Vérification et Validation
Année 2025-2026
https://usr.1lmf.cnrs.fr/~wolff/teach-material/2025-2026/ET4-VnV/

Prof. Burkhart Wolff Prof. Uli Fahrenberg
wolff@Imf.cnrs.fr uli@Imf.cnrs.fr

Test fonctionnel
Date : 7 fevrier 2023

Exercice 1 (Analyse partitionnelle et test aux limites)

Une société vend deux produits A et B au prix unitaire de 5 € pour A et de 10 € pour B.
Une commande comprend une certaine quantité du produit A et une certaine quantité du
produit B. Le cout d’une commande est la somme totale des prix unitaires des produits
commandés, a laquelle on applique une réduction selon les regles suivantes :

— Si la somme totale est supérieure ou égale a 200 €, on applique une réduction de
5%, si elle est supérieure ou égale a 1000 €, la réduction est de 20%. Ces deux
réductions ne sont pas cumulables et portent sur la somme totale.

— La société souhaitant encourager la vente de A, on applique, sur le prix obtenu
grace a la régle précédente, une réduction supplémentaire de 10% si la commande
comprend au moins 45 produits A.

1. Donnez un ensemble de tests pour le calcul du cotut total d’'une commande. Pour
chaque test :
— expliquez le cas particulier visé par le test ;
— donnez la formule du résultat attendu ;
— donnez un exemple de valeurs concretes et le résultat correspondant attendu.

2. Complétez votre jeu de tests par une analyse aux limites.

Solution :

Objectif de test Formule du Données d’entrée | Résultat
résultat attendu nb A nb B attendu

Prix sans réduction :

5A + 10B < 200 et A < 45 5A+10B 3 5 65

Réduction de 5% :

200 < 5A+ 10B < 1000 et A < 45 | (5A+ 10B) x 0,95 20 20 285

Réduction de 20% :

5A 4+ 108 > 1000 et A < 45 (bA+10B) x 0,8 20 100 880

Réduction de 5% puis 10% :

200 < 5A 4 10B < 1000 et A > 45 | (5A+10B) x 0,95 x 0,9 | 60 10 342

Réduction de 20% puis 10% :

5A + 108 > 1000 et A > 45 (5A+10B) x 0,8 x 0,9 60 100 936

On peut compléter ce jeu de tests par des tests aux limites : A =0, B =0, 5A+ 108 = 199,
5A+10B = 200, 5A + 10B =999, 5A + 10B = 1000, A = 44, A = 45, chacune de ces conditions
testées indépendamment des autres.

Exercice 2 (Test fonctionnel formel d’une fonction)
L’opération middle prend en entrée trois entiers différents deux a deux et renvoie ’entier
parmi les trois qui n’est ni le plus grand ni le plus petit.

1. Donnez une spécification formelle de cette opération.

2. Construisez la forme normale disjonctive de cette spécification et déduisez-en un
ensemble de cas de test pour 'opération middle.

3. Donnez des tests concrets pour chacun des cas trouvés a la question précédente.

Solution :

Question 1

middle(int z, int y, int z) : int

pre:x FyANy#zANx #z

post : (result = x V result = y V result = z)
A (result > x V result >y V result > z)

A (result < x V result <y V result < z)

Question 2 On ignore les états opye et o qui ne sont pas référencés dans ce probléme. On note
r = result.

DT emiddie(Z, Yy 2) A POStmiddie(T, Yy, 2,7) = T FYyANyFzAzF#zANr=zVr=yVr=z)

ANr>zVr>yVr>2)A(r<zVr<yVr<z)

= zHEYANYyFzAr#£zA
(r=xzAr>yAr<z)Vv
(r=xzAr>zAr<y)V
(r=yAr>zAr<z)V
(r=yAr>zAr<az)V
(r=zAr>zAr<z)V
(r=zAr>yAr<ux))

On obtient 6 cas de test.

Question 3

Cas de test | Données d’entrée | Résultat attendu
T Y z
C1 12| 5 20 12
C2 71 9 2 7
C3 -2 0 2 0
C4 61 | -1 -10 -1
C5 5 8 6 6
C6 95 | -39 -4 -4

Exercice 3 (Test fonctionnel formel d’une méthode)
On considere la spécification suivante.

L’instance de System geére une (unique) ressource, par exemple un processeur, qu’il
doit partager entre des processus. Un processus ne termine jamais et ne libéere jamais
spontanément la ressource mais uniquement sur la requéte du systeme via I’opération swap,
qui permet d’attribuer la ressource a I'un des processus en attente. Le systeme n’est pas
forcément équitable et se contente simplement d’essayer de ne pas redonner la ressource au
processus qui le possédait déja lors de ’échange précédent. Il dispose pour cela de current,
I’éventuel processus qui possede actuellement la ressource, de last, I’éventuel processus qui
possédait la ressource avant current, et de waiting, ’ensemble des processus demandeurs
(qui inclut last).

1]

System 0..1] last
r : Resource 1 0..1 Process
. current
init()
add(p : Process) * | waiting
swap() : Process

1 [

L’opération init() met le systeme dans un état initial ou il n’existe aucun processus.
L’opération add(p :Process) ajoute un processus au systeme. S’il n’existe aucun proces-
sus, p devient le processus courant qui détient la ressource, sinon il est ajouté a waiting.
L’opération swap() change le processus actif qui détient la ressource.

iNVsystem(S) = s.waiting # () — s.current # NULL
A s.last # NULL — (s.last # s.current A s.last € s.waiting)
A s.current # NULL — s.current ¢ s.waiting
Preswap()(s) = s.waiting # ()
POstswap(Tesult)(s) = result € old(s.waiting) A s.current = result

A s.waiting = old(s.waiting) \ {result} U old(s.current)

A s.last = old(s.current)
A (old(s.last) # NULL A |old(s.waiting)| > 1 — result # old(s.last))

1. Donnez informellement les différents cas de test pour I'opération swap en fonction
des valeurs de waiting, last et current avant et apres 'opération.

2. Calculez la DNF pour l'opération swap et construisez les cas de test. Commencez
le calcul de la DNF avec invsystem(8)(0pre) A Preguap(5)(Opre) A DOStswap(8)(Tpre; o) A
iNUsystem () (0).

3. Sélectionnez des tests concrets pour chacun des cas de test déduits a la question
précédente, en choisissant des valeurs pour waiting, last et current.

4. Pour chacun des tests obtenus a la question précédente, construisez la suite d’appel
des fonctions init, add et swap permettant d’exécuter ce test.

Solution :

Question 1 On voit dans la spécification de I'opération swap que le choix du processus result
dans old(s.waiting) dépend de deux conditions : si old(s.last) est null ou si old(s.waiting) ne contient
qu’un seul processus, alors result sera n’importe quel processus dans old(s.waiting), sinon, on le
choisit de maniére a ne pas reprendre old(s.last). On va donc avoir quatre cas de test différents,
selon qu’aucune de ces conditions n’est vraie, qu’une de ces deux conditions seulement est vraie
ou que les deux conditions sont vraies. On a donc les cas de test suivants.

1. old(s.last) n’est pas vide et old(s.waiting) contient plus d’un processus. Dans ce cas, result
est n’importe quel processus dans old(s.waiting) a I'exception de old(s.last).

2. old(s.last) est vide et old(s.waiting) contient plus d’un processus. Dans ce cas, result est
n’importe quel processus dans old(s.waiting).

3. old(s.last) n’est pas vide et old(s.waiting) contient un seul processus. Dans ce cas, result est
I'unique processus contenu dans old(s.waiting) (méme s’il est égal & old(s.last)).

4. old(s.last) est vide et old(s.waiting) contient un seul processus. Dans ce cas, result est 'unique
processus contenu dans old(s.waiting).

On va retrouver de facon formelle ces quatre cas en calculant la DNF pour I'opération swap.

Question 2 On abbrége s.current, s.waiting, s.last et result respectivement en s.c, s.w, s.l et
r.

On a I’expression suivante de l'invariant (ou les implications A — B ont été transformées
en disjonctions ~AV B) :

w

(s. 0V s.c# NULL)
A (sl = NULLV (s.l # s.cNs.l € s.w))
A (s.c= NULLV s.c & s.w)

iNUSystem(s) =

Juste pour expliger d’ou viennent les old’s. La notation dessus est une abbreviation pour :
invsystem(s)(0) = (s.w(o) =0V s.c(o) # NULL)

A (s.(c) = NULLV (s.l(c) # s.c(o) A s.l(o) € s.aw(0)))

A (s.c(c) = NULLV s.c(o) ¢ s.w(o))

.. ce qui explique que NVUsystem(S)(0pre) est equivalent de :

inUSystem(S)(Opre) = (old(s.w) =0V old(s.c) # NULL)
A (old(s.l) = NULLV (old(s.l) # old(s.c) A old(s.l) € old(s.w)))
A (old(s.c) = NULLV old(s.c) & old(s.w))

On obtient I’expression suivante pour 'opération swap :

DPreswap(s)(Opre) N POStswap(S)(Tpre, o) = old(s.w) # 0
AT € old(s.w)
Nsc=r
A s.w = old(s.w) U {old(s.c)} \ {r}
A s.l = old(s.c)
A (old(s.l) = NULLV |old(s.w)| < 1V r # old(s.l))

(1) (2) 3)

On n’a pas besoin de déplier plus les invariants, étant donné qu’on va a chaque fois pouvoir
simplifier les disjonctions. Par exemple, dans la post-condition, on a old(s.w) # (), la premiére
disjonction de I'invariant old(invsystem(s)) se réduit donc au second terme old(s.c) # NULL.

On prend la conjonction globale des invariants dans les deux états et des pré-post de swap,
en simplifiant les parties des invariants qui peuvent I’étre. L’invariant dans I'état s est clairement
vérifié.

inUSystem(S)(O'pre) A in'USystem(S)(O'pre)
APTeswap(8)(Tpre) A POStswap(s)(Opre,0) = old(s.c) # NULL
A (old(s.l) = NULLV (old(s.l) # old(s.c) A old(s.l) € old(s.w)))
A old(s.c) & old(s.w)
Nold(preswap(s)) N postswap(s)

On va ensuite découper les cas selon la disjonction de la post-condition dont on a numéroté
chaque terme par (1), (2) et (3). On obtient alors pour (1) :

C, = old(s.w) # 0
A1 € old(s.w)
Nsc=r
A saw = old(s.w) U {old(s.c)} \ {r}
A s.l = old(s.c)
A old(s.l) = NULL (1)
A old(s.c) # NULL old(inv)

(s.
A old(s.c) & old(s.w)

Ce cas de test correspond donc au cas ot old(s.last) est null : p est alors n’importe quel processus
de old(s.waiting) et ’ancien processus courant devient s.last et remplace result dans s.waiting (cas
2 dans la question 1).

Pour (2), on obtient deux cas :

Cy = old(s.w) # 0
AT € old(s.w)
Nsc=r
A saw = old(s.w) U {old(s.c)} \ {r}
A s.l = old(s.c)
A lold(s.w)| <1 (2)
A old(s.c) # NULL old(inv)
A old(s.l) = NULL
A old(s.c) & old(s.w)

cy = old(s.w) # 0
A1 € old(s.w)
ANsc=r
A saw = old(s.w) U {old(s.c)} \ {r}
A 8.l = old(s.c)
A lold(s.w)| <1 (2)
A old(s.c) # NULL old(inv)
A old(s.l) # old(s.c) A old(s.l) € old(s.w))
A old(s.c) & old(s.w)

Le premier cas correspond au cas ou old(s.last) est vide et ou old(s.waiting) ne contient qu’un
seul processus. A ce moment-la, result est forcément ce processus et le processus courant devient
s.last et remplace le processus présent dans s.waiting (cas 4 dans la question 1).

6

Le deuxiéme cas correspond aussi au cas ou old(s.waiting) ne contient qu’un seul processus
mais ou s.last n’est pas vide. Le processus result est alors forcément le processus contenu dans
old(s.waiting), qui est lui-méme forcément égal a celui contenu dans old(s.last). C’est le seul cas
ot le systéeme a le droit de choisir le processus de old(s.last) comme nouveau processus courant
(cas 3 dans la question 1).

Pour (3) on obtient :

Cy = old(s.w) # 0
AT € old(s.w)
Nsc=r
A s.w = old(s.w) U{old(s.c)} \ {r}
A s.l = old(s.c)
A T # old(s.l) (3)
A old(s.c) # NULL old(inv)
A old(s.l) # old(s.c) A old(s.l) € old(s.w))
A old(s.c) & old(s.w)

Ce cas correspond au cas général ot old(s.waiting) est quelconque et ou old(s.last) n’est pas vide.
Le processus result est alors choisi dans old(s.waiting) de fagon a ne pas étre égal a old(s.last) (cas
1 dans la question 2).

Question 4 On représente une instance de test par les valeurs de s.w, s.l et s.c avant et aprés

Popération, plus le résultat renvoyé. On prend un ensemble de processus pi,ps,ps3,P4-.. tous
différents.
Objectif de test Données d’entrée Résultat attendu
old(s.w) old(s.l) old(s.c) s.w sl s.c | result
C1 {p1,p2,p3} 0 {pa} | {p1,p2, 03,4} \ {P} {pa} {p} P
ou p € {p1,p2, 3}

& {p2} 0 {p1} {p1} {pi} {p2} | po

& {ps} {ps} {p1} {p1} {p1} {ps}| ps

Cs {p1,p3,p4} {p3} {p2} | {p1,p2,p3, 4} \ {P} {p2} {p} P

ot p € {p1,pa}

Pour que les cas restent disjoints, il faut bien choisir I'ensemble s.waiting : lorsqu’il n’a pas de
contrainte, il faut qu’il contienne plusieurs processus (au moins 3 pour étre suffisamment général).

On remarque qu’on a un cas particulier du cas 3 lorsque old(s.waiting) ne contient que deux
processus : le processus choisi est alors forcément celui qui n’est pas dans old(s.last).

Question 5 On fera attention a réinitialiser 1’état entre chaque test, de maniére a assurer
l'indépendance des tests. On a qu’un seul observateur, la fonction swap, qui renvoie le processus
devenu courant. On n’a aucun moyen de connaitre la valeur de last ni I’ensemble waiting. NB :
on n’est pas obligé d’utiliser JUnit pour vérifier la valeur de current a la fin du test, on peut
tout aussi bien écrire return (c == pl).

Cas Cy du tableau précédent.

// préambule du test : on crée 1’état dans lequel
init)

add (p1) // current
add (p2) // current

pl
pl, waiting = {p2}

// corps du test : on appelle swap
c = swap() // current = p2, last = pl, waiting =

// identification de 1’état atteint : c doit etre
assertEquals(c,p2)

Cas CY du tableau précédent.

// préambule du test : on crée 1l’état dans lequel
init ()

add (p1) // current = p1l
add (p2) // current = pl, waiting = {p2}
swap () // current = p2, last = pl, waiting =

// corps du test : on appelle swap
c = swap() // current = pl, last = p2, waiting

// identification de 1’état atteint : c doit etre
assertEquals(c,pl)

Cas particulier du cas C3 du tableau précédent.

// préambule du test : on crée 1’état dans lequel

appeler swap pour le cas 2

{p1}

p2. En JUnit

appeler swap pour le cas 2’

{p1}

{p23}

pl. En JUnit

appeler swap pour le cas 3

// (le cas ol il y a seulement deux processus en attente)
// on ajoute deux processus, on les swap pour savoir lequel est dans last,

// puis on ajoute le 3e

init)

add (p1) // current = pl

add (p2) // current = pl, waiting = {p2}

swap () // current = p2, last = pl, waiting =
add(p3) // current = p2, last = pl, waiting =

// corps du test : on appelle swap
¢ = swap() // current = p3, last = p2, waiting =

// identification de 1’état atteint : c doit etre
assertEquals(c,p3)

Cas général du cas C3 du tableau précédent.

{p1}
{p1,p3}

{p1,p2}

p3. En JUnit

// préambule du test : on crée 1’état dans lequel appeler swap pour le cas 3
// on ajoute deux processus, on les swap pour savoir lequel est dans last,
// puis on en ajoute deux autres

init)

add (p1) // current = pil

add (p2) // current = pl, waiting = {p2}

swap() // current = p2, last = pl, waiting = {pi1}

add (p3) // current = p2, last = pl, waiting = {p1,p3}
add (p4) // current = p2, last = pl, waiting = {pl,p3,p4}

// corps du test : on appelle swap
c = swap() // current = p3 ou p4, last = p2, waiting = {pl,p3 ou p4}

// identification de 1’état atteint : on ne sait pas si c est égal a p3 ou p4
assertTrue(c == p3 or ¢ == p4)

Cas (1 du tableau précédent.

// préambule du test : on crée 1’état dans lequel appeler swap pour le cas 1
// on ajoute tous les processus avant d’appeler swap, pour que last reste vide
init ()

add(p1) // current = pl

add(p2) // current = pl, waiting = {p2}

add (p3) // current = pl, waiting = {p2,p3}
add (p4) // current = pl, waiting = {p2,p3,p4}

// corps du test : on appelle swap
c = swap() // current = p2 ou p3 ou p4, last = pi,
// waiting = {p1,p2,p3,p4} - current

// identification de 1’état atteint : on ne sait pas si c est égal a
// p2 ou p3 ou p4
assertTrue(c == p2 || ¢ == p3 || c == p4)

