
Vérification et Validation
Année 2025-2026

https://usr.lmf.cnrs.fr/∼wolff/teach-material/2025-2026/ET4-VnV/

Prof. Burkhart Wolff
wolff@lmf.cnrs.fr

Prof. Uli Fahrenberg
uli@lmf.cnrs.fr

Test fonctionnel
Date : 7 fevrier 2023

Exercice 1 (Analyse partitionnelle et test aux limites)
Une société vend deux produits A et B au prix unitaire de 5 e pour A et de 10 e pour B.
Une commande comprend une certaine quantité du produit A et une certaine quantité du
produit B. Le coût d’une commande est la somme totale des prix unitaires des produits
commandés, à laquelle on applique une réduction selon les règles suivantes :

— Si la somme totale est supérieure ou égale à 200 e, on applique une réduction de
5%, si elle est supérieure ou égale à 1000 e, la réduction est de 20%. Ces deux
réductions ne sont pas cumulables et portent sur la somme totale.

— La société souhaitant encourager la vente de A, on applique, sur le prix obtenu
grâce à la règle précédente, une réduction supplémentaire de 10% si la commande
comprend au moins 45 produits A.

1. Donnez un ensemble de tests pour le calcul du coût total d’une commande. Pour
chaque test :
— expliquez le cas particulier visé par le test ;
— donnez la formule du résultat attendu ;
— donnez un exemple de valeurs concrètes et le résultat correspondant attendu.

2. Complétez votre jeu de tests par une analyse aux limites.

Solution :

Objectif de test Formule du Données d’entrée Résultat
résultat attendu nb A nb B attendu

Prix sans réduction :
5A+ 10B < 200 et A < 45 5A+ 10B 3 5 65

Réduction de 5% :
200 ≤ 5A+ 10B < 1000 et A < 45 (5A+ 10B)× 0, 95 20 20 285

Réduction de 20% :
5A+ 10B ≥ 1000 et A < 45 (5A+ 10B)× 0, 8 20 100 880

Réduction de 5% puis 10% :
200 ≤ 5A+ 10B < 1000 et A ≥ 45 (5A+ 10B)× 0, 95× 0, 9 60 10 342

Réduction de 20% puis 10% :
5A+ 10B ≥ 1000 et A ≥ 45 (5A+ 10B)× 0, 8× 0, 9 60 100 936

1

On peut compléter ce jeu de tests par des tests aux limites : A = 0, B = 0, 5A+ 10B = 199,
5A+ 10B = 200, 5A+ 10B = 999, 5A+ 10B = 1000, A = 44, A = 45, chacune de ces conditions
testées indépendamment des autres.

Exercice 2 (Test fonctionnel formel d’une fonction)
L’opération middle prend en entrée trois entiers différents deux à deux et renvoie l’entier
parmi les trois qui n’est ni le plus grand ni le plus petit.

1. Donnez une spécification formelle de cette opération.

2. Construisez la forme normale disjonctive de cette spécification et déduisez-en un
ensemble de cas de test pour l’opération middle.

3. Donnez des tests concrets pour chacun des cas trouvés à la question précédente.

Solution :

Question 1

middle(int x, int y, int z) : int
pre : x ̸= y ∧ y ̸= z ∧ x ̸= z
post : (result = x ∨ result = y ∨ result = z)
∧ (result > x ∨ result > y ∨ result > z)
∧ (result < x ∨ result < y ∨ result < z)

Question 2 On ignore les états σpre et σ qui ne sont pas référencés dans ce problème. On note
r = result.

premiddle(x, y, z) ∧ postmiddle(x, y, z, r) = x ̸= y ∧ y ̸= z ∧ x ̸= z ∧ (r = x ∨ r = y ∨ r = z)

∧(r > x ∨ r > y ∨ r > z) ∧ (r < x ∨ r < y ∨ r < z)

= x ̸= y ∧ y ̸= z ∧ x ̸= z ∧
((r = x ∧ r > y ∧ r < z) ∨
(r = x ∧ r > z ∧ r < y) ∨
(r = y ∧ r > x ∧ r < z) ∨
(r = y ∧ r > z ∧ r < x) ∨
(r = z ∧ r > x ∧ r < z) ∨
(r = z ∧ r > y ∧ r < x))

On obtient 6 cas de test.

Question 3

2

Cas de test Données d’entrée Résultat attendu
x y z

C1 12 5 20 12

C2 7 9 2 7

C3 -2 0 2 0

C4 61 -1 -10 -1

C5 5 8 6 6

C6 95 -39 -4 -4

Exercice 3 (Test fonctionnel formel d’une méthode)
On considère la spécification suivante.

L’instance de System gère une (unique) ressource, par exemple un processeur, qu’il
doit partager entre des processus. Un processus ne termine jamais et ne libère jamais
spontanément la ressource mais uniquement sur la requête du système via l’opération swap,
qui permet d’attribuer la ressource à l’un des processus en attente. Le système n’est pas
forcément équitable et se contente simplement d’essayer de ne pas redonner la ressource au
processus qui le possédait déjà lors de l’échange précédent. Il dispose pour cela de current,
l’éventuel processus qui possède actuellement la ressource, de last, l’éventuel processus qui
possédait la ressource avant current, et de waiting, l’ensemble des processus demandeurs
(qui inclut last).

System

r : Resource

init()
add(p : Process)
swap() : Process

Process

last 0..1
0..1

current

waiting*

1

1

1

L’opération init() met le système dans un état initial où il n’existe aucun processus.
L’opération add(p :Process) ajoute un processus au système. S’il n’existe aucun proces-
sus, p devient le processus courant qui détient la ressource, sinon il est ajouté à waiting.
L’opération swap() change le processus actif qui détient la ressource.

3

invSystem(s) ≡ s.waiting ̸= ∅ −→ s.current ̸= NULL

∧ s.last ̸= NULL −→ (s.last ̸= s.current ∧ s.last ∈ s.waiting)

∧ s.current ̸= NULL −→ s.current ̸∈ s.waiting

preswap()(s) ≡ s.waiting ̸= ∅

postswap(result)(s) ≡ result ∈ old(s.waiting) ∧ s.current = result

∧ s.waiting = old(s.waiting) \ {result} ∪ old(s.current)

∧ s.last = old(s.current)

∧ (old(s.last) ̸= NULL ∧ |old(s.waiting)| > 1 −→ result ̸= old(s.last))

1. Donnez informellement les différents cas de test pour l’opération swap en fonction
des valeurs de waiting, last et current avant et après l’opération.

2. Calculez la DNF pour l’opération swap et construisez les cas de test. Commencez
le calcul de la DNF avec invSystem(s)(σpre) ∧ preswap(s)(σpre) ∧ postswap(s)(σpre, σ) ∧
invSystem(s)(σ).

3. Sélectionnez des tests concrets pour chacun des cas de test déduits à la question
précédente, en choisissant des valeurs pour waiting, last et current.

4. Pour chacun des tests obtenus à la question précédente, construisez la suite d’appel
des fonctions init, add et swap permettant d’exécuter ce test.

Solution :

Question 1 On voit dans la spécification de l’opération swap que le choix du processus result
dans old(s.waiting) dépend de deux conditions : si old(s.last) est null ou si old(s.waiting) ne contient
qu’un seul processus, alors result sera n’importe quel processus dans old(s.waiting), sinon, on le
choisit de manière à ne pas reprendre old(s.last). On va donc avoir quatre cas de test différents,
selon qu’aucune de ces conditions n’est vraie, qu’une de ces deux conditions seulement est vraie
ou que les deux conditions sont vraies. On a donc les cas de test suivants.

1. old(s.last) n’est pas vide et old(s.waiting) contient plus d’un processus. Dans ce cas, result
est n’importe quel processus dans old(s.waiting) à l’exception de old(s.last).

2. old(s.last) est vide et old(s.waiting) contient plus d’un processus. Dans ce cas, result est
n’importe quel processus dans old(s.waiting).

3. old(s.last) n’est pas vide et old(s.waiting) contient un seul processus. Dans ce cas, result est
l’unique processus contenu dans old(s.waiting) (même s’il est égal à old(s.last)).

4. old(s.last) est vide et old(s.waiting) contient un seul processus. Dans ce cas, result est l’unique
processus contenu dans old(s.waiting).

On va retrouver de façon formelle ces quatre cas en calculant la DNF pour l’opération swap.

4

Question 2 On abbrège s.current, s.waiting, s.last et result respectivement en s.c, s.w, s.l et
r.

On a l’expression suivante de l’invariant (où les implications A −→ B ont été transformées
en disjonctions ¬A ∨B) :

invSystem(s) ≡ (s.w = ∅ ∨ s.c ̸= NULL)

∧ (s.l = NULL ∨ (s.l ̸= s.c ∧ s.l ∈ s.w))

∧ (s.c = NULL ∨ s.c ̸∈ s.w)

Juste pour expliqer d’ou viennent les old’s. La notation dessus est une abbreviation pour :

invSystem(s)(σ) ≡ (s.w(σ) = ∅ ∨ s.c(σ) ̸= NULL)

∧ (s.l(σ) = NULL ∨ (s.l(σ) ̸= s.c(σ) ∧ s.l(σ) ∈ s.w(σ)))

∧ (s.c(σ) = NULL ∨ s.c(σ) ̸∈ s.w(σ))

... ce qui explique que nvSystem(s)(σpre) est equivalent de :

invSystem(s)(σpre) = (old(s.w) = ∅ ∨ old(s.c) ̸= NULL)

∧ (old(s.l) = NULL ∨ (old(s.l) ̸= old(s.c) ∧ old(s.l) ∈ old(s.w)))

∧ (old(s.c) = NULL ∨ old(s.c) ̸∈ old(s.w))

On obtient l’expression suivante pour l’opération swap :

preswap(s)(σpre) ∧ postswap(s)(σpre, σ) = old(s.w) ̸= ∅
∧ r ∈ old(s.w)

∧ s.c = r

∧ s.w = old(s.w) ∪ {old(s.c)} \ {r}
∧ s.l = old(s.c)

∧ (old(s.l) = NULL ∨ |old(s.w)| ≤ 1 ∨ r ̸= old(s.l))

(1) (2) (3)

On n’a pas besoin de déplier plus les invariants, étant donné qu’on va à chaque fois pouvoir
simplifier les disjonctions. Par exemple, dans la post-condition, on a old(s.w) ̸= ∅, la première
disjonction de l’invariant old(invSystem(s)) se réduit donc au second terme old(s.c) ̸= NULL.

On prend la conjonction globale des invariants dans les deux états et des pré-post de swap,
en simplifiant les parties des invariants qui peuvent l’être. L’invariant dans l’état s est clairement
vérifié.

invSystem(s)(σpre) ∧ invSystem(s)(σpre)

∧preswap(s)(σpre) ∧ postswap(s)(σpre, σ) = old(s.c) ̸= NULL

∧ (old(s.l) = NULL ∨ (old(s.l) ̸= old(s.c) ∧ old(s.l) ∈ old(s.w)))

∧ old(s.c) ̸∈ old(s.w)

∧old(preswap(s)) ∧ postswap(s)

5

On va ensuite découper les cas selon la disjonction de la post-condition dont on a numéroté
chaque terme par (1), (2) et (3). On obtient alors pour (1) :

C1 = old(s.w) ̸= ∅
∧ r ∈ old(s.w)

∧ s.c = r

∧ s.w = old(s.w) ∪ {old(s.c)} \ {r}
∧ s.l = old(s.c)

∧ old(s.l) = NULL (1)

∧ old(s.c) ̸= NULL old(inv)

∧ old(s.c) ̸∈ old(s.w)

Ce cas de test correspond donc au cas où old(s.last) est null : p est alors n’importe quel processus
de old(s.waiting) et l’ancien processus courant devient s.last et remplace result dans s.waiting (cas
2 dans la question 1).

Pour (2), on obtient deux cas :

C2 = old(s.w) ̸= ∅
∧ r ∈ old(s.w)

∧ s.c = r

∧ s.w = old(s.w) ∪ {old(s.c)} \ {r}
∧ s.l = old(s.c)

∧ |old(s.w)| ≤ 1 (2)

∧ old(s.c) ̸= NULL old(inv)

∧ old(s.l) = NULL

∧ old(s.c) ̸∈ old(s.w)

C ′
2 = old(s.w) ̸= ∅

∧ r ∈ old(s.w)

∧ s.c = r

∧ s.w = old(s.w) ∪ {old(s.c)} \ {r}
∧ s.l = old(s.c)

∧ |old(s.w)| ≤ 1 (2)

∧ old(s.c) ̸= NULL old(inv)

∧ old(s.l) ̸= old(s.c) ∧ old(s.l) ∈ old(s.w))

∧ old(s.c) ̸∈ old(s.w)

Le premier cas correspond au cas où old(s.last) est vide et où old(s.waiting) ne contient qu’un
seul processus. À ce moment-là, result est forcément ce processus et le processus courant devient
s.last et remplace le processus présent dans s.waiting (cas 4 dans la question 1).

6

Le deuxième cas correspond aussi au cas où old(s.waiting) ne contient qu’un seul processus
mais où s.last n’est pas vide. Le processus result est alors forcément le processus contenu dans
old(s.waiting), qui est lui-même forcément égal à celui contenu dans old(s.last). C’est le seul cas
où le système a le droit de choisir le processus de old(s.last) comme nouveau processus courant
(cas 3 dans la question 1).

Pour (3) on obtient :

C3 = old(s.w) ̸= ∅
∧ r ∈ old(s.w)

∧ s.c = r

∧ s.w = old(s.w) ∪ {old(s.c)} \ {r}
∧ s.l = old(s.c)

∧ r ̸= old(s.l) (3)

∧ old(s.c) ̸= NULL old(inv)

∧ old(s.l) ̸= old(s.c) ∧ old(s.l) ∈ old(s.w))

∧ old(s.c) ̸∈ old(s.w)

Ce cas correspond au cas général où old(s.waiting) est quelconque et où old(s.last) n’est pas vide.
Le processus result est alors choisi dans old(s.waiting) de façon à ne pas être égal à old(s.last) (cas
1 dans la question 2).

Question 4 On représente une instance de test par les valeurs de s.w, s.l et s.c avant et après
l’opération, plus le résultat renvoyé. On prend un ensemble de processus p1, p2, p3, p4 . . . tous
différents.

Objectif de test Données d’entrée Résultat attendu
old(s.w) old(s.l) old(s.c) s.w s.l s.c result

C1 {p1, p2, p3} ∅ {p4} {p1, p2, p3, p4} \ {p} {p4} {p} p
où p ∈ {p1, p2, p3}

C2 {p2} ∅ {p1} {p1} {p1} {p2} p2
C ′
2 {p3} {p3} {p1} {p1} {p1} {p3} p3

C3 {p1, p3, p4} {p3} {p2} {p1, p2, p3, p4} \ {p} {p2} {p} p
où p ∈ {p1, p4}

Pour que les cas restent disjoints, il faut bien choisir l’ensemble s.waiting : lorsqu’il n’a pas de
contrainte, il faut qu’il contienne plusieurs processus (au moins 3 pour être suffisamment général).

On remarque qu’on a un cas particulier du cas 3 lorsque old(s.waiting) ne contient que deux
processus : le processus choisi est alors forcément celui qui n’est pas dans old(s.last).

Question 5 On fera attention à réinitialiser l’état entre chaque test, de manière à assurer
l’indépendance des tests. On a qu’un seul observateur, la fonction swap, qui renvoie le processus
devenu courant. On n’a aucun moyen de connâıtre la valeur de last ni l’ensemble waiting. NB :
on n’est pas obligé d’utiliser JUnit pour vérifier la valeur de current à la fin du test, on peut
tout aussi bien écrire return (c == p1).

7

Cas C2 du tableau précédent.

// préambule du test : on crée l’état dans lequel appeler swap pour le cas 2

init()

add(p1) // current = p1

add(p2) // current = p1, waiting = {p2}

// corps du test : on appelle swap

c = swap() // current = p2, last = p1, waiting = {p1}

// identification de l’état atteint : c doit etre p2. En JUnit :

assertEquals(c,p2)

Cas C ′
2 du tableau précédent.

// préambule du test : on crée l’état dans lequel appeler swap pour le cas 2’

init()

add(p1) // current = p1

add(p2) // current = p1, waiting = {p2}

swap() // current = p2, last = p1, waiting = {p1}

// corps du test : on appelle swap

c = swap() // current = p1, last = p2, waiting = {p2}

// identification de l’état atteint : c doit etre p1. En JUnit :

assertEquals(c,p1)

Cas particulier du cas C3 du tableau précédent.

// préambule du test : on crée l’état dans lequel appeler swap pour le cas 3

// (le cas où il y a seulement deux processus en attente)

// on ajoute deux processus, on les swap pour savoir lequel est dans last,

// puis on ajoute le 3e

init()

add(p1) // current = p1

add(p2) // current = p1, waiting = {p2}

swap() // current = p2, last = p1, waiting = {p1}

add(p3) // current = p2, last = p1, waiting = {p1,p3}

// corps du test : on appelle swap

c = swap() // current = p3, last = p2, waiting = {p1,p2}

// identification de l’état atteint : c doit etre p3. En JUnit :

assertEquals(c,p3)

Cas général du cas C3 du tableau précédent.

8

// préambule du test : on crée l’état dans lequel appeler swap pour le cas 3

// on ajoute deux processus, on les swap pour savoir lequel est dans last,

// puis on en ajoute deux autres

init()

add(p1) // current = p1

add(p2) // current = p1, waiting = {p2}

swap() // current = p2, last = p1, waiting = {p1}

add(p3) // current = p2, last = p1, waiting = {p1,p3}

add(p4) // current = p2, last = p1, waiting = {p1,p3,p4}

// corps du test : on appelle swap

c = swap() // current = p3 ou p4, last = p2, waiting = {p1,p3 ou p4}

// identification de l’état atteint : on ne sait pas si c est égal à p3 ou p4

assertTrue(c == p3 or c == p4)

Cas C1 du tableau précédent.

// préambule du test : on crée l’état dans lequel appeler swap pour le cas 1

// on ajoute tous les processus avant d’appeler swap, pour que last reste vide

init()

add(p1) // current = p1

add(p2) // current = p1, waiting = {p2}

add(p3) // current = p1, waiting = {p2,p3}

add(p4) // current = p1, waiting = {p2,p3,p4}

// corps du test : on appelle swap

c = swap() // current = p2 ou p3 ou p4, last = p1,

// waiting = {p1,p2,p3,p4} - current

// identification de l’état atteint : on ne sait pas si c est égal à

// p2 ou p3 ou p4

assertTrue(c == p2 || c == p3 || c == p4)

9

