
 2025

Cycle Ingénieur – 2ème année 
Département Informatique

 

Verification and Validation 
Part II : A Revision of the UML  

 
Burkhart Wolff 

Département Informatique 
Université Paris-Saclay / LMF 

usr.lmf.cnrs.fr/~wolff/teaching.html

VnV: Revision UMLPolyTech 2025

Plan of the Chapter

❑ Introduction to the UML notation

❑ Syntax and semantics of class model elements 

and their visialization in diagrams

➢ Class Invariants

➢ Constraints

➢ Operations

➢ Pre- and Post-Conditions

❑ Syntax and semantics of state machines 
Ultimate Goal:  
Specify system components for test and verification

2

VnV: Revision UMLPolyTech 2025

The UML ...

❑ ... is the Unified Modeling Language

❑ ... is a normed data-structure, a „technical format“  

of model-elements (that may contain other  
model-elements) with consistent naming for

➢ various system descriptions

➢ various code formats

❑ ... has various external representations

➢ as XMI exchange format (tool-independent in theory ...)

➢ as UML diagrams

3

VnV: Revision UMLPolyTech 2025
4

The UML offers the advantage ...

❑ ... of being a basis for Integrated Development
Environments  
(IDE's like ArgoUML, Poseidon, Rational Rose, ...)

VnV: Revision UMLPolyTech 2025 5

VnV: Revision UMLPolyTech 2025
6

The UML offers the advantage ...

❑ ... of being a basis for Integrated Development Environments  
(IDE's like ArgoUML, Poseidon, Rational Rose, ...)

❑ ... to offer „object-oriented“ specifications

❑ ... to offer a formal, mathematical semantics 

(well, at least to parts of the UML)

❑ ... to be fairly widely used in industry, even  

if not always supported entirely

❑ ... is the basis for a whole software-engineering 

paradigm called Model-Driven Engineering (MDE).

VnV: Revision UMLPolyTech 2025
7

The UML 2.0 Diagrams (for corresp. models)

❑ UML, Version 1.1 : 9 types of diagrams 

❑ UML, Version 2.0 adds  
 
4 more types of diagrams 

➢ structure composition

➢ communication

➢ packaging

➢ temporal constraints (timing) 

 
 
 

VnV: Revision UMLPolyTech 2025 8

The UML 2.0 Diagrams (for corresp. models)

Architectural View

Dynamic View

Static View

VnV: Revision UMLPolyTech 2025

Principal UML diagram types (1)

❑ Structure	 and Vizualization	

➢ Use Case Models and 	 Use Case Diagrams

➢ Sequence Models and 	 Sequence Diagrams

➢ State Machines and 	 State Charts

➢ Class Models and 	 Class Diagrams

➢ Object Graphs and 	 Object Diagrams 

 
All these Model Elements are discribed in a  
UML-document itself, the „Meta-Object-Framework“ (MOF)

9

VnV: Revision UMLPolyTech 2025

Principal UML diagram types (1)

❑ Use Case Diagrams („Diagrammes des cas d'utilisation“) :  
models the system operations by

➢ the interactions of the system with the external world  

(external agents communicating with the system seen as a black
box.)

➢ Just the priciple cases, the alternatives, the extensions

Emphasis on (top-level) functionality !

10

VnV: Revision UMLPolyTech 2025

Example: Use Case Diagram (Conceptual)

11

VnV: Revision UMLPolyTech 2025

Example: Use Case Diagram (Design)

12

VnV: Revision UMLPolyTech 2025

Summary: A «Use Case Diagram»

❑ A Use-Case Diagram

➢ ... just represents the principal  

 user-classes (stake-holders) of a system

➢ ... and the top-level „activities“

➢ ... is useful during conceptual modeling 

 in requirement engineering

➢ ... has no real semantics, 

➢ ... but is often used to configure templates

□ for interfaces

□ security settings

13

VnV: Revision UMLPolyTech 2025

Principal UML diagram types (2)

❑ Interaction Diagram („Diagrammes d’interaction“):  
the interacion between objects for realizing a functionality

➢ SequenceDiagram: privileged temporal description of  
exchanges of events. Notions of utilization scenarios.

➢ Collaboration Diagram: centered around objects and 
top-level collaborations of them.

14

VnV: Revision UMLPolyTech 2025

Example: Sequence Diagram (high-level)

Web Browser Web Server

Click „Intro Page“ 

Insert Data 

ClickBut „Submit“ 

PageRequest 

ImageRequest 

Transit Form Data 
(HTTP POST) 

 

15
15

VnV: Revision UMLPolyTech 2025

Example: Sequence Diagram (design-level)

webServer: 
HTTPPworkProc

reqEditPage() 

dynamicRender
er: 

PageRenderer

staticRenderer: 
StaticPageRdr

newLink: 
LinkData

getData() 

Data 

create 

insLinkData() 

Ok code 

updCurrentPage() 

Ok code 

alt [Cancel OR Timeout]

[else]

persistLinkData(newLink) 
getData() 

Data 

updStaticPages() 
Ok code 

succesUpdate() 

dataManager: 
DataAccessMgr

2017-2018
16

VnV: Revision UMLPolyTech 2025

Summary: Sequence Diagrams (a)

❑ Two types can be distinguished:

➢ Diagrams for requirements analysis:  

description for use-case scenarios of the system, i.e.
examples of the interactions of the system, i.e. 
of top-level behaviour. Good for error-cases.

➢ Diagrams for system or protocol design: 
	 communications between different instances 
of operations; or events occuring in state machines. 
Processes can be created, and synchronous and 
asynchronous communications were modeled. 
Alternatives possible.

17

VnV: Revision UMLPolyTech 2025

Summary: Sequence Diagrams (b)

❑ Two types can be distinguished:

➢ Semantics of Diagrams for  

requirements analysis: 	 	 	 none.

➢ Semantics of Diagrams for  
system design:	 	 	 	 many ;-) 
  
Can be interpreted in Temporal Logic  
and therefore in automata in many ways ... 
 
Mostly depends what tools make out of it ;-(

18

VnV: Revision UMLPolyTech 2025

Principal UML diagram types (3)

❑ State Charts (ou « machine à états ») :  
a description of behaviour by (hierarchical) automata

➢ interesting if an object reacts on  
events (asynchronous as well as synchronous)  
by the external environment

➢ or if the internal state of an object leads to 
a somewhat interesting life-cycle of an object 
(transitions between well-characterized states of the
object)

19

VnV: Revision UMLPolyTech 2025

Example: State Chart (design level)

20

VnV: Revision UMLPolyTech 2025

Summary: State Charts

❑ Two types can be distinguished:

➢ Semantics of Diagrams for  

requirements analysis: 	 	 	 many. 

➢ Semantics of Diagrams for  
system design:	 	 	 	 many.  
 
Can be interpreted in by automata, 
process calculi, Labelled Transition 
Systems (LTL) in several, reasonable 
ways (depends on context and application).

21

VnV: Revision UMLPolyTech 2025

Principal UML diagram types (4)

❑ Class Diagrams („Diagrammes de classes“) :  
the static structure of the DATA of the system

➢ the classes of interest to be represented in the system

➢ the relations between classes

➢ the attributes and the methods

➢ 	 the types, required/defined interfaces … 

 
 
can be used for top-level views as specific interfaces 
for local code ...

22

VnV: Revision UMLPolyTech 2025

Example: A Class Diagram

23

VnV: Revision UMLPolyTech 2025

A propos Class Diagrams (1)

❑ Model-Elements

➢ Class 

➢ Attributes 

➢ Operations 
(methods) 

➢ Packages 
(grouping mechanism 
 for parts of a class model)

classname 
  

classname 
attribute  

classname 
attribute 

operation(arg
s)

packetna
me

24

VnV: Revision UMLPolyTech 2025

A propos Class Diagrams (2)

❑ Model-Elements

➢ Association 

(with optional roles 
cardinalities) 

➢ Aggregation 
(« has a » relationship  
with weak linkage) 

➢ Coposition 
(« has a » relationship  
with strong linkage) 

➢ Specialization 
(modeling of a „is-a“ 
relationship between classes)

*
b

1..* 
 a

25

VnV: Revision UMLPolyTech 2025

A propos Class Diagrams (3)

❑ Model-Elements

➢ Visibilities 

(optional public 
and private, see more later) 
 

➢ N-ary associations 
 
 

➢ Association Class 
 
 
 

➢ templates with parameter 
(usually classes)

class 
+ attribute 

- operation(args) 

 
 class 

  

 
 class 

  

paramete
r

26

VnV: Revision UMLPolyTech 2025

A propos Class Diagrams (4)

❑ Model-Elements 

➢ Annotations 
 
 
 
... typically on classes 
 
... can be informal text as 
 well as OCL (see next part !)

 
 class 

  

 
 assoc

class  

This is a key
component

self.a->forall 
(y| self.b->exists 
 (z| z.a = b))

 
b

 
a

27

VnV: Revision UMLPolyTech 2025

A propos Class Diagrams (1)

❑ Semantics: Classes are: 

➢ types of objects

➢ tuples „attributes“ AND  

association ends (« roles »),  
which are collections (Set, Sequence, Bag) of  
references to other objects

➢ objects may be linked via references 
to each other into a state called „object graph“

➢ cardinalities, etc. are INVARIANTS in this state.

28

VnV: Revision UMLPolyTech 2025

A propos Class Diagrams (2)

❑ Attributes

➢ can have simple type (Integer, Boolean,  

String, Real) or primitive type (see Date example) only ! 

➢ in diagrams, attributes may NOT have 
collection type (use therefore associations) 

➢ In a requirement analysis model, everything 
is public by default (we will refine this notion later)

29

VnV: Revision UMLPolyTech 2025

A propos Class Diagrams (3)

❑ operations (in an analysis class diagram)

➢ we will only distinguish operations linked  

to a use-case diagram

➢ we will sometimes not even link them to a specific 

class – this will come later. 

❑ operations (in an design class diagram)

➢ a complete interface; 

can be compiled from a JAVA Interface !

30

VnV: Revision UMLPolyTech 2025

Class Diagrams in Requirements Analysis

The static aspects of a model were represented by

➢ The class diagram

Classes with their attributes

Class hierarchies via inheritance

Relations between classes (associations + cardinalities)

The „roles“ at the association ends give an intuitive semantics

➢ The invariants make the description complete ...  
ce qui n’est pas exprimable directement dans le diagramme

Plages de valeurs ou contraintes sur des attributs

Contraintes complexes sur une association isolée

Contraintes globales sur un ensemble d’attributs/associations

Contraintes sur un ensemble d’instances des classes

31

VnV: Revision UMLPolyTech 2025

More Specific Details in UML 2

Visibilities:

+: public

- : private

#: protected

/ : derived

Modifiers:

static

abstract

Parameter modes:

in (par défaut)

out

in outInstances:

Stéréotypes:

32

VnV: Revision UMLPolyTech 2025

More Specific Details in UML 2

role cardinality

generalisation

for a:Achat, the OCL expr a.poste denotes an instance of Poste.

for c:Citerne, the OCL expr c.achats denotes an instance of Achat

for p:Poste, the OCL expr p.courant corresponds to a collection  

of 0 or 1 instances of Citerne.

Le nom de classe peut servir de rôle par défaut (si pas d’ambiguïté)

The roles were used to  
navigate accross associations

33

VnV: Revision UMLPolyTech 2025

More Specific Details in UML 2

Cardinalities in associations can be:

➢ 1, 2, or an integral number (no expression !)

➢ * (for « arbitrary », ...)

➢ an interval like 1..*, 0..1, 1..3, (not like 1..N)

□ on donnera systématiquement les cardinalités

□ Attention à la distinction: une instance (1), au plus  

une instance (0..1), une collection d’instances (* ou 1..*)

Multiplicities on attributs and classes can be:

0 or 1 String,  
not string of
length 0 or 1 !!!

1

34

VnV: Revision UMLPolyTech 2025

More Specific Details in UML 2 
Contraints on associations

❑ For generalisation:

➢ complete, incomplete

➢ disjoint, overlapping

❑ Between associations

➢ xor

❑ Collection Types may 
now also be specified !!!

➢ no duplicates, unordered

➢ duplicates, unordered

➢ no duplicates, ordered

➢ duplicates, positioned

35

VnV: Revision UMLPolyTech 2025

More Specific Details in UML 2

N-ary Associations

Association with attributes

Association « qualified »

36

VnV: Revision UMLPolyTech 2025

Putting all together …

Inspiré de: « UML 2.0 Guide de référence »,

Rumbaugh et alli., CampusPress, 2005

37

VnV: Revision UMLPolyTech 2025

Principal UML diagram types (5)

❑ Object Diagrams („Diagrammes d'objects“) :  
 
denote a concrete system state, 

❑ typically used in connection with a Class Diagram

➢ attributes have concrete values

➢ associations were replaced by directed 

arcs representing the links 
 
 
can be used for debugging purposes ... 
(semantics: fully clear).

38

VnV: Revision UMLPolyTech 2025

Example Object Diagram

❑ Corresp. 
Object  

Diagram	 	 	 	

39

VnV: Revision UMLPolyTech 2025

Example Object Diagram

❑ Class 

Diagram	 	 	 	

40

VnV: Revision UMLPolyTech 2025

Summary: Object Diagrams

❑ Object Models denote a concrete State 
of a Class Model; Class Diagram denote 
(essentially) a Signature of the elements in the 
state, as well as the possible operations on them. 
 
Multiplicities and Cardinalities express 
INVARIANTS on (valid) Object Models 
to a given Class Model – with this respect, 
serves as Specification of States.

41

VnV: Revision UMLPolyTech 2025

A propos Class Diagrams (3)

❑ Not all constraints on an object graph can be expressed 
by arrows so far:

➢ The student numbers should ne distinct

➢ A student can not acquire a module he has already finished

➢ A module may not be part of the pre-requisites “pré-requis“

➢ A student may only follow a module if he has acquired 

the necessary pre-requisites

➢ A student can only follow modules offered at his „filière“

➢ ...

42

VnV: Revision UMLPolyTech 2025

Example of a State Machine: a (teaching) module

« L’ouverture des modules est décidée en début de semestre et dépend de l’inscription
effective d’étudiants. La capacité d’accueil est fixe et les inscriptions prises dans
l’ordre d’arrivée. Aucune inscription n’est admise une fois le module démarré. »

This describes the life-cycle of an isolated module ... will we find this later
on in the implementation the equivalent of the possible transitions ?  

43

VnV: Revision UMLPolyTech 2025

A propos Class Diagrams (3)

❑ Not all constraints on an object graph can be expressed 
by arrows so far:

➢ ...

➢ a student can only subscribe a module if he is  

targeting for a diplome

➢ Il existe un facteur 3 au plus entre les nombres de crédits de

deux U.E. d’une même mention (cas des Licences) ???

☞ we will need mechanisms to describe all this  
in the design phase !!! (Object Constraint Language, OCL. 
	 	 	 Instead: We use MOAL ...)

44

