®

Check for
updates

A Theory of Proc-Omata—and Proof
Methods for Process Architectures

Benoit Ballenghien® and Burkhart Wolff®&0)

LMF, Université Paris-Saclay, Paris, France
benoit.ballenghien@universite-paris-saclay.fr, wolff@lmf.cnrs.fr

Abstract. This work is based on Isabelle/HOL-CSP 2.0, a shallow
embedding of the failure-divergence model of denotational semantics pro-
posed by Hoare, Roscoe and Brookes in the eighties. In several ways,
HOL-CSP is actually an extension of the original setting in the sense
that it admits higher-order processes and infinite alphabets.

In this paper, we present a particular sub-class of CSP processes which
we call Proc-Omata, a fantastic beast between processes and functional
automata. For this class of processes, particular proof techniques can be
applied allowing for reasoning over unbounded families of sub-processes
and similar architectural compositions.

We develop the basic theory of deterministic terminating and non-
terminating Proc-Omata, both their relation to conventional CSP pro-
cesses as well as possible transformation operations on them. As an appli-
cation of Proc-Omata theory, we demonstrate the use of so-called com-
pactification theorems that pave the way, for example, to proofs over
process rings of arbitrary size.

Keywords: Process-Algebra - Concurrency + Automata -
Computational Models + Theorem Proving - Isabelle/HOL - CSP

1 Introduction

Communicating Sequential Processes (CSP) is a language to specify and verify
patterns of interaction of concurrent systems. Together with CCS and LOTOS,
it belongs to the family of process algebras. CSP’s rich theory comprises denota-
tional, operational and algebraic semantics.

The theory of CSP was first described in 1978 by Tony Hoare, and detailed in
a book in 1985 [15], but has since evolved substantially [7,8,27]. The denotational
semantics of CSP is described by a fully abstract model of behaviour designed
to be compositional: a process P encompasses all possible behaviours, i.e. sets
of traces annotated by additional information that allow to reason over

— deadlocks (the resulting semantic domain is called failure semantics F')
— and additionally livelocks (the failure/divergence semantics FD).

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. Anutariya and M. M. Bonsangue (Eds.): ICTAC 2024, LNCS 15373, pp. 1-18, 2024.
https://doi.org/10.1007/978-3-031-77019-7_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-77019-7_16&domain=pdf
http://orcid.org/0009-0000-4941-187X
http://orcid.org/0000-0002-9648-7663
https://doi.org/10.1007/978-3-031-77019-7_16

2 B. Ballenghien and B. Wolff

Several attempts have been undertaken to formalize this fairly complex theory,
notably [16,19,24,32]. The presented work here is based on HOL-CSP [3,4,6,29,
31], a shallow embedding of the denotational and operational semantics theory
in the proof-assistant Isabelle/HOL. HOL-CSP is in several ways not only a
formalization, but a generalization of the original setting:

— type ’a trace is constructed over an arbitrary type ’a in HOL, paving the way
for events carrying dense-time, vector-spaces, etc.!,

— in general, HOL-CSP attempts to remove finiteness-restrictions, and

— the semantic domain is encapsulated in the type ’a process belonging to the
class of complete partial orders (cpo’s). Process patterns are functions in
higher-order logic (HOL), and thus first-class citizens.

In this paper, we present the formal theory of Proc-Omata built on top of HOL-
CSP. Proc-Omata are a sub-class of CSP processes, that have an extremely
simple process structure but possess a functional automata [22,23] inside which
can have an infinite state and communication alphabet. For certain process-
patterns such as an i-indexed family of interleaving processes ||| i €# M. P i,
it is possible to convert this pattern into a Proc-Omaton provided that the
P i can be converted into Proc-Omata. Since this construction is possible for
index-sets M of arbitrary size, this paves the way for proofs of properties such
as deadlock or livelock freeness over process-patterns. The key-instruments of
this constructions are a particular form of equations we call compactification
theorems that we formally prove correct in this paper.

Functional automata consist of a transition function = coming in two flavors;
non-terminating and potentially terminating ones.
Now, a Proc-Omaton has the general form of a CSP process schema:

wX. (Ao.O0e€ecAoc—F (1rAoce)X)

where p is the recursion operator over process functions (here: parameterized over
an internal state o), O a choice-operator ranging over a set of events, 7 A is the
transition function of the automaton A, ¢ A ¢ computes the set of events for
which A is enabled (ready to make a transition) in the state o and the function F
depends on whether A is non-terminating or potentially terminating (see Sect. 3
and Sect.4). In all cases, the resulting fixed point is a function of type ‘o = ‘e
process. When P is a Proc-Omaton, classic CSP theory gives us from some state
o the definitions for the set of traces 7 (P o), the set of failures ¥ (P o) and
the set of divergences D (P o). The latter is always empty: Proc-Omata have no
divergences.

At first glance, one might think that this concept is too restrictive to be
useful in practice. A closer look reveals that the contrary is actually the case, as
the following example illustrates:

Example 1. Consider the Collatz Process:

Collatz = p X. (An. (Ox € {0, 1} N {n} — SKIP)
O (Ox € (Even - {0}) N {n} — X (x div 2))
O (@Ox € (0dd -{1}) n{n} = X (3 *x + 1))

! Or even differential equations as in cyber-physical system models [11].

A Theory of Proc-Omata 3

ne€Even | n—n/2

n € {0, 1}
SKIP Collatz n

Fig. 1. The Collatz Function seen as Process

n € O0dd | n+ 3*n+1

Note that the Collatz function is unknown to be terminating; a standard defi-
nition in HOL as a recursive function is therefore out of reach. This example
shows, however, that it is perfectly possible to represent the Collatz process as
a recursive HOL-CSP process, since HOL-CSP is built for modeling potentially
non-terminating computations. Figure 1 represents its behaviour as a symbolic
Labelled Transition System (LTS), which has the format of an extended finite
state machine (EFSM) where the underlying Proc-Omaton is potentially ter-
minating (see Sect.). The resulting Proc-Omaton transition definitions are a
tedious but direct translation of the symbolic LTS above:

7 Collatz_ A 0 e = O

7 Collatz_ A |n] e = (if n = e then if n € {0, 1} then ||
else if even n then ||n div 2|
else [[3 *n + 1]] else ¢)

where ¢ and |_| are a notation for None and Some of the ’a option-type.

The example above gives rise to a particular proof-methodology which is depicted
in Fig.2 and Fig.3. First, we construct a Proc-Omaton and prove that it is
equivalent to the initial process; this conversion proof can be done via fixed
point induction (see Theorem 2) or sometimes by model-checking. Second, we
apply the aforementioned compactification theorems over Proc-Omata which
trades so to speak the complexity of the underlying LTS of the process into the
complexity of the data space of the automaton. Third, we can prove properties
over the compactified Proc-Omaton by classical invariant reasoning.

We proceed as follows. After an introduction to “classic”’ CSP and
our extension HOL-CSP and HOL-CSPM in Isabelle/HOL, we present the
core-constructions of this paper: formal definitions of terminating and non-
terminating Proc-Omata, a number of basic and advanced theorems over them,
and the compactification theorems allowing to internalize compositions of Proc-
Omata. Finally we illustrate this with some examples.

HOL-CSP [31] and HOL-CSPM [3] are published in the Archive of Formal
Proofs AFP. Wrt. the session HOL-CSP_ Proc-Omata see the developer version
https://gitlab.lisn.upsaclay.fr /burkhart.wolff /hol-csp2.0/. Note that our formal
theories cover also non-deterministic versions of Proc-Omata; however, their
detailed presentation is out of scope of this paper due to space limitations.

https://gitlab.lisn.upsaclay.fr/burkhart.wolff/hol-csp2.0/

4 B. Ballenghien and B. Wolff

T
N
SN <~
"2 N Y/
Fig. 2. Conversion of an LTS
71 Tn ®Tz

Fig. 3. Compactification

2 Background

2.1 Classic CSP Syntax

At a glance, the fragment of the classic CSP core language we will be using in
this paper reads as follows:

P:=SKIP |STOP |POP |PNP |PJA]P | PP | P\ A
|]a—P|0acA—Pa|RenamingP g | puX X

SKIP signals termination and STOP denotes a deadlock.

Two choice operators are distinguished: the external one [forces a process
“to follow” whatever its context requires and the internal one M _ imposes on
the context of a process “to follow” the non-deterministic choices made.

The later is generalized to unbounded non-determinism: Ma € A. P a where
A may be infinite at the price of loosing continuity (which has no incidence
here since non-deterministic versions of Proc-Omata are out of scope of this
paper).

From the former and the prefix operator a — P which signals a (where a is an
element of a set of events) and continues with P, the multi-prefix deterministic
choice OJacA — P a is constructed. When events are tagged with channels, i.e.2
= CHANNELS x DATA, syntactic sugar like ¢?x—P x or c!x—P x is added; the
former reads intuitively as “x is read from channel ¢” while the latter means “x
is sent into ¢” (where ¢ € CHANNELS and x € DATA).

The sequential composition P ; P’ behaves first like P and, once it has suc-
cessfully terminated, like P’. We denote by P \ A the process obtained from P
after hiding the events of the set A. Similarly, Renaming P g is a process in which
each event e of P was renamed in g(e).

A Theory of Proc-Omata 5

The fixed point p X. f X operator provides a solution to P = f P (but requires
precautions, see Sect.2.4). The synchronized product P [A] P’ is a primitive for
all communication. It is abbreviated as P ||| P’ when A = 0 (interleaving) or P ||
P’ when A = UNIV (parallel), where UNIV :: ’a set is the universal set over the
type ’a. Last but not least, the multi-prefix non-deterministic choice appearing
in the definition of deadlock freeness (cf Theorem 4) is simply defined as Ma € A
—Pa=MNa€cA a—Pa.

2.2 Classic CSP Semantics

The denotational semantics (following [27]) comes in three layers: the trace
model, the (stable) failures model and the failure/divergence model.

In the trace semantics model, the behaviour of a process P is denoted by a
prefix-closed set of traces, denoted 7~ P, similar to the well-known concept of a
“language of an automata”. Since traces are finite lists and infinite behaviour is
therefore represented via the set of approximations, an additional element tick
(written v) is used to represent explicit termination signalized by SKIP. Obvi-
ously, v should only appear at the end of a trace (i. e. traces are front_tickFree).

It is impossible to distinguish external and internal non-determinism in the
trace model since the traces of both operators are just the union of their argu-
ment traces. To be more discriminant, 7] proposed the failure semantics model,
where traces were annotated with a set of refusals, i.e. sets of events a process
can not engage in. This leads to the notion of a failure (t, X) € # P which is
a pair of a trace t and a set of refusals X. Finally, [7] enriched the semantic
domain of CSP with one more element, the set of divergences (written D P), in
order to distinguish deadlocks from livelocks®. In the failure divergence model,
the semantic domain consists of a pair of failures and divergences, where the
latter are traces to situations where livelocks may occur.

While Hoare Logics is a framework to reason over terminating calculations,
CSP and process refinement are designed to reason over non-terminating ones.
Several variants of refinement were considered, but the most important one is
the failure-divergence refinement:

PCrpQ=FPO2FQADPODQ

It turns out that beyond common protocol refinement proofs and test prob-
lems, many properties such as deadlock or livelock freeness can be expressed via
a refinement statement. Moreover, this is a partial order, thus allowing proofs
by double refinement.

2.3 Theories in Isabelle and HOL

Isabelle is a major interactive proof assistant implementing higher-order logic
(HOL). As an LCF style theorem prover, it is based on a small logical core

2 Also called infinite internal chatter as occurring in processes like y x. a — x \ {a}.

6 B. Ballenghien and B. Wolff

(kernel) to increase the trustworthiness of proofs. The Isabelle distribution comes
with a number of library theories constructed solely from definitional axioms;
among them theories for sets, lists, arithmetics, and analysis.

A particularly relevant library-theory is HOLCF Scott domain theory [21,28]
providing a particular type class for pointed complete partial orders ’a, i.e. the
class of types ’a which posses a least element | and a complete partial order
_C . The type-system uses type-classes to infer automatically that if b is a
pcpo, then the function space ’a = b is also a pcpo.

For types of pcpo, HOLCF provides a theory of continuity, the concept of
admissibility, the fized point induction and the least fixed point operator p x. f x.

2.4 Isabelle/HOL-CSP

Isabelle/HOL-CSP is a shallow embedding of CSP in HOL based on the traditional
semantic domain described by nine well-formedness conditions (that we omit
here) over the three semantic functions 7 :: ’a process = ’a trace set, ¥ :: ’a
process = ’a failure set and D :: ’a process = ’a trace set expressing well behaviour
for processes. The core of HOL-CSP is to encapsulate wellformedness into a type
definition. This is achieved by via the specification construct:

typedef ’a process = "{P :: ’a processy . is_process P}”

creating a new type which is isomorphic to the subset of ’a processo’es satisfy-
ing the predicate is process capturing the well-formedness conditions, where ’a
processp is an abbreviation for ’a failure set x ’a divergence set. Subsequently, we
define each CSP operator in terms of ’a processp and lift them to ’a process by
proving the preservation of the is_process-invariant (thus formalizing [27]). The
preservation even holds for arbitrary (possibly infinite) sets A in the generalisa-
tions OxeA — P x resp. Nx€A — P x. Note that both use higher-order abstract
syntax and have the type ’a set = (’a = ’a process) = ’a process.

In order to give semantics to the fixed point operator (and thus access to
the theory HOLCF), it is shown that ’a process belongs to the type class pcpo,
which also gives higher-order functions over processes a pcpo structure. Recall
that Scott domains provides semantics for the fixed point operator p X. f X only
under the condition that f is continuous wrt. a complete partial ordering. Since
the natural ordering Cprp _ is too weak for this purpose, Roscoe and Brookes
[25] proposed a complete process ordering P = Q which is stronger, i.e.P C Q
= P Crp Q, and yet ensures completeness at least for general read and write
operations (see session HOL-CSP for technical details). With this ordering, the
following core theorem is established:

Theorem 1 (Continuity). Almost every operator ® is continuous i. e.:
cont f = cont g = cont(Ax. (f x) ® (g x))

Based on the lemma that Crp is admissible for the fixed point induction,
when f is continuous we have an induction rule of the following form:

A Theory of Proc-Omata 7

Theorem 2 (Fixed-point Inductions). For continuous functions f, we have:

CLErp Q= (Ax.CxCrpQ=C(fx)Erp Q) = C (uX. fX)Crp Q

Proposition 1 (CSP-Algebra). HOL-CSP provides about 200 rules derived
from the denotational semantics, be it monotonicities or equalities, constituting
what is often called the “algebraic semantics” in the literature. We show here only
the small collection:

POQ- QODP POP-P PO(QODR) =(POQOR
Ox€A UB — P x = (0acA — P a) O (ObeB — P b)
Vy.cyeS) =cx—=Px[S]c?x - Qx=c?x — (P x[5] Qx)
Vy.cy¢ B=cla— P\ B=cla— (P\ B)
caeEB=cla—-P\B=P\B etc.

The theories HOL-CSP and HOL-CSPM [3] also add a number of extensions of
the original language. This includes the generalization of synchronization indexed
by a multiset M: [S]i €# M. P i, the generalization of sequential composition
indexed by a list L: SEQ 1 €@ L. P i, etc.

3 Deterministic Proc-Omata

3.1 Motivations

Refinements proofs can quickly become counter-intuitive and fastidious, espe-
cially when modeling concurrent systems built from iterative architectural com-
positions®. We propose a certain subclass of CSP processes Proc-Omata to which
many processes occurring in practice can be equivalently represented.

We start with another example, a simple counter of two events communicated
by the environment:

Fig. 4. LTS for the integer counter example

3 In the CSP literature, the synchronous product P [S] Q, Hiding P \ S and Renaming
were called the architectural composition operators.

8 B. Ballenghien and B. Wolff

Example 2 (Counter for integers). Given two distinct events inc (increase)
and dec (decrease), we can define a counter for integers as follows:
cnt = p X, (An. (inc — X (n + 1)) O (dec — X (n - 1)))

Note that if inc and dec are of type ’a, the fixed point operator acts on a
function of type int = ’a process; and since a process belongs to the type class cpo,
this implies that int = ’a process also belongs to the cpo class. Thus, type inference
establishes that the least fized point exists (and by proving that this process has
no divergence, one could also establish that such a fized point is unique) or in
other words that cnt is well defined. This results in a process function of type int
= ’a process that is parameterized in the initial state, something we could call a
higher-order process. To rephrase this, we have defined for each integer a process
whose relationship to the others can be illustrated by the LTS in Fig. 4. Note that
its non-symbolic presentation makes the state-space infinite.

From algebraic properties of Mprefix and Det in HOL-CSP (cf Proposition 1),
and relying on the fact that inc and dec are distinct, we can rewrite our counter
process as follows:

cnt = (p X. (An. Oe€{dec, inc} — (if e = inc then X (n + 1) else X (n - 1))))

This example gives the intuition of what is a deterministic Proc-Omaton: a
fixed point within which there is only one step given by a multi-prefix determin-
istic choice.

3.2 Formal Definitions

We capture the intuition of the example above, by a formal definition of our
notion of a deterministic Proc-Omaton: it is a higher-order process canonically
associated with a functional automaton [23]. Let us first define a deterministic
automaton by a record in Isabelle/HOL.

Definition 1 (Abstract syntax of a deterministic automaton).

record ("o, ’e) Ag = 7 :: <o = ’e = ’o option,

This command creates the record named Ag, of type ('o, ’e) Aq ("o and ’e being
of course polymorphic), and 7 is the name of the record’s field.

Intuitively ’o is the type of the states and ’e the type of the transitions.

Isabelle/HOL records support a limited form of object-orientation; records
are extensible (i.e. new fields my be added, while theorems established over an
extensible record remain valid for the extensions). We will exploit this feature
in the following.

We now provide the formal definitions of enableness, reachability set and
Proc-Omaton associated with an automaton.

A Theory of Proc-Omata 9

Definition 2 (Enableness). Let A be an automaton of type (o, ’e) Aq; its
transition function is accessible via by T A. From this, we derive the following
notion:

cAo={e|7TAoce#}

Definition 3 (Reachability set of an automaton).

inductive _set Rq :: (o, 'e) Aqg = 'o = ’o set> («Rgq»)
for A :: <(o,’e) Ag» and o i o
where init : <0 € Rg A o>
| step: <0’ ERgAs= |0)]=TAce=0 €Ry Ao

Definition 4 (Deterministic Proc-Omata). To an automaton A we asso-
ciate a parametric process that we call a “Proc-Omaton”. It is a function of type
‘o = ’e process that we denote by:

P[Ala=pX. (Ao.OeceAoc—X([TAoe]))
where [y:’a option] denotes the x::’a such that y = |x] when y # 0.

Example 3 (Proc-Omata for the integer counter). We associate to the
process cnt presented in Example 2 the deterministic automaton:

A = (7 = Ane. if e = inc then |n + 1] else if e = dec then |n - 1] else O
and prove that cnt n = P[A]4 n.

When applying the operational rules of CSP to processes [4], our intuition
that process proceeds by transiting between several “states” can be made explicit.
In this paper, we use a simpler construction that just requires that they exist
and are explicitly accessible.

3.3 Properties of Proc-Omata

As mentioned earlier, a deterministic Proc-Omaton can be seen as a way of
accessing the states of the process from which we built an automaton. This paves
the way for using the underlying automaton for establishing indirectly proper-
ties about processes. The following formally proven results constitute bridges
between CSP and automata theory.

The first notable thing is that the step function is continuous. We can con-
sequently unfold the fixed point, leading to our first property.

Proposition 2 (Unfolding). P[A]lac =0ec€e Ao — P[Ala [T A o €]

Theorem 3 (Termination). non_terminating (P[A]4 o)
where non_terminating s a predicate over processes expressing that no trace is
ending normally with /.

10 B. Ballenghien and B. Wolff

The notion of reachability set defined earlier Definition 3 leads to the two
following characterizations.

Theorem 4 (Deadlock). deadlock free (P[A]s o) = (Vo'€Rs A 0. 2 A o #)
where deadlock free is a predicate over processes defined as

deadlock free P = (u X. Me€UNIV — X) Crp P
expressing that “P can always make progress”.

Theorem 5 (Alphabet). events of (P[Ala o) = (¢ A “ Ry A o)
where events _of P is the alphabet of the process P.

Finally, an interesting yet not too surprising property is that deterministic
Proc-Omata correspond to deterministic processes. This concept is defined in
the CSP theory such that no continuation of a trace can be in a refusals set
associated to it, i.e.deterministic P =Vse.s Qle] € T P — (s, {e}) ¢ ¥ P.

Since such processes are maximal for the (Crp) ordering, we only have to
establish the following refinement for proving the equality.

Theorem 6 (Deterministic equality). P[A]lq 0 Cpp P = P = P[A]s o

Thus, establishing the core of the Proc-Omata theory requires some work,
indeed. Now comes the benefit: the general theorems for compactification.

3.4 Compactification of Synchronization

It turns out that the Proc-Omata behave very well in synchronization contexts.
The main idea is that given two deterministic automaton A; and As of type
(o, e) Aq and a synchronization set E (of type ’e set), we construct a new
deterministic automaton Ay ¢®[E]sin A1 of type ('o list, ’e) A4 such that
P[Ao]a oo [E] P[A1]a o1 = P[Ao ¢®[E]sin A1]a [00, o1]

under some assumptions on enableness independence that we will discuss later.
We omit the formal definition of this binary operator here (which is essentially
a translation of the synchronization behavior into the automaton product), but
we draw the reader’s attention to the choice of ’o list instead of o x ’o. This
is so that we can inductively generalize the product, leading to what we call a
compactification theorem.

Theorem 7 (Compactification of Synchronization). Assuming |os| = |cA|
and a generalization of the hypothesis of independence on the enableness:

[E] (o, A)e#mset (zip os cA). P[A]a 0 = P[a@ [E] cA]a os

If we say that this generalization from the binary to the n-ary case is intuitive,
this does by no means imply that the underlying proofs are straight-forward; this
part of the Proc-Omata theory took about 1500 lines of definitions and dense
proofs in Isabelle/HOL, in short because synchronization gives rise to many cases
to be dealt with during the proof by double refinement.

A Theory of Proc-Omata 11

The importance of Theorem 7 lies in the fact that an iterative synchronization
of an arbitrary number of Proc-Omata can be reconstructed into a Proc-Omaton,
paving the way for invariant proof techniques in combination with what we
evoked in Sect. 3.3.

Note that the order in which the Proc-Omata appears is arbitrary, but we
have to track the associated state, and this is why the zip function seems to
appear from nowhere.

Some basic ideas of this result already appeared in [30] from 2020. But instead
of one transition function 7, the enableness € had also to be defined independently
(rather than having it as a derived concept). This made the construction more
difficult to understand, and obscured the compactification result that was hidden
inside a proof for a particular example. Moreover, only the case E = () and E =
UNIV i. e. interleaving and parallelism had been discussed, while the above form
of the compactification is suited for arbitrary synchronization sets.

As mentioned earlier, our result is always available as soon as we have the
independence assumption on the enableness (we write the binary version here):

Voo € Rqg Ag 0. Vo1’ € Ry A1 01. € Ag 9’ Ne Ay o1’ CE

This is necessary if we want to remain with deterministic automata, because

otherwise the synchronization would not be a deterministic process anymore.

4 Potentially Terminating Proc-Omata

In this section, we discuss a variant of Proc-Omata as introduced in Sect. 3,
which were non _terminating automata. They may deadlock, but never gracefully
terminate with SKIP. However, since this may be useful for numerous applica-
tions, we have extended our definitions to cope with this kind of situation. We
will concentrate a few key-results of the deterministic case.

4.1 Formal Definitions
Actually our records have an additional field: Sg, the set of final states.

Definition 5 (Abstract syntax of a deterministic automaton). We add
an additional field in the record with the concept of a final state, i.e. a state
representing that SKIP has been reached:

record (’o,’e) Ag = 7 = <o = ’e = o option» Sp :: (o set»

Definition 6 (Deterministic SKIP-Proc-Omata). The process scheme cor-
responding to a SKIP-Proc-Omaton reads as follows:

Pskrp[Ala = p X. (Ao. if 0 € Sp A then SKIP else Oece A 0 — X [T A o e])

Note that the Collatz process shown in Example 1 can be expressed as a Proc-
Omaton of this variant. This definition naturally generalizes Sect. 3.2, which is
a special case Sp A =). Such a fixed point can be unfolded in the same way as
in Proposition 2.

12 B. Ballenghien and B. Wolff

4.2 Properties of Potentially Terminating Proc-Omata

These new versions of Proc-Omata enjoy almost the same properties as the
previous ones, except that we now have to consider the possibility of termination
with SKIP. The counterparts of Theorem 3, Theorem 6 and Theorem 4 are as
follows:

non_terminating (Pskirp[A]d o) = (SF ANRy A o = ()

Pskip[Ala 0 Crp P = P = Pskrp[Ala o

fin states not enabled A =
deadlock freesxrp (Pskxip[A]a o) = (Vo'€éRaAc. 0’ € Sk AVeAdod #£0)

The latter theorem requires some explanation. deadlock freegxp P is a pred-
icate on P meaning that P is either always making progress, either terminat-
ing with SKIP. For establishing this result we need an additional assumption:
fin_states_not enabled A stipulating that e A o = 0 as soon as o € Sp A.

However, the most important result is the fact that we have managed to
extend the compactification of synchronization to such variants of Proc-Omata.
Admittedly, these rules have more the format of program transformation rules
(what they are) which are geared towards mechanization.

Theorem 8 (General Compactification of Synchronization). The gener-
alized form is technically quite dense, but this is due to the fact that it requires
a fairly large number of applicability conditions. We assume:

— |os| = |oA]
— VAecset 0A. fin_states_not_enabled A
- Vi<|oAl. Vj<|oA|. 1 # j — det_indep_enabl oA, os) E oAy osy) -

Thus [E] (o, A)e#tmset (zip os 0A). Pskrp[A]a 0 = Pskip[«® [E] cA]a os.

4.3 Compactification of Sequential Composition

The extension of our formalization for allowing potentially terminating Proc-
Omata was actually motivated by the fact that SKIP is the neutral element
for the sequential composition i.e.P ; SKIP = P and SKIP ; P = P. This makes
it possible to split big architectures into smaller sub-components, which can
potentially be Proc-Omata. But why should we only consider the binary case?
For the MultiSeq operator, we proved a compactification theorem in the same
philosophy as Theorem 8.

Theorem 9 (General Compactification of Sequential composition).
Again, the generalized form is technically quite dense. We assume:

oA £]]
~ Jos| = |oA|
— fin_states not_enabled (last cA).

Thus SEQ (0’, A)E@Zip os oA. PSKIPIIA]]d o = PSKIPIId@; O’Aﬂd os.

A Theory of Proc-Omata 13

5 Examples

5.1 Bounded Buffer

Let us first start with an example where conversion is immediate. Using a fixed
point we define a bounded buffer such that for every n and L:

BBufn L =
(n < N) & (input?x — BBuf (n + 1) (L @ [x])) O
(0 < n) & (output!hd L — BBuf (n- 1) (tl L))

where:

— nis a nat and L an ’a list

— the maximal size N of the buffer is non negative

— input and output are channels

— P & c is just an abbreviation for if ¢ then P else STOP.

We prove that this example can be easily “procomatized” with the following
transition function:

Aln, L) e.
case e of input x = if n < N then [(n + 1, L Q [x])] else ¢
| output x = if 0 <n A hd L = x then [(n- 1, tlL)| else ¢

From this it is straightforward to conclude that BBuf 0 [] is deadlock free, and
we can more generally use it inside an architecture with other Proc-Omata.

5.2 Dining Philosophers

A good illustration of the power of Proc-Omata reasoning is the paradigmatic
Dining Philosophers example, first introduced by Dijkstra in 1965 and refor-
mulated to the present form by Hoare [15]. The problem has been tackled by
many model checkers, who routinely solve this problem up to say 15 philosophers
before giving up due to state explosion.

The problem assumes that N philosophers—with N an arbitrary number—
are dining around a round table, each one sharing his right and left fork with
his left and right neighbour respectively. However, philosophers need two forks
to actually eat, a naive strategy to just grab both forks may therefore result in
a deadlock.

In the following, we present a formalization in HOL-CSP. We start to define
the channels by a datatype:

datatype dining event = picks nat nat | putsdown nat nat

Based on these events, we construct a number of simple processes representing
right-handed philosophers (they pick the fork to the right first), a left-handed
philosopher, and forks:

14 B. Ballenghien and B. Wolff

Definition 7 (Basic Processes).

RPHIL i = p X. picks i i — picks i ((i - 1) mod N) —
putsdown i ((i - 1) mod N) — putsdown ii — X

LPHILO = p X. picks 0 (N - 1) — picks 0 0 —
putsdown 0 0 — putsdown 0 (N - 1) — X

FORKi=puX. (picksii — putsdownii — x)
O (picks ((i + 1) mod N) i — putsdown ((i + 1) mod N) i — X)

Using the architectural operator multi-interleave, philosophers and forks are
“wired together” as follows:

Definition 8 (Architecture of right-handed Dining Philosophers).

RPHILS = ||| i€# mset [0..<N]. RPHIL i

RPHILS’ = ||| i€# mset [1..<N]. RPHIL i

FORKS = ||| ic# mset [0..<N]. FORK i
RDINING = FORKS || RPHILS

Reasoning about a potential deadlock for such a system can be difficult:
you do not really know where to start in the ring. But it is straightforward to
construct for the simple processes of Definition 7 equivalent deterministic Proc-
Omata. In more details, this can be achieved for the forks and the right-handed
philosophers. With the appropriate definitions we prove FORK i = P[fork A i]4
0 and RPHIL i = P[rphil A i]q 0. Finally, using the compactification Theorem 7,
we obtain a big Proc-Omaton equivalent to RDINING.

We show that ([1 ... 1],[1 ... 1]) (both lists length N) is reachable from the
initial state ([0 ... 0],[0 ... 0]), and that in this state our big Proc-Omaton has its
enableness empty. (This corresponds to the situation where each philosopher has
picked his right fork, thus no left fork is available). With the characterization
Theorem 4, we have proven that RDINING deadlocks for any N > 1.

By modifying the construction to DINING = (FORKS || (LPHILO ||| RPHILS’))
i.e. replacing the first right-handed philosopher by a left-handed one, we
can again compactify, and prove by invariant on the Proc-Omaton for DIN-
ING that every reachable state is enabled, which results with Theorem 4 in
deadlock free DINING.

We emphasize, again, that these proofs are independent from N and that the
fully formalized proofs for e.g. deadlock free DINING can be found in session
HOL-CSP _Proc-Omata.

A Theory of Proc-Omata 15

5.3 Copy Buffer with a Queue

Even if a process is not completely convertible in a Proc-Omaton, the technique
may be applicable for crucial sub-problems. Let us consider a copy buffer with
a queue where the data transmitted by the sender is stored until the recipient
actually receives it. The queue may have arbitrary size and be parameterized
over an arbitrary type ’a.

Again, we define the channels of the process via a datatype:

datatype ’a chan = left ’a | enqueue ’a | dequeue ’a | right ’a

Definition 9 (Definitions for a Queue Buffer). The definition of the
Queue-Buffer is as follows:

send = p X. left?x — enqueue!lx — X
rec = p X. dequeue?x — right!x — X

queue = p X.(AL. (enqueue?x — X (x # L))
O(if L = [] then STOP else dequeue!last L — X (butlast L)))

QueueBuffer pre L = send [range enqueue] (queue L [range dequeue] rec)
QueueBuffer L = QueueBuffer pre L \ range enqueue U range dequeue

We can write send, rec and queue as Proc-Omata without much difficulty,
and treat therefore QueueBuffer pre with compactification. As a consequence
of Theorem 4, we immediately obtain that QueueBuffer pre is deadlock free by
establishing that enableness is always non-empty. Because of the Hiding opera-
tor, however, the entire QueueBuffer can not be converted. Fortunately, for the
obtained Proc-Omaton for QueueBuffer pre, we can still apply a fixed point
induction where we let the state free variable. This allows us to look only one
step ahead and prove relatively easily that QueueBuffer is deadlock free.

6 Related Work

The theory of CSP has attracted a lot of interest since the eighties and
nineties, both as a theoretical device as well as a modelling language to analyze
complex concurrent systems. Not surprisingly, numerous formalisation attempts
have been undertaken with the advent of powerful interactive proof assistants.
This ranges from pioneering work in HOL4 [9], fragments of operational seman-
tics as in [24] and [16] and first attempts towards a symbolically working tool
[12,17-19]. Our CSP background theory contained in [3,5,6,29,31] represents to

16 B. Ballenghien and B. Wolff

our knowledge the most comprehensive formal treatment of the theory of CSP
(cf. [4] for a more in-depth comparison over existing approaches).

Parametric verification attracted a lot of interest, in particular in model-
checking communities, in order to overcome the obvious limitations of finite mod-
els. This applies for stochastic model-checking [13], linear time model-checking
[2], or protocol verifiers [10,14] just to cite a few out of a plethora of publications.

Attempts for parametric model-checking can also be found in the closer
related field of process algebras. Notably [1,20,26] attempted to find process
characterizations to generalise finite results to infinite ones by data-independence.
Roscoe developed a data independent technology to verify security protocols
modelled with CSP/FDR, which allows the node to call infinite fresh values for
nonces, thus infinite sequence of operations [26]. We’d like to object that our
approach, albeit having the apparent drawback to be based on interactive the-
orem proving, achieves similar or even more general results with finally lesser
effort?.

7 Conclusion

We presented a formalization of Proc-Omata and the cornerstones of their the-
ory. The interest in Proc-Omata lays in the fact that they may serve as a bridge
between process algebras and automata theory. They can be seen as a compro-
mise: by conceding a certain expressiveness, we obtain powerful proof techniques
by reusing product-automata constructions and their properties. We actually
presented several motivations and variants with increasing levels of abstrac-
tion before giving an overview of the key results: the compactification theorems
geared at process synchronization families.

We illustrated this with three examples: the bounded buffer, where the con-
version to Proc-Omaton is straightforward, the Dining Philosophers where the
situation of a parameterized unbounded ring of processes fits our theory per-
fectly, and the queue buffer where Proc-Omata-techniques can at least be used
for critical sub-components.

Our construction motivates several lines of future research:

— automated conversion of processes in their Proc-Omata counterpart

— the extension of our theory to non-deterministic Proc-Omata

— generalizations to more operators and process patterns, e. g. interleaving and
sequencing for reordering theorems,

— more proof automation by connecting to external tools (model checkers, sim-
ulators)

— automated synthesis of invariants as in CEGAR, Cubicle, or Kind 2.

* Our version of the random-number generator can be found in [4].

A Theory of Proc-Omata 17

References

10.

11.

12.

13.

14.

An, J., Zhang, L., You, C.: The design and implementation of data independence in
the CSP model of security protocol. Adv. Mater. Res. 915—916, 1386-1392 (2014).
https://doi.org/10.4028 /www.scientific.net /AMR.915-916.1386

André, E., Nguyen, H.G., Petrucci, L., Sun, J.: Parametric model checking timed
automata under non-zenoness assumption. In: Barrett, C., Davies, M., Kahsai, T.
(eds.) NFM 2017. LNCS, vol. 10227, pp. 35-51. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-57288-8 3

Ballenghien, B., Taha, S., Wolff, B.: HOL-CSPM - architectural operators for HOL-
CSP. Arch. Formal Proofs 2023 (2023). https://www.isa-afp.org/entries/HOL-
CSPM.html

Ballenghien, B., Wolff, B.: An operational semantics in Isabelle/HOL-CSP. In:
Bertot, Y., Kutsia, T., Norrish, M. (eds.) 15th International Conference on Interac-
tive Theorem Proving, ITP 2024. LIPIcs, vol. 309, pp. 29:1-29:18. Schloss Dagstuhl
- Leibniz-Zentrum fiir Informatik (2024). https://doi.org/10.4230/LIPIcs.ITP.
2023.29

Ballenghien, B., Wolff, B.: An operational semantics in Isabelle/HOL-CSP. In:
Bertot, Y., Kutsia, T., Norrish, M. (eds.) 15th International Conference on Inter-
active Theorem Proving, ITP 2024, 9-14 September 2024, Tbilisi, Georgia. LIPIcs,
vol. 309, pp. 7:1-7:18. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik (2024).
https://doi.org/10.4230 /LIPICS.ITP.2024.7

Ballenghien, B., Wolff; B.: Operational semantics formally proven in HOL-CSP.
Archive of Formal Proofs (2023). https://isa-afp.org/entries/HOL-CSP _OpSem.
html

Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential
processes. J. ACM 31(3), 560-599 (1984)

Brookes, S.D., Roscoe, A.W.: An improved failures model for communicating pro-
cesses. In: Brookes, S.D., Roscoe, A.W., Winskel, G. (eds.) CONCURRENCY 1984.
LNCS, vol. 197, pp. 281-305. Springer, Heidelberg (1985). https://doi.org/10.1007/
3-540-15670-4 14

Camilleri, A.J.: A higher order logic mechanization of the CSP failure-divergence
semantics. In: Birtwistle, G. (ed.) IV Higher Order Workshop, Banff 1990, pp.
123-150. Springer, London (1991). https://doi.org/10.1007/978-1-4471-3182-3 9
Conchon, S., Delzanno, G., Ferrando, A.: Declarative parameterized verification of
distributed protocols via the cubicle model checker. Fundam. Informaticae 178(4),
347-378 (2021). https://doi.org/10.3233 /FI-2021-2010

Crisafulli, P., Taha, S., Wolff, B.: Modeling and analysing cyber-physical systems
in HOL-CSP. Robotics Auton. Syst. 170, 104549 (2023). https://doi.org/10.1016/
J.ROBOT.2023.104549

da Silva Carvalho de Freitas, C.A.: A theory for communicating, sequential pro-
cesses in Coq (2020). https://api.semanticscholar.org/CorpusID:259373665

Hahn, E.M., Hermanns, H., Wachter, B., Zhang, L..: PARAM: a model checker for
parametric Markov models. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010.
LNCS, vol. 6174, pp. 660-664. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14295-6 56

Hess, A.V., Mdédersheim, S.A., Brucker, A.D.: Stateful protocol composition in
Isabelle/HOL. ACM Trans. Priv. Secur. 26(3), 25:1-25:36 (2023). https://doi.org/
10.1145/3577020

https://doi.org/10.4028/www.scientific.net/AMR.915-916.1386
https://doi.org/10.1007/978-3-319-57288-8_3
https://doi.org/10.1007/978-3-319-57288-8_3
https://www.isa-afp.org/entries/HOL-CSPM.html
https://www.isa-afp.org/entries/HOL-CSPM.html
https://doi.org/10.4230/LIPIcs.ITP.2023.29
https://doi.org/10.4230/LIPIcs.ITP.2023.29
https://doi.org/10.4230/LIPICS.ITP.2024.7
https://isa-afp.org/entries/HOL-CSP_OpSem.html
https://isa-afp.org/entries/HOL-CSP_OpSem.html
https://doi.org/10.1007/3-540-15670-4_14
https://doi.org/10.1007/3-540-15670-4_14
https://doi.org/10.1007/978-1-4471-3182-3_9
https://doi.org/10.3233/FI-2021-2010
https://doi.org/10.1016/J.ROBOT.2023.104549
https://doi.org/10.1016/J.ROBOT.2023.104549
https://api.semanticscholar.org/CorpusID:259373665
https://doi.org/10.1007/978-3-642-14295-6_56
https://doi.org/10.1007/978-3-642-14295-6_56
https://doi.org/10.1145/3577020
https://doi.org/10.1145/3577020

18

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

B. Ballenghien and B. Wolff

Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall Inc., Upper
Saddle River (1985)

Igried, B., Setzer, A.: Programming with monadic CSP-style processes in depen-
dent type theory. In: Proceedings of the 1st International Workshop on Type-
Driven Development, TyDe 2016, pp. 28-38. Association for Computing Machin-
ery, New York (2016). https://doi.org/10.1145/2976022.2976032

Igried, B., Setzer, A.: Trace and stable failures semantics for CSP-AGDA. arXiv
preprint arXiv:1709.04714 (2017)

Isobe, Y., Roggenbach, M.: A complete axiomatic semantics for the CSP stable-
failures model. In: CONCUR 2006 - Concurrency Theory, 17th International Con-
ference, Bonn, Germany, 27-30 August 2006, pp. 158-172 (2006)

Isobe, Y., Roggenbach, M.: CSP-prover: a proof tool for the verification of scalable
concurrent systems. Inf. Media Technol. 5(1), 32-39 (2010). https://doi.org/10.
11185/imt.5.32

Lazic, R.S.: A semantic study of data-independence with applications to the
mechanical verification of concurren. Ph.D. thesis, University of Oxford (1999)
Miiller, O., Nipkow, T., von Oheimb, D., Slotosch, O.: HOLCF = HOL + LCF.
J-FP 9(2), 191-223 (1999). https://doi.org/10.1017/S095679689900341X
Nipkow, T.: Verified lexical analysis. In: Grundy, J., Newey, M. (eds.) TPHOLs
1998. LNCS, vol. 1479, pp. 1-15. Springer, Heidelberg (1998). https://doi.org/10.
1007/BFb0055126

Nipkow, T.: Functional automata. Arch. Formal Proofs 2004 (2004). https://www.
isa-afp.org/entries/Functional- Automata.shtml

Noce, P.: Conservation of CSP noninterference security under sequential com-
position. Archive of Formal Proofs (2016). https://www.isa-afp.org/entries/
Noninterference Sequential Composition.shtml

Roscoe, A.W.: An alternative order for the failures model. J. Log. Comput. 2,
557-577 (1992)

Roscoe, A.W., Broadfoot, P.J.: Proving security protocols with model checkers by
data independence techniques. J. Comput. Secur. 7(1), 147-190 (1999)

Roscoe, A.: Theory and Practice of Concurrency. Prentice Hall, Hoboken (1997)
Scott, D.: Continuous lattices. In: Lawvere, F.W. (ed.) Toposes, Algebraic Geom-
etry and Logic. LNM, vol. 274, pp. 97-136. Springer, Heidelberg (1972). https://
doi.org/10.1007/BFb0073967

Taha, S., Wolff, B., Ye, L.: The HOL-CSP refinement toolkit. Arch. Formal Proofs
2020 (2020). https://www.isa-afp.org/entries/CSP _RefTK.html

Taha, S., Wolff, B., Ye, L.: Philosophers may dine - definitively! In: Dongol, B.,
Troubitsyna, E. (eds.) IFM 2020. LNCS, vol. 12546, pp. 419-439. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-63461-2 23

Taha, S., Ye, L., Wolff, B.: HOL-CSP Version 2.0. Archive of Formal Proofs (2019).
http://isa-afp.org/entries/HOL-CSP.html

Tej, H., Wolff, B.: A corrected failure-divergence model for CSP in Isabelle/HOL.
In: Fitzgerald, J., Jones, C.B., Lucas, P. (eds.) FME 1997. LNCS, vol. 1313, pp.
318-337. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63533-5 17

https://doi.org/10.1145/2976022.2976032
http://arxiv.org/abs/1709.04714
https://doi.org/10.11185/imt.5.32
https://doi.org/10.11185/imt.5.32
https://doi.org/10.1017/S095679689900341X
https://doi.org/10.1007/BFb0055126
https://doi.org/10.1007/BFb0055126
https://www.isa-afp.org/entries/Functional-Automata.shtml
https://www.isa-afp.org/entries/Functional-Automata.shtml
https://www.isa-afp.org/entries/Noninterference_Sequential_Composition.shtml
https://www.isa-afp.org/entries/Noninterference_Sequential_Composition.shtml
https://doi.org/10.1007/BFb0073967
https://doi.org/10.1007/BFb0073967
https://www.isa-afp.org/entries/CSP_RefTK.html
https://doi.org/10.1007/978-3-030-63461-2_23
http://isa-afp.org/entries/HOL-CSP.html
https://doi.org/10.1007/3-540-63533-5_17

	A Theory of Proc-Omata—and Proof Methods for Process Architectures
	1 Introduction
	2 Background
	2.1 Classic CSP Syntax
	2.2 Classic CSP Semantics
	2.3 Theories in Isabelle and HOL
	2.4 Isabelle/HOL-CSP

	3 Deterministic Proc-Omata
	3.1 Motivations
	3.2 Formal Definitions
	3.3 Properties of Proc-Omata
	3.4 Compactification of Synchronization

	4 Potentially Terminating Proc-Omata
	4.1 Formal Definitions
	4.2 Properties of Potentially Terminating Proc-Omata
	4.3 Compactification of Sequential Composition

	5 Examples
	5.1 Bounded Buffer
	5.2 Dining Philosophers
	5.3 Copy Buffer with a Queue

	6 Related Work
	7 Conclusion
	References

