
M1 MPRI : Automates et Applications
Cours 4

Inifite word automata and temporal logics

kn@lri.fr

February 6, 2024

Outline

1 Introduction

2 ω-regular languages

3 Büchi automata

4 Linear Temporal Logic (LTL)

Automates et Applications Langages réguliers M1 MPRI 2 / 39

Let’s come back to words

After considering words, we have added more structure by
considering trees.

However, some systems are “infinite” by nature. For instance, a
network server that receives connections can be modelled by a
system that loops infinitely, receiving requests and sending out
responses.
For such systems, we would like to ensure that a property holds
infinitely many times, or that a property becomes true as soon as
another becomes false.

Automates et Applications Langages réguliers M1 MPRI 3 / 39

Infinite words

Definition
Let Σ be an alphabet. An infinite word over Σ is a total function from
N1 → Σ.

Recall : N1 is the set of strictly positive integers. Previously, a word
was a function {1, . . . , n} → Σ, for a fixed n.

Automates et Applications Langages réguliers M1 MPRI 4 / 39

Set of inifinite words

Definition
We write Σω the set of infinite words Σ. We write Σ∞ the set of finite or
infinite words (therefore, Σ∞ = Σ∗ ∪ Σω).

Warning, do not mix up:

a finite language of infinite words

a finite language of finite words

Automates et Applications Langages réguliers M1 MPRI 5 / 39

Examples

Let Σ = {a, b} :

{a, b, ab} finite set of finite words

a∗b = {b, ab, aab, aaab, . . .} is an infinite set of finite words

{
N1 → Σ

n 7→ a
,
N1 → Σ

n 7→ b
} is a finite set of infinite words

{
N1 → Σ

n 7→ a, n < k

n 7→ b, n ≥ k

| k ∈ N1} is an infinite set of infinite words

Automates et Applications Langages réguliers M1 MPRI 6 / 39

Side remark

The symbol ω denotes the smallest infinite ordinal. Ordinal
numbers are a generalization of natural number. If we take a
set-theoretic definition of natural numbers:

0 ≡ ∅

1 ≡ {0} ≡ {∅}

2 ≡ {0, 1} ≡ {∅, {∅}}

3 ≡ {0, 1, 2} ≡ {∅, {∅}, {∅, {∅}}}

4 ≡ {0, 1, 2, 3} ≡ {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}}

. . .

ω ≡ N ≡ {∅, . . .} : first infinite set

ω + 1 ≡ {0, 1, . . . , ω}

Automates et Applications Langages réguliers M1 MPRI 7 / 39

Side remark (2)

ω + 2 ≡ {0, 1, . . . , ω, ω + 1}

. . .

ω + ω ≡ ω2

. . .

ω2

. . .

ωω

. . .

ωωω...ω
}
ω times ≡ ϵ0

Automates et Applications Langages réguliers M1 MPRI 8 / 39

Side remark (3)

one can define arithmetic operations on such objects

one can go beyond ϵ0 to reach uncountable ordinals

one can reason using transfinite induction, which is a recursion
principle on ordinals

when needed, we might use ω, but only as a notation

a close but distinct concepts is the one of cardinal number
(which represents the size of sets and allows one to say that
the size of N is “smaller” than the size of R)

Georg Cantor (1845-1918) lost his sanity by discovering that

Automates et Applications Langages réguliers M1 MPRI 9 / 39

Outline

1 Introduction

2 ω-regular languages

3 Büchi automata

4 Linear Temporal Logic (LTL)

Automates et Applications Langages réguliers M1 MPRI 10 / 39

ω power

Definition (ω power of a language)
Let L ⊆ Σ∗ be a finite words language. We define Lω with:

Lω = {σ = u1u2 . . . un . . . | ∀i ≥ 1, ui ∈ L \ {ϵ}}

In other words, it’s the set of all infinite words that can be built by
concatenating infinitely many non-empty words from L.

Automates et Applications Langages réguliers M1 MPRI 11 / 39

ω-regular languages

The notion of regular language can be extended to infinite words:

Definition (Langage ω-régulier)
A language L ⊆ Σω is ω-regular if and only if:

L = Aω where A is a regular (finite words) language

or L = A · B where A is regular and B is ω-regular

or L = A ∪ B where both A and B are ω-regular

Automates et Applications Langages réguliers M1 MPRI 12 / 39

ω-regular languages (2)

The only way to construct on ω-regular language is to take the ω

power of a regular language. Then, one may add to its infinite
words a finite prefixes (described by a regular language) or take the
union of two ω-regular languages.

Automates et Applications Langages réguliers M1 MPRI 13 / 39

Recognizable languages of infinite words

ω-regular languages are build from regular languages by
concatenating infinitely any words. Can we use automata to
characterize such languages?

Aq q′

ϵ

If an automaton performes an “infinite loop” through q′, it will
recognize a word of LωA.

Automates et Applications Langages réguliers M1 MPRI 14 / 39

Recognizable languages of infinite words

ω-regular languages are build from regular languages by
concatenating infinitely any words. Can we use automata to
characterize such languages?

Aq q′

ϵ

If an automaton performes an “infinite loop” through q′, it will
recognize a word of LωA.

Automates et Applications Langages réguliers M1 MPRI 14 / 39

Outline

1 Introduction

2 ω-regular languages

3 Büchi automata

4 Linear Temporal Logic (LTL)

Automates et Applications Langages réguliers M1 MPRI 15 / 39

Automaton

Definition (Nonterministic finite automaton)
A non deterministic finite automaton (NFA) is a 5-tuple (Q,Σ, δ, I ,F)

where:

Q is a set of states

Σ is an alphabet

δ : Q × Σ → P(Q) is a transition function

I ⊆ Q is a set of initial states

F ⊆ Q is a set of accepting states

(nothing new here, that’s the definition from the first lecture)

Automates et Applications Langages réguliers M1 MPRI 16 / 39

Infinite run

We extend the notion of a run to infinite words:

Definition
Let A = (Q,Σ, δ, I ,F) be an automaton and u a word of length n ≤ ω.
We call run of A for u a function r : n → Q such that:

r(0) ∈ I

∀i ∈ n, r(i + 1) ∈ δ(r(i), u(i + 1))

Recall: ordinal numbers (including natural numbers) are both
“numbers” and sets of sets. We write n to say that we consider n (an
number or ω) as the set that contains all its predecessors.

Automates et Applications Langages réguliers M1 MPRI 17 / 39

States reached by a run

Definition (States reached by a run)
Let r be a run of A = (Q,Σ, δ, I ,F) for the word u :

if |u| = n < ω : the set of reached states of r is {r(n)}

if |u| = ω : the set of reached sates of r is

{q | #{i | r(i) = q} /∈ N}

We write lim(r) the set of reached states of r

In the definition above, #S denotes the cardinal of S .
For infinite words, the set of reached states is the set set of states
that appear infinitely many times in the run.

Automates et Applications Langages réguliers M1 MPRI 18 / 39

Büchi’s acceptance condition

Definition (Accepting run)
Let A = (Q,Σ, δ, I ,F), be an automaton, u ∈ Σ∞ a word and r a run of
A for u. We say that r is accepting if and only if lim(r) ∩ F ̸= ∅.
We write LA the set of finite words recognized by A and LωA the set of
infinite words recognized by A.

The condition that a run goes “infinitely many times through an
accepting state” is called Büchi’s acceptance condition. An infinite
word langauge is recognized by such an condition is said to be
Büchi-recognizable.
Julius Richard Büchi, 1924-1984, Swiss mathematician.

Automates et Applications Langages réguliers M1 MPRI 19 / 39

Example

The set L of infinite words starting with an finite sequence of ab
followed by an infinite sequence of as is Büchi-recognizable:

q0 q1 q2

a

b

b
a

Remark: This automaton is not special in any way. Its the same as
the one recognizing (ab)+a∗ for finite words. We just change the
acceptance condition to account for infinite words.

Automates et Applications Langages réguliers M1 MPRI 20 / 39

Determinization ?

Since we haven’t changed our automata (only the notion of
accepting run), the notion of deterministic automaton is the same:
An automaton is deterministic if and only if:

I is a singleton

∀q ∈ Q, x ∈ Σ, δ(q, x) is a singleton.

Automates et Applications Langages réguliers M1 MPRI 21 / 39

Determinization ? (2)

Theorem
Non-deterministic Büchi automata recognize strictly more languages
than deterministic Büchi automata.

Proof: Consider the language (a|b)∗aω. It is recognized by the
automaton:

q0 q1

a, b

a

a

Automates et Applications Langages réguliers M1 MPRI 22 / 39

Determinization ? (3)

Assume there exists a deterministic automaton
A = (Q, {a, b}, δ, q0,F) that recognizes the language. Call n = |Q|.
Consider the infinite word m0 = aω. This word is in the language.
Therefore, there is a run which goes infinitely many time through a
state in F . Call q′0 the first state of F reached by the run, after
having read i0 letters.

Consider now word m1 = ai0baω. As the automaton is deterministic
the run for m1 and the one for m0 are equal up to q′0. Since m1 is a
word from the language q′0 has a transition to a state q1. Then from
this state, the run eventually goes infinitely many times through a
state q′1 ∈ F .

Automates et Applications Langages réguliers M1 MPRI 23 / 39

Déterminisation ? (4)
q0 q′0

q1 q′1

q2 q′2

qn q′n

ai0 aω

b

ai1 aω

b

ai2 aω

ain aω

The word ai0bai1bai2b . . . ain+1baω, goes through n+ 1 accepting states
(states q′i), however there are n states in total in the automaton.
Therefore some of the q′is are the same, and there is a cycle going
from a state q′i to a state q′j . These states have a transition b. Thus,
the automaton can recognize words with infinitely many b, which
are not words of the language, contradiction.

Automates et Applications Langages réguliers M1 MPRI 24 / 39

Decision problem

Theorem
The emptiness of the language of a Büchi automaton is decidable in
linear time.

Proof: it is sufficient to find a final state qf :

accessible from an initial state q0

accessible from itself

If such a state qf exists, a run that goes infinitely many times
through qf exists, and the language is not empty. State accessibility
in a graph.

Automates et Applications Langages réguliers M1 MPRI 25 / 39

Decision problems (2)

Theorem
Deciding whether the language of a Büchi automaton is universal is
decidable in exponential time.

Note: We can construct the complement of even non-deterministic
Büchi automata and test the emptiness. The construction causes
an exponential blow up in the number of states. E.g. see:

The complementation problem for Büchi automata with
applications to temporal logic, A. Sisla, M. Vardi, P. Wolper, TCS,

1987.

Automates et Applications Langages réguliers M1 MPRI 26 / 39

Closure properties

Büchi automata are closed under union

Büchi automata are closed under complement

Büchi automata are closed under intersection

Automates et Applications Langages réguliers M1 MPRI 27 / 39

Naïve (and non working) product of automata

Consider the construction used for the finite word case. It does not
work:

A1 = (Q1,Σ, δ1, I1,F1).

A2 = (Q2,Σ, δ2, I2,F2).

Assume that A1 recognizes words a(ba)ω and A2 recognizes words
(ab)ω. A run for A1 has the form q0q1q2q1q2 . . . with q2 accepting. A
run for A2 as the form p0p1p0p1 . . ., with p1 accepting. With a naïve
product construction, we would have a run:
(q0, p0)(q1, p1)(q2, p0)(q1, p1), . . . with no accepting states. However,
both languages are the same! (infinite sequences of ab starting
with a).

Automates et Applications Langages réguliers M1 MPRI 28 / 39

Better product automaton

A1∧2 = (Q1 × Q2 × {1, 2},Σ, δ, I1 × I2 × {1},F) avec :

δ((q1, q2, i), a) = (q′1, q
′
2, f (q1, q2, i)), q′1 ∈ δ1(q1, a), q

′
2 ∈ δ2(q2, a)

f (q1, q2, 1) = 2 si q1 ∈ F1

f (q1, q2, 2) = 1 si q2 ∈ F2

f (q1, q2, i) = i sinon

F = Q1 × F2 × {2}

Integer 2 means that the last accepting state came from F1

(therefore we are now looking for a state inf F2). Likewise, 1 means
that the last accepting state was in F2 (we are looking for a state in
F1). A final state (q, qf , 2)means that we are in a final state for A2,
but along the current run, we passed through a final state of A1.

Automates et Applications Langages réguliers M1 MPRI 29 / 39

Outline

1 Introduction

2 ω-regular languages

3 Büchi automata

4 Linear Temporal Logic (LTL)

Automates et Applications Langages réguliers M1 MPRI 30 / 39

Transition systems

Consider a transition system (program, a network protocol, a set of
processes, . . .) that one can model with an automaton. Finite words
allow to describe safety properties. E.g., we can make it so that that
accepting states are forbidden states, and ask whether the
language of the automaton is empty. If that is not the case, we can
find a word, that is a sequence of transitions, that leads from an
initial state to a forbidden state (that is a bug).

Automates et Applications Langages réguliers M1 MPRI 31 / 39

Transition systems (2)

There are however other interesting properties, beyond safety. For
instance, liveness properties:

Are all processes of a system running at some point?

Does my server always return to a state where it accepts
connexions?

. . .

Infinite words allow to capture such properties.

Automates et Applications Langages réguliers M1 MPRI 32 / 39

LTL

Definition (Linear temporal logic)
Let AP be a set of symbols called atomic properties. A formula of the
linear temporal logic (LTL) is a finite production of the grammar:

ϕ ::= p p ∈ AP (proposition)
| ϕ1 ∨ ϕ2 (disjonction)
| ¬ϕ (negation)
| Xϕ (next)
| ϕ1Uϕ2 (until)

Automates et Applications Langages réguliers M1 MPRI 33 / 39

LTL (2)

Formula of LTL are interpreted over infinite sequences of sets of
atomic propositions. For instance consider
AP = {wait, log, recv, send}. We can consider the infinite trace:

wait

log

wait

log
recv send

wait

log
recv send . . .

We want to ask questions such as:

do I always come back to logging?

do I always send something after having received?

if I’m waiting, do I eventually receive something?

Automates et Applications Langages réguliers M1 MPRI 34 / 39

Semantics of LTL

Definition
Let w be an infinite sequence of P(AP)ω. The truth value of a formula
in LTL is given by:

w ⊢ p ⇔ p ∈ w(0)

w ⊢ ϕ1 ∨ ϕ2 ⇔ w ⊢ ϕ1 or w ⊢ ϕ2

w ⊢ ¬ϕ ⇔ w ⊬ ϕ

w ⊢ Xϕ ⇔ w1 ⊢ ϕ

w ⊢ ϕ1Uϕ2 ⇔ ∃i ≥ 0 such that w i ⊢ ϕ2 et ∀k < i , wk ⊢ ϕ1

Here w i = w(i)w(i + 1) . . . is the infinite suffix of w starting at index
i .

Automates et Applications Langages réguliers M1 MPRI 35 / 39

Notations

We can use derived notations:

ϕ1 ∧ ϕ2 ≡ ¬(¬ϕ1 ∨ ¬ϕ2) conjunction
ϕ1 ⇒ ϕ2 ≡ ϕ1 ∨ ¬ϕ2 implication
ϕ1 ⇔ ϕ2 ≡ (ϕ1 ⇒ ϕ2) ∧ (ϕ2 ⇒ ϕ1) equivalence
⊤ ≡ p ∨ ¬p true, for p ∈ AP

⊥ ≡ ¬⊤ false
Fϕ ≡ ⊤Uϕ future
Gϕ ≡ ¬F¬ϕ global

Automates et Applications Langages réguliers M1 MPRI 36 / 39

Exemples

AP = {wait, log, recv, send}.

G(recv ⇒ X send)

: “it is always true that I send after having
received”

F¬log : “at some point I don’t log”

G¬(send ∧ recv) : “i never send and receive at the same time”

Automates et Applications Langages réguliers M1 MPRI 37 / 39

Exemples

AP = {wait, log, recv, send}.

G(recv ⇒ X send) : “it is always true that I send after having
received”

F¬log

: “at some point I don’t log”

G¬(send ∧ recv) : “i never send and receive at the same time”

Automates et Applications Langages réguliers M1 MPRI 37 / 39

Exemples

AP = {wait, log, recv, send}.

G(recv ⇒ X send) : “it is always true that I send after having
received”

F¬log : “at some point I don’t log”

G¬(send ∧ recv)

: “i never send and receive at the same time”

Automates et Applications Langages réguliers M1 MPRI 37 / 39

Exemples

AP = {wait, log, recv, send}.

G(recv ⇒ X send) : “it is always true that I send after having
received”

F¬log : “at some point I don’t log”

G¬(send ∧ recv) : “i never send and receive at the same time”

Automates et Applications Langages réguliers M1 MPRI 37 / 39

Let’s revisit some properties

Safety : some formula ϕ never occurs: G¬ϕ

Liveness: some event ϕ2 always occurs whenever ϕ1 occurs:
G(ϕ1 ⇒ Xϕ2).

Strong fairness: an event a occurs infinitely many times,and when
it does, an event b also occurs

: GFϕa ⇒ GFϕb

How to decide such properties?

Automates et Applications Langages réguliers M1 MPRI 38 / 39

Let’s revisit some properties

Safety : some formula ϕ never occurs: G¬ϕ

Liveness: some event ϕ2 always occurs whenever ϕ1 occurs:
G(ϕ1 ⇒ Xϕ2).

Strong fairness: an event a occurs infinitely many times,and when
it does, an event b also occurs: GFϕa ⇒ GFϕb

How to decide such properties?

Automates et Applications Langages réguliers M1 MPRI 38 / 39

LTL to Büchi automata

Definition
For all formula of LTL, one can construct a Büchi automaton that
recognizes the same languages as the formula.

Remark : the language of ϕ is the set of infinite words w ∈ P(AP)ω

such that w ⊢ ϕ. Complexity is EXPTIME.

Automates et Applications Langages réguliers M1 MPRI 39 / 39

	Introduction
	-regular languages
	Büchi automata
	Linear Temporal Logic (LTL)

