Types, Sets, Pairs and Lists
Object Types from UML

Navigation along UML attributes and associations
(Idea from OCL and JML)

2 Purpose :

>

>

>

Class Invariants
Method Contracts with Pre- and Post-Conditions

Annotated Sequence Diagrams for Scenarios, . . .

PolyTech 2026 VnV: Modelling in UML/MOAL

Motivation: Why Logical Annotations

4 More precision needed
(like TML, VCC) that constrains an underlying state o

A’ x.id must be larger O
Compteur v (for any object x of Class Compteur)

id:Integer

PolyTech 2026 VnV: Modelling in UML/MOAL

Motivation: Why Logical Annotations

4 More precision needed
(like TML, VCC) that constrains an underlying state o

A° Vx € Compteur(o). x.id(og) > 0

Compteur s

id:Integer

PolyTech 2026 VnV: Modelling in UML/MOAL

Motivation: Why Logical Annotations

4 More precision needed
(like JML, VCC) that constrains an underlying state o

Compteur

/////

id:Integer

Vx e Compteur. x.id > 0

... by abbreviation convention if no confusion arises.

PolyTech 2026

VnV: Modelling in UML/MOAL

Motivation: Why Logical Annotations

4 More precision needed
(like JML, VCC) that constrains an underlying state o

definition inv (0)= Vx e Compteur(o).

Compteur

Compteur

x.id(o) > 0

id:Integer

... or by convention

definition inve, ..., = VX e Compteur. x.id > 0

... or as mathematical definition in a separate document

PolyTech 2026

VnV: Modelling in UML/MOAL 7

A first Glance to an Example: Bank

Opening a bank account. Constraints:

2 there is a blacklist

2 no more overdraft than 200 EUR

2 there is a present of 15 euros in the initial account

2 account numbers must be distinct.

Banque

interdits

Personne

ouvrirCompte (in nomC:5String): Integer

PolyTech 2

*

Compte

lesComptes

no: Integer
solde: Real

*

nom: String

titulaire | 1

A first Glance to an Example: Bank (2)

definition unique = 1sUnique (.no) (Compte)

definition noOverdraft = Ve € compte. c.id > -200

definition pre (b:Banque, nomC:String)=

ouvrirCompte

Vp € Personne. p.nom # nomC

definition post (b:Banque, nomC:String, r::Int)

ouvrirCompte
| {p € Personne | p.nom = nomC A isNew(p) } | =
A | {cECompte | c.titulaire.nom = nomC}| =1

A VcECompte. c.titulaire.nom = nomC
— c.solde = 15 A isNew (c)

PolyTech 2026 VnV: Modelling in UML/MOAL

MOAL: a specification langage?

2 In the following, we will discuss the

MOAL Language in more detail ...

PolyTech 2026 VnV: Modelling in UML/MOAL

10

Syntax and Semantics of MOAL

2 The usual logical language:

> True, False

> negation : - E,

> or: EV E', and: E N E', implies: E — E'
~ E=E', E + E',

> 1f C then E else E' endif

> Jlet x = E 1in E’

> Quantifiers on sets and lists:

Vx € Set. P(x) HX € Set. P(x)

PolyTech 2026 VnV: Modelling in UML/MOAL

Syntax and Semantics of MOAL

2 MOAL is (like OCL or JML) a typed language.

= Basic Types:
Boolean, Integer, Real, String

> Pairs:

XxY
= Lists:

List(X)
= Sets:

Set(X)

PolyTech 2026 VnV: Modelling in UML/MOAL

12

Syntax and Semantics of MOAL

2 The arithmetic core language.

expressions of type Integer or Real:

- 1,2,3 ... resp. 1.0, 2.3, pi.

~ - E, E + E',
>E*E',E/E'/

> abs(E), E div E’, E mod E’...

PolyTech 2026 VnV: Modelling in UML/MOAL

13

Syntax and Semantics of MOAL

2 The expressions of type String:

> S concat S7
> size (S)
> substring (i, J,S)

> 'Hello'

PolyTech 2026 VnV: Modelling in UML/MOAL

14

Syntax and Semantics of MOAL Sets

> | S | size as Integer

> 1sUnique (f) (S) = Vx,y € S. £f(x)=f(y)— x=y
= {}, {a,b,c} empty and finite sets
> eES, e¢S 1s element, not element
= SC g’ is subset

> {x€S | P(x)} filter

- S U SsS’'",S NS’ union, 1ntersection

between sets of same type

Integer, Real, String
are symbols for the set
of all Integers, Reals,

A\

PolyTech 2026 VnV: Modelling in UML/MOAL 15

Syntax and Semantics of MOAL Pairs

= (X,Y) pairing
= fst(X,Y)
> snd(X,Y) =

I
<

projection

<

projection

PolyTech 2026 VnV: Modelling in UML/MOAL

16

Syntax and Semantics of MOAL Lists

Lists S have the following operations:

> x € L -- is element (overload!)

= |S] -- length as Integer

> head (L), last (L)

> nth(L, 1) -- for i between 0 et |S|-1
> LEAL’ -- concatenate

=~ e#S -- append at the beginning

= VxeList. P(x) -- quantifiers :

= [xeL | P(x)] -- filter

= [1,2,3] -- denotations of lists

PolyTech 2026 VnV: Modelling in UML/MOAL 17

Syntax and Semantics of Objects

2 Objects and Classes follow
the semantics of UML

= inheritance / subtyping

= casting

= objects have an id
= NULL is a possible

value in each class-type

> for any class A, we assume a function:
A(o)

which returns the set of instances of

class Ain state o

PolyTech 2026 VnV: Modelling in UML/MOAL

Syntax and Semantics of Objects

0 Objects and Classes follow A "
the semantics of UML A
: B C
Recall that we will drop
the index (o) whenever A

it is clear from the context

PolyTech 2026 VnV: Modelling in UML/MOAL 19

Syntax and Semantics of Objects

2 Asinall typed object-oriented languages

casting allows for converting objects.

2 Objects have two types:

= the « apparent type » 4
(also called static type)

= the « actual type »
(the type at creation) A

= casting changes the apparent type

along the class hierarchy, but D
not the actual type

PolyTech 2026 VnV: Modelling in UML/MOAL 20

Syntax and Semantics of Objects

> Assume the creation of objects

a in class A,b in class B, A i
c in class C,d in class D,
> Then casting: 4
(F)b is illtyped B C
(A)b has apparent type A, l\
but actual type B
(A)d has apparent type A, D

but actual type D

PolyTech 2026 VnV: Modelling in UML/MOAL 21

Syntax and Semantics of OCL / UML

= We will also apply cast-operators

to an entire set: So A F
(A)B (o) (or just: (A)B) 4
> is the set of instances
of B casted to A. B C
= We have: A

(ABUA)CcA

but:

(AB N AC = {}
and also: ¢(A)D ¢ A (for all states o)

PolyTech 2026 VnV: Modelling in UML/MOAL 22

Syntax and Semantics of Objects

2 TInstance sets can be used

to determine the actual type
of an object:

b€ B

corresponds to Javas instanceof
or OCL’s isKindOf. Note that A
casting does NOT change the actual type:

(A)b € B, and (B){(A)b = Db !!!

PolyTech 2026 VnV: Modelling in UML/MOAL 23

Syntax and Semantics of Objects

-4 Summary:

= there is the concept of actual and apparent type
(anywhere outside of Java: dynamic and static type)

= type tests check the former

= type casts influence the latter,
but not the former

= up-casts possible

= down-casts invalid

= consequence:
up-down casts are identities.

PolyTech 2026 VnV: Modelling in UML/MOAL

24

Syntax and Semantics of Object Attributes

2 Objects represent B C
structured, typed memory i © Integer
: d: C : B
In a state 0. They have 2

attributes.

Attributes can have class types.

2 Reminder: In class diagrams, B
i :Integer

this situation is represented

o |~

(O o

traditionally by Associations
(equivalent)

PolyTech 2026 VnV: Modelling in UML/MOAL

Syntax and Semantics of Object Attributes

2 Example:
attributes of class type in states o' and o.

PolyTech 2026 VnV: Modelling in UML/MOAL

26

Syntax and Semantics of Object Attributes

2 each attribute is represen-

|
@)

ted by a function in MOAL.

: Integer

o
@)
o]
0w

The class diagram right
corresponds to delaration
of accessor functions:
i(o) :: B ->Integer
a(o):C->B
d(o)::B->C
2 Applying the o-convention, this makes

navigation expressions possible:

> bl.d :: C
cl.a :: B bl.d.a.d.a ...

PolyTech 2026 VnV: Modelling in UML/MOAL

Syntax and Semantics of Object Attributes

2 Object assessor functions are
.dereferentiations of pointers in a state”

2 Accessor functions of class type are

strict wrt. NULL.

> NULL.d NULL
NULL.a NULL

= Note that navigation expressions depend
on their underlying state:
bl.d(o) .a(o) .d(o) .a(oc) = NULL
bl.d(0’).a(0’).d(0’).a(d’)=b1
(cf. Object Diagram pp 27)

PolyTech 2026 VnV: Modelling in UML/MOAL

28

Syntax and Semantics of Object Attributes

B
. 1 1 €
L. i :Integ
2 Note that associations er |2 d

are meant to be « relations »

in the mathematical sense.

Thus, states (object-graphs)

of this form do not repre-

sent the 1:1 association:

PolyTech 2026 VnV: Modelling in UML/MOAL 29

Syntax and Semantics of Object Attributes

B
i :Integer [=

2 This is reflected by 2 a

(o

« association integrity
constraints ».
For the 1-1-case, they are:

VxEB. x.d.a = x

> definition ass
B.d.a

VxEC. x.a.d = x

> definition ass
C.a.d

PolyTech 2026 VnV: Modelling in UML/MOAL

Syntax and Semantics of Object Attributes

2 Object assessor functions are
.dereferentiations of pointers in a state”

2 Accessor functions of class type are

strict wrt. NULL.

> NULL.d NULL
NULL.a NULL

= Note that navigation expressions depend
on their underlying state:
bl.d(o) .a(o) .d(o) .a(oc) = NULL
bl.d(0’).a(0’).d(0’).a(d’)=b1
(cf. Object Diagram pp 28)

PolyTech 2026 VnV: Modelling in UML/MOAL

31

Syntax and Semantics of Object Attributes

B C
0 . . i: Integer a : List(B]
Attibutes can be List or d: Set(C)
Sefts of class types:
2 Reminder: In class diagrams,
this situation is represented
traditionally by Associations
. > {list} {Set} ©
(equivalent) i :Integer r
a

2 Inanalysis-level Class Diagrams, the
type information is still omitted; due

to overloading of Vxex. P(x) efc.
this will not hamper us tfo specify ...

PolyTech 2026 VnV: Modelling in UML/MOAL

32

Syntax and Semantics of Object Attributes

2 Cardinalities in B : C
o Integer 1..5{List} {Set}l0
Associations can d d

be translated
canonically into
MOCL invariants:

> definition card, = VxEB. |x.d|= 10

>~ definition card, _ = Vx€c. 1<|x.a|< 5

PolyTech 2026 VnV: Modelling in UML/MOAL

33

Syntax and Semantics of Object Attributes

2 Accessor functions are B
defined as follows for

- {List} {Set} S
i :Integ

er |9 d

the case of NULL:

= NULL.d={} -- mapping to the neutral element
> NULL.a =] -- mapping to the neural element.

PolyTech 2026 VnV: Modelling in UML/MOAL

Syntax and Semantics of Object Attributes

4 Car'dinali'l'ies in B 1 5{L|St} {Set}10 C
L. i :Integer -
Associations can a d

be translated
canonically into
MOCL invariants:

> definition card, = VxEB. |x.d|= 10

> definition card, = VxEcC. 1<|x.als 5

PolyTech 2026 VnV: Modelling in UML/MOAL

Syntax and Semantics of Object Attributes

1 The corresponding

B : 1 C
. 1!!5{L|St} {Set 10
associafion integri- | ':integer = r

ty constraints for
the *-*-case are:

VxEB. x € x.d.a

> definition ass
B.d.a

> definition ass_ = Vx€c. x € x.a.d

PolyTech 2026 VnV: Modelling in UML/MOAL 36

Operations in UML and MOAL

2 Many UML diagrams talk over a sequence

of states (not just individual global states)

< This appears for the first

time in so-called contracts
for (Class-model) methods:

B

| : Integer

m(k:Integer)

: Integer

4 The « method » m can be seen as a « transaction »

of a B object transforming the underlying pre-state
O IN the state « after » m vyielding a post-state o.

b.m(k) ‘

PolyTech 2026 VnV: Modelling in UML/MOAL

Syntax and Semantics of Object Attributes

2 Cardinalities in B |.5¢Listy £Set110 c
. 4. i :Integer]
Associations can a d

be translated
canonically into
MOCL invariants:

> definition card, = VxEB. |x.d|= 10

>~ definition card, _ = Vx€c. 1<|x.a|< 5

PolyTech 2026 VnV: Modelling in UML/MOAL

38

Operations in UML and MOAL

2 Syntactically, contracts are
annotated like this (JML-ish):

-1
-—
—
4/

Client

withdraw operation:
" pre: old(b.solde) - k >=0

post: b.i = old(b.solde) - k

solde : Integer

withdraw(k:Integer) : Integer

PolyTech 2026

VnV: Modelling in UML/MOAL

39

Operations in UML and MOAL

2 ..or like this (OCL-ish):

context c.withdraw(k):
_ ——"pre: c.solde@pre - k >= 0
—= post: c.solde = c.solde@pre -

Client ~
solde : Integer

withdraw(k:Integer) : Integer

PolyTech 2026 VnV: Modelling in UML/MOAL 40

Operations in UML and MOAL Contracts

2 This appears for the first B
time in so-called contracts | : Integer
for (Class-model) methods: add(k:Integer) : Integer

2 The « method » add can be seen as a « transaction »

of a B object transforming the underlying pre-state
O . iN the state « after » add vyielding a post-state o.

PolyTech 2026 VnV: Modelling in UML/MOAL 41

Syntax and Semantics of MOAL Contracts

2 Again: This is the view of a transaction (like in a data-
base), it completely abstracts away intermediate
states or time. (This possible in other models/calculi,
like the Hoare-calculus, though).

PolyTech 2026 VnV: Modelling in UML/MOAL 42

Syntax and Semantics of MOAL Contracts

< Consequence:

= The pre-condition is a formula referring to the o and the

method arguments b1, a,, ..., a_only.

= the post-condition is only assured if the pre-condition is satisfied

> otherwise the method

...may do anything on the state and the result,
may even behave correctly , may non-terminate !

raise an exception
(recommended in Java Programmer Guides
for public methods to increase robustness)

PolyTech 2026 VnV: Modelling in UML/MOAL 43

Syntax and Semantics of MOAL Contracts

2 Consequence:

= The post-condition is a formula referring to both
O, and o, the method arguments b1, a,, ..., a and

the return value captured by the variable result.

> any transition is permitted that satisfies the post-
condition (provided that the pre-condition
is true)

PolyTech 2026 VnV: Modelling in UML/MOAL

44

Syntax and Semantics of MOAL Contracts

2 Consequence:

>

The semantics of a method call:

b1.m(a1, an)

is thus:
pre_(b1,a,,..,a) (opre)
post (b1,a,, ... an,result)(opre,o)

Note that moreover all global class invarants have
to be added for both pre-state O e and post-state o !

For an entire transition, the following must hold:

Inv(opre) A pre (b1 Bl o an) (opre) A post(b1 B oo an,result)(opre,o) A Inv(o)

PolyTech 2026

VnV: Modelling in UML/MOAL

45

Syntax and Semantics of MOAL Contracts

class invariant:
Jc.solde >= 0 for all clients c.

2 Example: (partial contract) e
//
Client operation c.withdraw(k) :
solde : Integer {|pre: kK >= 0 A old(c.solde) - k>=0
. : // post: c.solde = old(c.solde) - k
withdraw(k:Integer)

~ definition inv_ . (0)=
VceCllent(O) 0<c.solde(0)
~ definition pre . . (C, K)(0)=
0<k A 0<c.solde(o)-k
(c, k,result)(o
)-k

= definition post .. . ore’O O) =

c.solde(o)=c.solde(o

pre

PolyTech 2026 VnV: Modelling in UML/MOAL 46

Syntax and Semantics of MOAL Contracts

4 Notation (which we call : o-convention):

= Inorder to relax notation, we will drop the o
and use for applications to o the old-notation:

Client(o) becomes Client
CIient(opre) becomes old(Client)

C. solde(Opre) becomes old(c.solde)
efc.

PolyTech 2026 VnV: Modelling in UML/MOAL

47

Syntax and Semantics of MOAL Contracts

class invariant:
_ _{c.solde >= 0 for all clients c.
2 Example: (partial contract) -
//

Client operation c.withdraw(k) :
solde : Integer |pre: k >= 0 A old(c.solde) - k>=0

- ost: c.solde = old(c.solde) - k
withdraw(k:Integer) 7-|Lpost: c.solde = old(c.solde)

> deflinition 1nv =
Client

VceClient. 0<c.sold

> definition pre . . @ﬂ’i‘}o)—
0<k A O0=c @@ de K

> definition ;Q)st ienaeag(Cy Kresult) =
c.solde=old(c.solde)-k

PolyTech 2026 VnV: Modelling in UML/MOAL 48

Syntax and Semantics of MOAL Contracts

2 Example (total contract):

class invariant:
P c.solde >= 0 for all clients c.

Client g

solde : Integer

withdraw(k:Integer) : {ok,nclf}/

operation c.withdraw(k) :

\~
pre: True

r post: if k >= 0 A old(c.solde)>=k
then c.solde = old(c.solde)-k A

\

result = ok
else c.solde = old(c.solde) A
result = nok

> definition inv = VceClient.

Client

> definition prewithdraw(c, K) (Opre) = True

> definition post (c, k, result)(c_,0) =
withdraw pre

if 0k A k £ ¢c.solde(o)

pre
then C.solde(0) =c.solde (O

else C.solde(0) =c.solde (O

0<c.solde

)-K A result = ok
pre

) Aresult = nok
pre

PolyTech 2026

VnV: Modelling in UML/MOAL

49

Syntax and Semantics of MOAL Contracts

A ——
class invariant:

2 Example (total contract): . c.solde >= 0 for all clients c.

7~
7
_ 7 operation c.withdraw(k) : N
Client ¥ pre: True
solde : Integer // post: if kK >= 0 A old(c.solde)>=k
withdraw(k:Integer) : {ok,nok} then c.solde = old(c.solde)-k A
result = ok
else c.solde = old(c.solde) A
result = nok

> definition inv = = VcECllen \ (\solde
Client

> definition pre
withdraw

> definition postW@df ét)l? result) =
if 05k A K old (c.solde)

then C.solde =old(c.solde)-k Aaresult = ok
else C.solde =old(c.solde) Aresult = nok

PolyTech 2026 VnV: Modelling in UML/MOAL 50

Semantics of MOAL Contracts

2 Two predicates are helpful when defining
contracts. They exceptionally refer to both (o .0)

> 1sNew (p) (opre,o) is true only if object p of class C
does not exist in Oore but exists in o

= modifiesOnIy(S)(opre,o) is only true iff
all objects in O, are except those in S identical in o
all objects in o exist either in are or are contained in S

With this predicate, one can express : ,and nothing else
changes". It is also called «framing condition».

PolyTech 2026 VnV: Modelling in UML/MOAL 51

A Revision of the Example: Bank

Opening a bank account. Constraints:

2 there is a blacklist

2 no more overdraft than 200 EUR

2 there is a present of 15 euros in the initial account

2 account numbers must be distinct.

Banque

ouvrirCompte(in nomC:S5String): Integer

PolyTech 2026

* Compte

no: Integer
lesComptes | solde: Real

interdits | Personne
nom: String

kS
titulaire | 1

52

A Revision of the Example: Bank (2)

definition premerCmpm(b:Banque, nomC:String)=
Vp € Personne. p.nom # nomC

definition postmwhi&mmﬁ(b:Banque,nomC:Strlng,r:Integer)E

| {p € Personne | p.nom = nomC}| = 1
A Vp€Personne. p.nom = nomC — isNew (p)

AN | {c€ECompte | c.titulaire.nom = nomC}| = 1
AN VceCompte. c.titulaire.nom = nomC — c.solde = 15
A isNew (c)

A b.lesComptes= old(b.lesComptes)

U {ceCompte | c.titulaire.nom = nomC}
A b.interdits =old(b.interdits)
U {p € Personne | p.nom = nomC}
AN modifiesOnly ({b}U{c€Compte | c.titulaire.nom = nomC}
U {p € Personne | p.nom = nomC})

PolyTech 2026 VnV: Modelling in UML/MOAL

Operations in UML and MOAL

Q Compleﬁng the Example; operation deposit(k) : ™

| pre: True
/| post: ifk >=0
/ | then c.solde = old(c.solde)+k A

// result = ok
/ else c.solde = old(c.solde) A
/ result = ok
Client /’ operation c.withdraw(k) : W
e f pre: True
DRl = MUECIEr ,./ post: if k>=0 A old(c.solde)>=k
deposit(k:Integer) : {ok,nok} then c.solde = old(c.solde)-k
withdraw(k:Integer) : {ok,nok}—L- result = ok
. - else c.solde = old(c.solde) A
solde() : Integer ~—__ et = ok
\\\\\solde query:

post: result = old(b.solde)

PolyTech 2026 VnV: Modelling in UML/MOAL 54

Operations in UML and MOAL

2 Abstract Concurrent Test Scenario:

cl c2 bank
solde()
solde()
o result=al
1 result=a2
withdraw(b1)
O, withdraw(b?2)
result=0k
result=0k
o deposit(c)
3
result=0k
solde()
o, result=d1

assert cl.solde(o,)=a2-b1 A b120 A a2 2 b1

PolyTech 2026 VnV: Modelling in UML/MOAL

55

Operations in UML and MOAL

2 Abstract Concurrent Test Scenario:

cl c2 bank
solde()
solde()
o result=al
1 result=a2
withdraw(b1)
O, withdraw(b?2)
result=o0k
result=o0k
o deposit(c)
3
result=o0k
solde()
o, result=d1l

Any instance of bl and al is a test ! This is a ,Test Schema" !
Note: bl can be chosen dynamically during the test !

PolyTech 2026 VnV: Modelling in UML/MOAL

56

Summary

2 MOAL makes the UML to a real, formal specification
language

2 MOAL can be used to annotate Class Models,
Sequence Diagrams and State Machines

2 Working out, making explicit the constraints of

these Diagrams is an important technique in the
transition from Analysis documents to Designs.

PolyTech 2026 VnV: Modelling in UML/MOAL 57

