Vérification et Validation
Année 2025-2026
https://usr.lmf.cnrs.fr/~wolff/teach-material/2025-2026/ET4-VnV/

Prof. Burkhart Wolff Prof. Uli Fahrenberg
wolff@Imf.cnrs.fr uli@Imf.cnrs.fr

Preuve de programmes
Date : 29 fevrier 2026

Exercice 1
Dériver les triplets de Hoare suivants en utilisant les régles d’inférence introduites dans le
cours. Rappel : toutes les variables sont des entiers.

1. F{x <0}y := x+2 {y <2}

2. F{x <0} x := x-1{z <0}

3. F{z >0} WHILE x > 0 DO x := x-1{z = -1}

4. F{a=xAb=yla :=a+b; b:=a-2%b; a :=a * b{a=2a>—1y?}
5. F{i=8} WHILE i < 5 DO i := 2%i {i > 5}

Exercice 2
On considére le programme Prog suivant :

IF x>y
THEN max := x
ELSE max :=y

Quelles sont les pré et post-conditions de ce programme ? Démontrer la validité du triplet
de Hoare correspondant.

Exercice 3
On considére le programme Prog suivant :

WHILE y !'= x DO

X :=x - 1;

yi=y -2
Quelles sont les pré et post-conditions de ce programme ?
Quel est I'invariant de la boucle ?

Démontrer la validité du triplet de Hoare correspondant a ce programme.

=W D=

Donner un variant pour la boucle WHILE, c’est-a-dire une expression toujours positive et
qui décroit strictement & chaque tour de boucle.

Exercice 4
On veut prouver que le programme suivant calcule X~ pour N > 0.



=
==
— .
[
™
O -

>= 1 DO
S :=8S * X;
P :=P - 1;

1. Ecrire la spécification du programme sous forme de pré et post-conditions.

2. Quel est le triplet de Hoare a prouver ?

. Trouver un invariant pour la boucle WHILE, puis donner la preuve de la deuxiéme partie
du programme.

. Donner la preuve de la premiére partie du programme S:=1; P:=N pour terminer la
preuve du programme.

5. Donner un variant pour la boucle WHILE.

6. On considére maintenant I'implémentation suivante :

S =1,

P :=0;

WHILE P < N DO
S =S *x X;
P :=P + 1;

Comparer les spécifications, invariants et variants de ces deux implémentations. Quelle
partie de la preuve du premier programme faut-il modifier pour obtenir une preuve de
cette implémentation 7

Calcul de Hoare
skip aff
F{P} SKIP {P} F{P[z — exp|} x := exp {P}
= {P Acond} ins; {Q} F{P A —cond} insy {Q} ”
F{P} IF cond THEN ins; ELSE insy {Q} |
F{P A cond} ins {P} _
while
- {P} WHILE cond DO ins {P A —cond}
P=F F{P'} ins {Q'} Q' =Q
cons
H{P} ins {Q}
- (P} insy {QF F{Q) ins: {R)
. seq
~{false} ins {P} TP} tne ; ine (K]




