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Previously
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We have introduced a new computation model, tree automata.
Recall that these can be:

m Deterministic or non-deterministic, as in the word case
m Bottom-up or top-down

Furthermore : TDget © TDhondet = BUnondet = BUget
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What is a high-level language for trees?  unyersits

PARIS-SACLAY

The notion of regular expression for words is standard and
pervasive: operating system shells, programming languages,

languages theory. For trees, the situation is a bit different. We
study two formalisms:

Defining languages as sets that verify a property given in a
particular logic

Concrete languages from the W3C
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Problems with automata E‘A'l'.\s’.‘iﬁﬁé;

By definition, regular tree languages are those that can be
recognized by a BU TA. We have also seen on examples how to
encode some properties as structural properties on trees (e.g. the
set of true statements of the prop. logic).

The problem is that TA are very low-level. If a property must hold at
for arbitrarily deep paths, one must:

m describe explicitely how to go from the leaves to such
interesting nodes

m change state to indicate that we have seen such an interesting

node
m continue up to the root

For uninteresting subtrees, must be ignored explicitely.
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Can we do it differently?
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Recal the example of right combs on ¥ = {2, a}. We would like to
write:

“the set of trees which are either a or f-labeled nodes which have
an a left subtree and a tree of the set as a right subtree”

without bothering with loops, refusing nodes (sink states).
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First'order |Ogic .L"Ann'.\s’.‘iﬂﬁfﬁé;

Definition
A first-order logical formula is a finite production of the following
grammar:
¢ == U(x) unary predicate

| B(x,y) binary predicate

T negation

| oV disjunction

|

Ix.¢ existential quantification
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Notations université

We can use some syntactic sugar to define well known operations:

P1AP2 = —(=¢1V g2) conjunction
P1=>d2 = P11V implication
tedr = (1= ¢2) A2 = ¢1) equivalence
1D P2 = (1= $2) X-or
Vxo = —dx.—¢ universal quantification

S = =, =
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PFEdicates université
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For a fixed ranked alphabet ¥, we define the following predicates:
m lab,(x), forallae &
m child;(x,y), forall1 <i<max{neN|n=|f|,Vf € X}
BXx=y

HXx=y

[m] = = =
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Semantics of predicates université

Definition
Let X be a ranked and t € T(X). Let w, 71, ™ € dom(t), The truth value
of predicates is defined as:

lab,(7) = t(r)=a
Chi/di(ﬂl,ﬂg) =] 7T1i = T
T X M = M1 Slex T2

Predicate x < y is called document order and it means that x is
visited before y during a depth-first, left-to-right traversal of the
tree.

Henceforth, when we say first-order logic, we mean first-order logic
with this fixed set of predicates (for a given x).
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Semantics of formulae université
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The semantics of formulee is given by the judgement t,v - ¢ which
means that for a tree t and a valuation ~, the formula ¢ is true. A
valuation is a mapping from free variables of the formula to dom(t).

t,yFUKx) < U((x)

t.ykBlxy) < B(y(x),(y))

tyE¢1Vor < tybEgrort,yk ¢

t,y ¢ S t,yF o

t,vF Ix.o < dredom(t), t,yU{x—7m}ko

[m] = = =
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Example

.
universite
PARIS-SACLAY

Let's revisit the right combs on & = {2, a}, we can verify that for all
such tree, the following formula holds:

Vx.(laba(x) Vv (labs(x) A (Jy.childi(x,y) Alaba(y))))
Importantly, there is no explicit recursion. We define a local

property, and we state that this property holds for all nodes.
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Logical characterization of languages universite
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Definition
We can define the language L, of a formula ¢ as:

Ly = {t | Iy suchthat t,y + ¢}
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Are we limited to languages? université
Using logical formulae allows us to rephrase some problems:
m A closed formula defines a language (as in the example)
m A formula with a free variable x correspond to a predicate or a
query
Indeed, given a tree ¢t :

{m e dom(t) | t,{x+— 7} ¢}

represents the set of paths in the tree for wich the formula holds.
This can be generalized to an arbitrary number of variables. That
allows us to select paths of interest in the tree.
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Boolean closures
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These are just the consequence of the semantics

L¢>1 N L¢>2 A L¢1/\¢>2
L¢1 U Ld)z A L¢1V¢>2
L_¢ = Lﬁd)
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Decision problems
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m For afixed tree, is a formula ¢ true ? Polynomial.

m The language of a formula is empty = the formula is satisfiable?
= non-elementary...

2C
2 o
In some ways this language is too powerful
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... but surprisingly
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First order logic cannot express all regular tree languages!

Ex: The set of trees on ¥ = {f?, a, b} with an even number of a.
Easily recognized by A = ({qo0, g1}, %, 6,{qo}) :

a — {aq}

f(q0, q0)
b — {qo}

= {qo}
f(q1,q1)

= {a1}
f(q0,q1)

= {q}
qo represent a subtree with even number of a et g; odd numbers of
a (note: this language is not TD deterministic).
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FO on trees? université
To summarize:

B compact: one can express properties on path without explicit
recursion

B some properties cannot be expressed (FO cannot count, even
modulo two)

m crazy complexity

WHAT IF WE TRED
MORE POWER?

©XKCD

Automates et Applications Logic for trees M1 MPRI 19/40



.
MSO universite
PARIS-SACLAY

Definition (Monadic Second-order Logic)
A formula of the MSO is a finite production of the following grammar:

¢ = ... formula of FO
| xeX set membershiip
| 3X.¢ second-order quantification

X denotes sets of paths. We have the syntactic sugar:
VX.¢ = =3X.—.
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Semantics of MSO
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We naturally express the semantics of MSO with a judgement

t,y,IE¢

which means that given t, v (from free variables to paths) and I
(from free Variables to sets of paths), formula ¢ is true.

t,y,TFxeX & ~(x)el(X)
t~y b 3X.0

& 3P Cdom(t), t,v,TU{X — P}F ¢

o
Automates et Applications Logic for trees
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What can we express?
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We can characterize the descendants of a path. The descendants of
a path x is the set of paths Y such that:

VyyeY e x=yVIz(ze Y A(childi(z,y) V... Vchilde(z,y)))
where k is the (fixed) maximal arity of a symol in x.
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What can we express?
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We can characterize the set of trees with an even
Y = {f2, a,b}):

number of a (over
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What can we express?
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We can characterize the set of trees with an even number of a (over
P {f2, a, b}):

JEJOVx.(xe E®x e 0)
A labs(x) = x€ O
A labp(x) = x € E

A labg(x) = (3y.3z.childi(x, y) A childa(x, z)A

(yeE)A(ze E)V([y€ O)A(z€0))
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MSO VS Automata université
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Theorem (Thatcher, Wright 68)
The set of regular tree languages is exactly the set of MSO-definable
languages
Proof (very rough sketch):
m put the formula in a particular canonical form
m give automata for each basic formula (x € X, laby(x), ...)

m build inductively automata for logical connective by connecting
sub-automata (like for Thompson and regex, but there is a
massive explosion due to quantification).
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MSO VS Automates université
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We can also go backward:

m label each transition of an automaton with a formula, initialy
only the formula lab,(ax)

m use an algorithm similar to state elimination (merge transitions
then states and repeat)

[m] = = =
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MSO ?
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On a donc un langage :

B compact: can express complex properties without explicit
recursion

m exacly equivalent to regular tree languages

m still, non-elementary complexity
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XML and its languages
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XML, a standard for documents université
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XML is a W3C standard that defines a format for storing and
exchanging tree structured data. Essentially, it defines a markup
with <opening> tags or </closing>, that must be balanced:

—

|
c

AN
|

<a>

<b>Hello <c>world!</c></b> ’/////,//f

<c>It’s a <b>nice day</b></c>

b
<a>today</a> // \\\

</a>

"Hello
"It’s a
"today" — w

"world!" — o
"nice day"
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XML, a standard for documents (2) université
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For our overview:

m we ignore many intricacies of the standard (character
encodings, attributes, namespaces, ...)

m we assume all text path are replaced by leaves $.

m we will also assumes that everything applies to HTML
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Unranked trees

.
universite
PARIS-SACLAY

Documents represent unranked trees
m a path may have a finite, arbitrary number of children

m the labels do not indicate the number of children

Still, we would like to make use of automata or MSO
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n-ary trees to binary trees
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We use a trick to encode any unranked tree into a binary tree:

m the first child of a path (in the n-ary tree) is the first child in the
binary tree

m the right sibling of a path (in the n-ary tree)is the second child
in the binary tree
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Example
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a #
b C b c #
| / #
b b b # b #
# # # #
o
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Example
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a— #
b C b cC— #
# #
b b b—# b—#
# # # #
=] 5
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Interpretation as a datastructure unversité

This encoding correponds to the usual representation of a tree in
memory (for instance in C):

m a node stores the label and a pointer to the linked list of
children

m the first element of the list is directly accessible, the others
require a traversal

m the NULL pointer corresponds to the # leaves
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Structure de données (2)
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struct node;

struct list {

struct list *next; //right edge
struct node *node;
s

struct node {
char * label;

struct list *children; //down edge
s
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DTD

uniyersits
Document Type Definitions (DTD) allows one to define schemas, that
is tree languages:

<IELEMENT a ( (blc)* ) >
<VELEMENT b ( EMPTY ) >
<IELEMENT ¢

C (blc)* ) >
For each tag, we give its content as a regular expression over its

children. A tag determines uniquely its content (we cannot have
two alternative definitions for the same tag) = TD déterministic
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DTD (2)
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The fact that DTD are TD deterministic means that we can validate

a document in streaming, that is with memory bounded by the
height of the document.

Why is it a good thing?

[m] = = =
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DTD (2) université
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The fact that DTD are TD deterministic means that we can validate
a document in streaming, that is with memory bounded by the
height of the document.

Why is it a good thing?

We can validate the document while reading the file.

What limitations ?

[m] = = =
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DTD (2) snveratd

The fact that DTD are TD deterministic means that we can validate
a document in streaming, that is with memory bounded by the
height of the document.

Why is it a good thing?
We can validate the document while reading the file.
What limitations ?

We cannot specify documents where there is a dependency
between children.

Automates et Applications Logic for trees M1 MPRI 36/40
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The XPath language is a query language for trees. It allows one to
select nodes. In its simplest form, (navigational Core XPath),
queries have the form:

path ::= axey : :test; [ predi] /.../axe,: :test,[ pred,]

axe = child |descendant | parent | ancestor| ...

test = tag|*

pred = path | pred; or preds | predy and pred | not(pred;)
o @ = =
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/descendant: :b[parent::c]/parent: :*/child: :*
a
b /Cb\ c
b b b b
=] 5
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/descendant: :b[parent::c]/parent: :*/child: :*
@
i /Cb\ C
b b b b
=} 5
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/descendant: :b[parent::c]/parent: :*/child: :*
a
) c ) c
(<) <) -] <)
=] 5
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/descendant: :b[parent::c]/parent: :*/child: :*
a
-] -] c
(<) <) -] <)
=] 5
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/descendant: :b[parent::c]/parent: :*/child: :*
a
b /Cb\ c
b B b b
=] 5

M1 MPRI

38/40



Exemple

.
universite
PARIS-SACLAY

/descendant: :b[parent::c]/parent: :*/child: :*
a
b © b c
b b b b
=] 5
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/descendant: :b[parent::c]/parent: :*/child: :*
a
b /b\ c
B <) -] b
=] 5

M1 MPRI




Expressivité de XPath ?
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Le fragment présenté est moins expressif que FO. Par exemple, on

ne peut pas exprimer : Renvoyer tous les nceuds a descendants
d'un b tel qu'il n'y a pas de c entre le a et le b.
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Quels problémes souhaite-t-on résoudre ? ynyersté
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Etant donné un document D, est-il valide par rapport a une
DTD 77
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Quels problémes souhaite-t-on résoudre ? ynyersté

PARIS-SACLAY

Etant donné un document D, est-il valide par rapport a une
DTD T? O(|D| + | T)|)

Etant donné un document D, quels sont les nceuds renvoyés
par une requéte XPath Q?
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Quels problémes souhaite-t-on résoudre ? ynyersté

PARIS-SACLAY

Etant donné un document D, est-il valide par rapport a une
DTD T? O(|D| + | T)|)

Etant donné un document D, quels sont les nceuds renvoyés
par une requéte XPath Q? O(|D| x |Q|)

Etant donné une DTD T et une requéte XPath Q, la requéte
est-elle satisfiable ?
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Quels problémes souhaite-t-on résoudre ? ynyersté
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Etant donné un document D, est-il valide par rapport a une
DTD T? O(|D| + | T)|)

Etant donné un document D, quels sont les nceuds renvoyés
par une requéte XPath Q? O(|D| x |Q|)

Etant donné une DTD T et une requéte XPath Q, la requéte
est-elle satisfiable ZEXPTIME

Proposer un algorithme pour (2) basé sur des automates sera le
sujet du devoir.
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