.
universite
PARIS-SACLAY

M1 MPRI : Automates et Applications

Lecture 3
Logic for trees

kn@lri.fr

January 23, 2023

[]
universite
PARIS-SACLAY

Outline

.
universite
PARIS-SACLAY

Introduction

= =
Automates et Applications Logic for trees

M1 MPRI

2/40

Previously

.
universite
PARIS-SACLAY

We have introduced a new computation model, tree automata.
Recall that these can be:

m Deterministic or non-deterministic, as in the word case
m Bottom-up or top-down

Furthermore : TDget © TDhondet = BUnondet = BUget

= =
Automates et Applications Logic for trees

M1 MPRI

3/40

What is a high-level language for trees? unyersits

PARIS-SACLAY

The notion of regular expression for words is standard and
pervasive: operating system shells, programming languages,

languages theory. For trees, the situation is a bit different. We
study two formalisms:

Defining languages as sets that verify a property given in a
particular logic

Concrete languages from the W3C

Automates et Applications Logic for trees M1 MPRI 4/40

Outline

.
universite
PARIS-SACLAY

Logic for trees

= =
Automates et Applications Logic for trees

M1 MPRI

5/40

Problems with automata E‘A'l'.\s’.‘iﬁﬁé;

By definition, regular tree languages are those that can be
recognized by a BU TA. We have also seen on examples how to
encode some properties as structural properties on trees (e.g. the
set of true statements of the prop. logic).

The problem is that TA are very low-level. If a property must hold at
for arbitrarily deep paths, one must:

m describe explicitely how to go from the leaves to such
interesting nodes

m change state to indicate that we have seen such an interesting

node
m continue up to the root

For uninteresting subtrees, must be ignored explicitely.

Automates et Applications Logic for trees M1 MPRI 6/40

Can we do it differently?

.
universite
PARIS-SACLAY

Recal the example of right combs on ¥ = {2, a}. We would like to
write:

“the set of trees which are either a or f-labeled nodes which have
an a left subtree and a tree of the set as a right subtree”

without bothering with loops, refusing nodes (sink states).

= =
Automates et Applications Logic for trees

M1 MPRI

7140

First'order |Ogic .L"Ann'.\s’.‘iﬂﬁfﬁé;

Definition
A first-order logical formula is a finite production of the following
grammar:
¢ == U(x) unary predicate

| B(x,y) binary predicate

T negation

| oV disjunction

|

Ix.¢ existential quantification

Automates et Applications Logic for trees M1 MPRI 8/40

Notations université

We can use some syntactic sugar to define well known operations:

P1AP2 = —(=¢1V g2) conjunction
P1=>d2 = P11V implication
tedr = (1= ¢2) A2 = ¢1) equivalence
1D P2 = (1= $2) X-or
Vxo = —dx.—¢ universal quantification

S = =, =

Automates et Applications Logic for trees M1 MPRI 9/40

PFEdicates université

PARIS-SACLAY

For a fixed ranked alphabet ¥, we define the following predicates:
m lab,(x), forallae &
m child;(x,y), forall1 <i<max{neN|n=|f|,Vf € X}
BXx=y

HXx=y

[m] = = =

Automates et Applications Logic for trees M1 MPRI 10/40

Semantics of predicates université

Definition
Let X be a ranked and t € T(X). Let w, 71, ™ € dom(t), The truth value
of predicates is defined as:

lab,(7) = t(r)=a
Chi/di(ﬂl,ﬂg) =] 7T1i = T
T X M = M1 Slex T2

Predicate x < y is called document order and it means that x is
visited before y during a depth-first, left-to-right traversal of the
tree.

Henceforth, when we say first-order logic, we mean first-order logic
with this fixed set of predicates (for a given x).

Automates et Applications Logic for trees M1 MPRI 11/40

Semantics of formulae université

PARIS-SACLAY

The semantics of formulee is given by the judgement t,v - ¢ which
means that for a tree t and a valuation ~, the formula ¢ is true. A
valuation is a mapping from free variables of the formula to dom(t).

t,yFUKx) < U((x)

t.ykBlxy) < B(y(x),(y))

tyE¢1Vor < tybEgrort,yk ¢

t,y ¢ S t,yF o

t,vF Ix.o < dredom(t), t,yU{x—7m}ko

[m] = = =

Automates et Applications Logic for trees M1 MPRI 12/40

Example

.
universite
PARIS-SACLAY

Let's revisit the right combs on & = {2, a}, we can verify that for all
such tree, the following formula holds:

Vx.(laba(x) Vv (labs(x) A (Jy.childi(x,y) Alaba(y))))
Importantly, there is no explicit recursion. We define a local

property, and we state that this property holds for all nodes.

= =
Automates et Applications Logic for trees

M1 MPRI

13/40

Logical characterization of languages universite

PARIS-SACLAY

Definition
We can define the language L, of a formula ¢ as:

Ly = {t | Iy suchthat t,y + ¢}

Automates et Applications Logic for trees M1 MPRI 14/40

Are we limited to languages? université
Using logical formulae allows us to rephrase some problems:
m A closed formula defines a language (as in the example)
m A formula with a free variable x correspond to a predicate or a
query
Indeed, given a tree ¢t :

{m e dom(t) | t,{x+— 7} ¢}

represents the set of paths in the tree for wich the formula holds.
This can be generalized to an arbitrary number of variables. That
allows us to select paths of interest in the tree.

Automates et Applications Logic for trees M1 MPRI 15/40

Boolean closures

.
universite
PARIS-SACLAY

These are just the consequence of the semantics

L¢>1 N L¢>2 A L¢1/\¢>2
L¢1 U Ld)z A L¢1V¢>2
L_¢ = Lﬁd)

= =
Automates et Applications Logic for trees

M1 MPRI

16/40

Decision problems

.
universite
PARIS-SACLAY

m For afixed tree, is a formula ¢ true ? Polynomial.

m The language of a formula is empty = the formula is satisfiable?
= non-elementary...

2C
2 o
In some ways this language is too powerful

= =
Automates et Applications Logic for trees

M1 MPRI

17740

... but surprisingly

.
universite
PARIS-SACLAY

First order logic cannot express all regular tree languages!

Ex: The set of trees on ¥ = {f?, a, b} with an even number of a.
Easily recognized by A = ({qo0, g1}, %, 6,{qo}) :

a — {aq}

f(q0, q0)
b — {qo}

= {qo}
f(q1,q1)

= {a1}
f(q0,q1)

= {q}
qo represent a subtree with even number of a et g; odd numbers of
a (note: this language is not TD deterministic).

= =
Automates et Applications Logic for trees

M1 MPRI

f(q1, qo)

= {qo}

18740

FO on trees? université
To summarize:

B compact: one can express properties on path without explicit
recursion

B some properties cannot be expressed (FO cannot count, even
modulo two)

m crazy complexity

WHAT IF WE TRED
MORE POWER?

©XKCD

Automates et Applications Logic for trees M1 MPRI 19/40

.
MSO universite
PARIS-SACLAY

Definition (Monadic Second-order Logic)
A formula of the MSO is a finite production of the following grammar:

¢ = ... formula of FO
| xeX set membershiip
| 3X.¢ second-order quantification

X denotes sets of paths. We have the syntactic sugar:
VX.¢ = =3X.—.

Automates et Applications Logic for trees M1 MPRI 20/40

Semantics of MSO

.
universite
PARIS-SACLAY

We naturally express the semantics of MSO with a judgement

t,y,IE¢

which means that given t, v (from free variables to paths) and I
(from free Variables to sets of paths), formula ¢ is true.

t,y,TFxeX & ~(x)el(X)
t~y b 3X.0

& 3P Cdom(t), t,v,TU{X — P}F ¢

o
Automates et Applications Logic for trees

=

M1 MPRI

21/40

What can we express?

.
universite
PARIS-SACLAY

We can characterize the descendants of a path. The descendants of
a path x is the set of paths Y such that:

VyyeY e x=yVIz(ze Y A(childi(z,y) V... Vchilde(z,y)))
where k is the (fixed) maximal arity of a symol in x.

= =
Automates et Applications Logic for trees

M1 MPRI

22/40

What can we express?

.
universite
PARIS-SACLAY

We can characterize the set of trees with an even
Y = {f2, a,b}):

number of a (over

= =
Automates et Applications Logic for trees

M1 MPRI

23/40

What can we express?

.
universite
PARIS-SACLAY

We can characterize the set of trees with an even number of a (over
P {f2, a, b}):

JEJOVx.(xe E®x e 0)
A labs(x) = x€ O
A labp(x) = x € E

A labg(x) = (3y.3z.childi(x, y) A childa(x, z)A

(yeE)A(ze E)V([y€ O)A(z€0))

= =
Automates et Applications Logic for trees

M1 MPRI

23/40

MSO VS Automata université

PARIS-SACLAY

Theorem (Thatcher, Wright 68)
The set of regular tree languages is exactly the set of MSO-definable
languages
Proof (very rough sketch):
m put the formula in a particular canonical form
m give automata for each basic formula (x € X, laby(x), ...)

m build inductively automata for logical connective by connecting
sub-automata (like for Thompson and regex, but there is a
massive explosion due to quantification).

Automates et Applications Logic for trees M1 MPRI 24/40

MSO VS Automates université

PARIS-SACLAY

We can also go backward:

m label each transition of an automaton with a formula, initialy
only the formula lab,(ax)

m use an algorithm similar to state elimination (merge transitions
then states and repeat)

[m] = = =

Automates et Applications Logic for trees M1 MPRI 25/40

MSO ?

.
universite
PARIS-SACLAY

On a donc un langage :

B compact: can express complex properties without explicit
recursion

m exacly equivalent to regular tree languages

m still, non-elementary complexity

= =
Automates et Applications Logic for trees

M1 MPRI

26/40

Outline

.
universite
PARIS-SACLAY

XML and its languages

= =
Automates et Applications Logic for trees

M1 MPRI

27140

XML, a standard for documents université

PARIS-SACLAY

XML is a W3C standard that defines a format for storing and
exchanging tree structured data. Essentially, it defines a markup
with <opening> tags or </closing>, that must be balanced:

—

|
c

AN
|

<a>

Hello <c>world!</c> ’/////,//f

<c>It’s a nice day</c>

b
<a>today // \\\

"Hello
"It’s a
"today" — w

"world!" — o
"nice day"

Automates et Applications Logic for trees M1 MPRI 28/40

XML, a standard for documents (2) université

PARIS-SACLAY

For our overview:

m we ignore many intricacies of the standard (character
encodings, attributes, namespaces, ...)

m we assume all text path are replaced by leaves $.

m we will also assumes that everything applies to HTML

Automates et Applications Logic for trees M1 MPRI 29/40

Unranked trees

.
universite
PARIS-SACLAY

Documents represent unranked trees
m a path may have a finite, arbitrary number of children

m the labels do not indicate the number of children

Still, we would like to make use of automata or MSO

= =
Automates et Applications Logic for trees

M1 MPRI

30/40

n-ary trees to binary trees

.
universite
PARIS-SACLAY

We use a trick to encode any unranked tree into a binary tree:

m the first child of a path (in the n-ary tree) is the first child in the
binary tree

m the right sibling of a path (in the n-ary tree)is the second child
in the binary tree

= =
Automates et Applications Logic for trees

M1 MPRI 31/40

Example

.
universite
PARIS-SACLAY

= =
Automates et Applications Logic for trees

M1 MPRI

32/40

Example

.
universite
PARIS-SACLAY

= =
Automates et Applications Logic for trees

M1 MPRI

32/40

Example

université
PARIS-SACLAY
a #
b C b c #
| / #
b b b # b #
#
o
Automates et Applications Logic for trees

M1 MPRI

Example

université

PARIS-SACLAY

a— #
b C b cC— #
#
b b b—# b—#
#
=] 5

Automates et Applications Logic for trees

M1 MPRI 32/40

Interpretation as a datastructure unversité

This encoding correponds to the usual representation of a tree in
memory (for instance in C):

m a node stores the label and a pointer to the linked list of
children

m the first element of the list is directly accessible, the others
require a traversal

m the NULL pointer corresponds to the # leaves

Automates et Applications Logic for trees M1 MPRI 33/40

Structure de données (2)

université
PARIS-SACLAY
struct node;

struct list {

struct list *next; //right edge
struct node *node;
s

struct node {
char * label;

struct list *children; //down edge
s

= =
Automates et Applications Logic for trees

M1 MPRI

34/40

DTD

uniyersits
Document Type Definitions (DTD) allows one to define schemas, that
is tree languages:

<IELEMENT a ((blc)*) >
<VELEMENT b (EMPTY) >
<IELEMENT ¢

C (blc)*) >
For each tag, we give its content as a regular expression over its

children. A tag determines uniquely its content (we cannot have
two alternative definitions for the same tag) = TD déterministic

= =
Automates et Applications Logic for trees

M1 MPRI

35/40

DTD (2)

.
universite
PARIS-SACLAY

The fact that DTD are TD deterministic means that we can validate

a document in streaming, that is with memory bounded by the
height of the document.

Why is it a good thing?

[m] = = =

Automates et Applications Logic for trees

M1 MPRI 36/40

DTD (2) université

PARIS-SACLAY

The fact that DTD are TD deterministic means that we can validate
a document in streaming, that is with memory bounded by the
height of the document.

Why is it a good thing?

We can validate the document while reading the file.

What limitations ?

[m] = = =

Automates et Applications Logic for trees M1 MPRI 36/40

DTD (2) snveratd

The fact that DTD are TD deterministic means that we can validate
a document in streaming, that is with memory bounded by the
height of the document.

Why is it a good thing?
We can validate the document while reading the file.
What limitations ?

We cannot specify documents where there is a dependency
between children.

Automates et Applications Logic for trees M1 MPRI 36/40

XPath université

PARIS-SACLAY

The XPath language is a query language for trees. It allows one to
select nodes. In its simplest form, (navigational Core XPath),
queries have the form:

path ::= axey : :test; [predi] /.../axe,: :test,[pred,]

axe = child |descendant | parent | ancestor| ...

test = tag|*

pred = path | pred; or preds | predy and pred | not(pred;)
o @ = =

Automates et Applications Logic for trees M1 MPRI 37/40

Exemple

.
universite
PARIS-SACLAY

/descendant: :b[parent::c]/parent: :*/child: :*
a
b /Cb\ c
b b b b
=] 5

M1 MPRI

38/40

Exemple

.
universite
PARIS-SACLAY

/descendant: :b[parent::c]/parent: :*/child: :*
@
i /Cb\ C
b b b b
=} 5

M1 MPRI

38/40

Exemple

.
universite
PARIS-SACLAY

/descendant: :b[parent::c]/parent: :*/child: :*
a
) c) c
(<) <) -] <)
=] 5

M1 MPRI

Exemple

.
universite
PARIS-SACLAY

/descendant: :b[parent::c]/parent: :*/child: :*
a
-] -] c
(<) <) -] <)
=] 5

M1 MPRI

Exemple

.
universite
PARIS-SACLAY

/descendant: :b[parent::c]/parent: :*/child: :*
a
b /Cb\ c
b B b b
=] 5

M1 MPRI

38/40

Exemple

.
universite
PARIS-SACLAY

/descendant: :b[parent::c]/parent: :*/child: :*
a
b © b c
b b b b
=] 5

M1 MPRI

38/40

Exemple

.
universite
PARIS-SACLAY

/descendant: :b[parent::c]/parent: :*/child: :*
a
b /b\ c
B <) -] b
=] 5

M1 MPRI

Expressivité de XPath ?

.
universite
PARIS-SACLAY

Le fragment présenté est moins expressif que FO. Par exemple, on

ne peut pas exprimer : Renvoyer tous les nceuds a descendants
d'un b tel qu'il n'y a pas de c entre le a et le b.

= =
Automates et Applications Logic for trees

M1 MPRI

39/40

Quels problémes souhaite-t-on résoudre ? ynyersté

PARIS-SACLAY

Etant donné un document D, est-il valide par rapport a une
DTD 77

Automates et Applications Logic for trees M1 MPRI 40/40

Quels problémes souhaite-t-on résoudre ? ynyersté

PARIS-SACLAY

Etant donné un document D, est-il valide par rapport a une
DTD T? O(|D| + | T)|)

Etant donné un document D, quels sont les nceuds renvoyés
par une requéte XPath Q?

Automates et Applications Logic for trees M1 MPRI 40/40

Quels problémes souhaite-t-on résoudre ? ynyersté

PARIS-SACLAY

Etant donné un document D, est-il valide par rapport a une
DTD T? O(|D| + | T)|)

Etant donné un document D, quels sont les nceuds renvoyés
par une requéte XPath Q? O(|D| x |Q|)

Etant donné une DTD T et une requéte XPath Q, la requéte
est-elle satisfiable ?

Automates et Applications Logic for trees M1 MPRI 40/40

Quels problémes souhaite-t-on résoudre ? ynyersté

PARIS-SACLAY

Etant donné un document D, est-il valide par rapport a une
DTD T? O(|D| + | T)|)

Etant donné un document D, quels sont les nceuds renvoyés
par une requéte XPath Q? O(|D| x |Q|)

Etant donné une DTD T et une requéte XPath Q, la requéte
est-elle satisfiable ZEXPTIME

Proposer un algorithme pour (2) basé sur des automates sera le
sujet du devoir.

Automates et Applications Logic for trees M1 MPRI 40/40

	Introduction
	Logic for trees
	XML and its languages

