Vérification et Validation
Année 2025-2026
https://usr.lmf.cnrs.fr/~wolff/teach-material/2025-2026/ET4-VnV/

Prof. Burkhart Wolff Prof. Uli Fahrenberg
wolff@Imf.cnrs.fr uli@Imf.cnrs.fr

TP - Test unitaire avec JUnit
Semaine du 21 fevrier 2026

L’objectif de ce TP est d’écrire et d’exécuter des tests avec JUnit pour une classe Java im-
plémentant un conteneur de données Conteneur. A partir de la spécification informelle donnée,
vous devez écrire un ensemble de classes JUnit de fagon a pouvoir tester des implémentations
de la classe Conteneur en boite noire. Les squelettes des classes de tests et les impémentations
a tester sont disponibles ici : https://usr.1lmf.cnrs.fr/“wolff/tmp/TestConteneur.zip.

Spécification du conteneur.

On considére une classe Conteneur dont les instances stockent des couples clé-valeur. Les clés
et les valeurs sont des instances de Object. On supposera que les clés et les valeurs ne sont
jamais null. Une valeur peut étre associée a deux clés distinctes.

Un conteneur a une capacité fixée a l'initialisation, strictement supérieure & 1, qu'on peut
agrandir quand le conteneur est plein (et seulement dans ce cas). Quand le conteneur n’est pas
vide, et uniquement dans ce cas, on peut vider le conteneur en supprimant tous les éléments,
sans changer sa capacité.

On peut ajouter et retirer des couples clé-valeur d’un conteneur, tester si une clé est présente
dans un conteneur, ainsi que retrouver dans ce cas la valeur associée. Si on tente de retirer
une clé absente d’une conteneur, rien ne se passe. Si on ajoute un couple clé-valeur pour une
clé qui existe déja, I'ancien couple est écrasé. Si on ajoute un couple clé-valeur & un conteneur
plein, I'exception DebordementConteneur (sous-classe de ErreurConteneur) est levée. Si on
cherche la valeur d’une clé absente, ’exception ErreurConteneur est levée, de méme que si
on applique une méthode dans un état ou elle est interdite.

Parmi les autres fonctionnalités, on peut savoir si un conteneur est vide, connaitre sa capacité
ainsi que son nombre courant de couples clé-valeur.

Le squelette de la classe Java Conteneur est le suivant :

public class Conteneur {

public Conteneur(int n) throws ErreurConteneur { }

public void ajouter(Object C, Object 0) throws ErreurConteneur { }
public void retirer(Object C) { }

public void raz() throws ErreurConteneur { }

public void redimensionner(int nouv) throws ErreurConteneur { }
public boolean present(Object C) { }

public Object valeur(Object C) throws ErreurConteneur { }

public boolean estVide() { }

public int taille() { }

public int capacite() { }

Introduction & JUnit 5.
JUnit est un outil permettant d’écrire et d’exécuter des tests unitaires sur des programmes
Java. Il est intégré a Eclipse mais est également disponible 4 ’adresse http://www. junit.org/.

Un test en JUnit 5 est une méthode annotée par @Test. Les méthodes de test sont généralement
regroupées en une classe dédiée aux tests. Le corps d’'une méthode de test doit comporter
quatre parties :
— le préambule, qui permet de créer les objets et de les amener dans 1’état nécessaire pour
le test;
— le corps de test, dans lequel la méthode & tester est appelée sur les objets créés;
— Videntification, qui permet de délivrer le verdict du test (succés ou échec) en vérifiant
un ensemble de propriétés (assertions) sur l'état des objets aprés le test. Le tableau 1
résume les différentes assertions possibles en JUnit.
— le postambule, qui réinitialise les objets.

Il est possible de grouper les tests ayant un préambule commun (c’est-a-dire devant étre
exécutés dans le méme état) en une classe et de définir une méthode qui exécutera ce préambule
avant chacun des tests de la classe. Cette méthode doit étre annotée par @BeforeEach. De la
méme maniére, si tous les tests d’une classe ont un postambule commun, on peut définir une
méthode annotée par @AfterEach qui sera exécutée aprés chacun des tests de la classe.

Mise en route.

» Sous Eclipse, créez un nouveau projet Java tpl : File — New — Java Project (ne pas créer
module-info. java). Si un fichier module-info. java a été créé dans src, le supprimer.

» Créez un package test dans src : clic droit sur src — New — Package

» Importez dans le package test les fichiers du répertoire TestConteneur fourni : clic droit sur
le package src — Import — General — File System, puis dans le répertoire TestConteneur,
sélectionnez tous les fichiers.

» Ajoutez JUnit 5 au classpath : clic droit sur tpl — Build Path — Add Librairies — JUnit.

» Ajoutez une des implémentations de la classe Conteneur fournies : clic droit sur le projet
tpl — Build Path — Add External Archives, puis ajoutez un des fichiers du répertoire
Implantations. Commencez par le fichier testEtatl. jar par exemple.

Ouvrez les quatre classes Java fournies. La classe TestPlein contient la méthode
ajouterPresentPlein, qui vérifie que I'ajout d’un élément dont la clé est déja présente dans
un conteneur plein est possible (ne léve pas d’exception) et a pour effet d’écraser la valeur
précédemment associée a la clé. Le test doit échouer si une exception est levée, on rattrape
donc I'exception et on force I’échec du test avec la méthode assertDoesNotThrow().

Le préambule du test se trouve dans la méthode creerConteneurPlein. On re-
marque qu’on rattrape également une éventuelle exception dans le corps de la méthode
creerConteneurPlein, au cas ou l'initialisation échoue.

» Pour exécuter ces tests sur une implémentation en boite noire (archive .jar), il faut ajouter
le fichier au classpath comme vu précédemment. Exécutez ensuite TestPlein en tant que test
JUnit sur 'implémentation choisie : clic droit sur TestPlein — Run As — JUnit test.

Le résultat des tests apparait dans un nouvel onglet : un test ayant levé une exception non
rattrapée est répertorié dans Errors, un test ayant échoué (AssertionFailedError) est répertorié
dans Failures. Un double clic sur le nom du test qui a échoué montre ’assertion qui a été violée.

Questions

1. A partir de la spécification de la classe Conteneur donnée, écrivez un ensemble de tests
JUnit pour cette classe. Vous compléterez les squelettes des quatre classes fournies :
— TestInit : Vérifie 'initialisation de Conteneur.

— TestVide : Vérifie les propriétés d’un Conteneur dans un état vide d’objets.
— TestNonVide : Vérifie les propriétés d’un Conteneur dans un état partiellement

rempli d’objets.

— TestVide : Vérifie les propriétés d’un Conteneur dans un état rempli d’objets.

Pour chaque test, vous préciserez obligatoirement en commentaire 1’'objectif du test et
le résultat attendu. Pensez a tester aussi bien les cas qui doivent réussir que les cas
qui doivent lever une exception : 'objectif est de couvrir un maximum de cas différents
parmi les cas possibles. Pensez également aux cas aux limites.

2. Exécutez vos tests sur chacune des implémentations fournies et rédigez un rapport de
test sous la forme d’un tableau : pour chaque implémentation, dites si les tests ont
réussi ou échoué et donnez les raisons apparentes des fautes trouvées. Vous pouvez

suivre le modéle suivant :

Implémentation | Résultats des tests | Fautes trouvées

testEtatl Echec

L’ajout d’un couple dont la clé est déja
présente n’écrase pas l’ancien couple mais
ajoute le couple comme un nouvel élément.

3. Déposez par mail ou sur ecampus, dans le sous-dossier correspondant & votre groupe de
TP, une archive .zip contenant uniquement les quatre classes de test complétées (les
quatre fichiers .java se trouvant dans votre workspace sous TestConteneur/src/test/)
et votre rapport dans un format texte ou pdf.

Méthode

Role

assertEquals(Object a, Object b)

Vérifie que les objets a et b sont égaux

assertSame(Object a, Object b)

Vérifie que a et b sont des références vers le méme
objet

assertNotSame (Object a, Object b)

Vérifie que a et b ne sont pas des références vers
le méme objet

assertNull(Object o)

Vérifie que I'objet o est null

assertNotNull(Object o)

Veérifie que I'objet o n’est pas null

assertTrue(boolean e)

Vérifie que I'expression e est vraie

assertFalse(boolean e)

Vérifie que I'expression e est fausse

assertThrows (Class<T> c, Executable e)

Vérifie que lexécution e léeve l'exception ¢
(Exemple disponible dans TestVide)

assertDoesNotThrow(Executable e)

Vérifie que 'exécution e ne léve aucune excep-
tion (Exemple disponible dans TestPlein)

FIGURE 1 — Méthodes d’assertions en JUnit

