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Previously, in Automates et applications
We have recapped definitions on finite word automata and their
usefulness. They provide an execution model, that is, they are an
efficient virtual machine for particular programs : regular
expressions.
Regexps have a practical utility : check the well-formedness of
strings, search for patterns in a text, . . .

What is a word on an alphabet Σ ? A sequence of symbols
w = abc . . .

Can we generalize this concept ?

a b c . . . ⇝ a

b

c

a . . .

d

a

c

. . .

. . .

. . .

If we allow a symbol to have several successors, we get a tree.
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Trees ?

What is the formal definition of a tree ?

What is the “high-level” programming language for trees, what
“real life problemTM” can we solve ?

What is the VM (the computation model) ?

Automates et Applications Langages réguliers M1 MPRI 4 / 38



Outline

1 Introduction

2 n-ary trees

3 Tree automata

4 Top-down tree automata

Automates et Applications Langages réguliers M1 MPRI 5 / 38



Ranked alphabet

Definition (Ranked alphabet)
A ranked alphabet is a pair (Σ, | · |) where Σ is a set of symbols and
| · | : Σ → N is a function called arity.

The notation | · |means that one calls the function by putting its
argument in place of the dot. For example |a| = 0, |f | = 4, etc. We
write Σk = {a ∈ Σ | |a| = k}.
In what follows, we shall talk of a ranked alphabet Σ and leave the
arity function implicit, when clear from the context. We write
Σ = {f k , gn, a0} to denote that |f | = k , |g | = n et |a| = 0.
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n-ary tree

Definition
A tree t is a function t : S → Σ where, Σ is a ranked alphabet and
S ⊆ N∗

1 is a set of integer sequences called paths such that:

Empty path: ϵ ∈ S

Prefix-closure: i0, · · · in−1in ∈ S , ⇒ i0 · · · in−1 ∈ S

Well-formedness: ∀p ∈ S , i ∈ N, pi ∈ S ⇒ i ≤ |t(p)|

We write Dom(t) the domain of a function t.

Warning: N1 denotes the set of strictly positive natural numbers,
and N∗

1 represents the sequences of such numbers (∗ is the Kleene
star).
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Example

Consider the “tree” drawn below.
What’s its formal definition ?

How can we represent it compactly ?

f

a b g

a b

t :

ϵ 7→ f

1 7→ a

2 7→ b

3 7→ g

31 7→ a

32 7→ b

f (a, b, g(a, b))

Children are ordered. The path ϵ is called the root. Any path p such
that |t(p)| = 0 is called a leaf.
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Why is this formalism useful ?

Define the following concepts:

The children of a path p

: ch(p) = {pi | 1 ≤ i ≤ |t(p)|}
(this set is empty if p is a leaf).

The parent of a path p : par(p){q | ∃i ∈ N1, qi = p}
This set is

empty if p = ϵ

a singleton otherwise

All path ending in a: laba(t) = {p | t(p) = a}
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Trees with “holes” ?

In the case of words (e.g. in the pumping lemma), on can
conveniently write w = xyz to say that w has a prefix x a substring y

and a suffix z .
The need also arises for trees, but it’s a bit more complex:

f

X

a g

Y

b
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Set of all trees

Definition (Set of all trees)
Let Σ be a ranked alphabet and X a set of 0-ary symbols called
variables, such that Σ ∩ X = ∅. We call T (Σ,X ) the set defined
inductively by:

∀a ∈ Σ0, a ∈ T (Σ,X )

∀x ∈ X , x ∈ T (Σ,X )

∀f ∈ Σ, ∀t1, . . . , t|f | ∈ T (Σ,X ), f (t1, . . . , t|f |) ∈ T (Σ,X )

We shall write T (Σ) for the set T (Σ,∅)
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Vocabulary

a tree with variables is often called a term

a tree with at most one occurrence of each variable is said to
be linear

a linear tree from T (Σ, {□}) is called a context (it’s a tree with a
unique hole, a “place-holder” marked by □)
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Subtree

An important notion is the one of subtree:

Definition (Subtree)
Let t ∈ T (Σ,X ). For all p ∈ Dom(t), we define the subtree of t rooted in
p and we write t|p the tree defined by:

Dom(t|p) = {u | pu ∈ Dom(t)}

∀u ∈ Dom(t|p), t|p(u) = t(pu)
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Subtree substitution
A common operation consists in replacing the subtree at a given
path with another tree.

Definition (Subtree substitution)
Let t, t ′ ∈ T (Σ,X ). The tree t in which the subtree in p is replaced by t ′,
written t[t ′]p is defined by:

Dom(t[t ′]p) = (Dom(t) \ {pu | pu ∈ Dom(t)}) ∪ {pu | u ∈ Dom(t ′)}

∀q ∈ Dom(t[t ′]p), t[t
′]p(q) =

{
t ′(u) ∀u s.t. q = pu

t(q) otherwise

f

p
t = t ′ =

⇝

f

pt[t ′]p =
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Non-deterministic tree automaton
Definition (Non-deterministic tree automaton)
A non-deterministic bottom-up tree automaton or NTA is a 4 − tuple

A = (Q,Σ, δ,F ) defined by

a set of states Q

a ranked alphabet Σ

a set of accepting states F

a transition function δ : T (Σ,Q) → P(Q) of the form:

f (qi1 , . . . , qik ) 7→ q

with f ∈ Σ and |f | = k .

Until otherwise specified, we will consider all automata to be
bottom-up or ascending. We will come back to this aspects later.
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Non-deterministic tree automaton(2)

The transition function δ takes as argument a symbol of Σ and a
sequence of states which must hold on the corresponding children
and returns a state for the current path. If δ always returns a
singleton, the automaton is deterministic.
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Run of a tree automaton

Definition
The run of an NTA A = (Q,Σ, δ,F ) for a tree t ∈ T (Σ) is a function
r : dom(t) → Q such that ∀p ∈ dom(t), r(p) ∈ δ(t(p)(r(p1), . . . , r(pk))),
with |t(p)| = k .
A run is accepting if r(ϵ) ∈ F .

A set L ⊆ T (Σ) is a regular tree language if there exists a tree
automaton that recognizes L.
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Example

Consider the automaton A = ({q0, q1}, {f 2, a}, δ, {q1}) which
recognizes the “combs”, that is, linear binary trees with leaf a and
internal nodes f where each left subtree is a. The run for
t = f (a, f (a, a)) is:

δ :

▶

a 7→ {q0}

▶

f (q0, q0) 7→ {q1}

▶

f (q0, q1) 7→ {q1}

f

a f

a a
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Example (2)

Tree automata “start” their run at the leaves. Thus, the transitions
for leaves represent “initial states”.
In the previous example, the automaton is incomplete. We can
complete it as in the case of words:

δ :

a 7→ {q0}
f (q0, q0) 7→ {q1}
f (q0, q1) 7→ {q1}
f (q1, q0) 7→ {q⊥}

f (q0, q⊥) 7→ {q⊥}
f (q⊥, q0) 7→ {q⊥}
f (q1, q⊥) 7→ {q⊥}
f (q⊥, q1) 7→ {q⊥}
f (q⊥, q⊥) 7→ {q⊥}

Since the number of states to add is polynomial (need to consider
all f (. . . , q⊥, . . .)), we will often give incomplete automata.
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Example (3)

Consider the NTA Aprop = ({q0, q1}, {∨2,∧2,¬1,F,T}, δ, {q1})
recognizing true statements in propositional logic:

δ :

F 7→ {q0}
T 7→ {q1}

¬(q0) 7→ {q1}
¬(q1) 7→ {q0}

∧(q0, q0) 7→ {q0}
∧(q0, q1) 7→ {q0}

∧(q1, q0) 7→ {q0}
∧(q1, q1) 7→ {q1}
∨(q1, q1) 7→ {q1}
∨(q0, q0) 7→ {q0}
∨(q1, q0) 7→ {q1}
∨(q0, q1) 7→ {q1}
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Example of non-determinism

The previous examples happen to be deterministic. We can adapt
non-deterministic word automata to give some examples. Consider
the automaton that recognizes trees on Σ = {f 2, g2,#} whose root
is f (f (x , y), z) or f (z , f (y , z)), for arbitrary x , y , z in T (Σ) :
({q0, q1, q2},Σ, δ, {q2}).

δ :

# 7→ {q0}
f (q0, q0) 7→ {q0, q1}
g(q0, q0) 7→ {q0}

f (q1, q0) 7→ {q2}
f (q0, q1) 7→ {q2}
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Determinisation

Theorem
Let A be a non-deterministic tree automaton. There exists a
deterministic tree automatonAdet which recognizes the same language.

The proof is the same as for the word case: states of the
deterministic are sets of states of the NTA.
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Determinisation (2)

Let A = (Q,Σ, δ,F ), define Adet = (Qdet,Σ, δdet,Fdet) where:

Qdet = P(Q)

Fdet = {s ∈ Qdet | s ∩ F ̸= ∅}

δdet : f (s1, . . . , sk) 7→ {q ∈ δ(f (q1, . . . , qk)) |q1 ∈ s1, . . . , qk ∈ sk ∈}
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Minimization

Theorem (Myhill-Nerode)
Let A adéterministic tree automaton. There exists Amin with
LAmin = LA such that for all A′, |A′| < |Amin| ⇒ LA′ ̸= LAmin

Same algorithm as for words (Partition refinement).
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Closure properties

Regular tree languages are closed under union, intersection and
complement.

Union: just merge both automata (union of set of states, union
of final states, union of δs);

Intersection: we can use the product construction, as for
words.

Complement: determinization, followed by completion, and
invert accepting and non-accepting states.
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Pumping lemma for trees

Lemma (Pumping lemma)
Let T be a regular tree language Σ. There exists p ≥ 1 (pumping height)
such that for all t ∈ T such that height(t) ≥ p, there exists
C ∈ T (Σ, {□}), a non trivial context C ′ ∈ T (Σ, {□}) and a tree
u ∈ T (Σ) such that t = C [C ′[u]] and for all n ≥ 0,C [C ′[. . . [C ′[u]]]︸ ︷︷ ︸

n times

] ∈ T .

The function height : T (Σ) → N is defined inductively on t ∈ T (Σ)

by:

height(x) = 1,∀x ∈ Σ0 (leafs have height 0)

height(f (t1, . . . , tk)) = 1 + max{hauteur(ti ) | 1 ≤ i ≤ |f |}

The trivial context is □.
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Pumping lemma in pictures

f

g

u

f

g

g

g

g

u

C [ ] : context from the root
C ′[ ] : intermediary context⇒ part of the tree that can be pumped,
while remaining in the language.

Automates et Applications Langages réguliers M1 MPRI 28 / 38



Outline

1 Introduction

2 n-ary trees

3 Tree automata

4 Top-down tree automata

Automates et Applications Langages réguliers M1 MPRI 29 / 38



Tree traversal

In the word case, it seems natural to start from the begining of the
word when computing a run. But we could go backward, starting
from the last letter in an accepting state and computing the
pre-image(s) of δ and require to finish the run in an initial state.
In the case of tree, starting at the leaf does not seem natural. Can
we “execute” the automaton while starting at the root?
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Top-down tree automaton

Definition (Top-down tree automaton)
A non-deterministic top-down tree automaton, NTDTA is a 4-tuple
A = (Q,Σ, δ, I ) defined by:

a set of states Q

a ranked alphabet Σ

a set of initial states I

a transition function δ : Q × Σ → Pf (Q
∗) of the form:

q, f 7→ {(q11 , . . . , q1k ), . . . , (qm1 , . . . , qmk
)}

with f ∈ Σ and |f | = k .
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Top-down tree automaton (2)

The transition function δ take as argument a state and a symbol
from Σ and tels in which states to continue the computation for
every child of the current path.
If δ always returns a singleton, the automaton is deterministic.
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Run of a top-down tree automaton

Definition
A run of a top-down tree automaton A = (Q,Σ, δ, I ) for a tree t ∈ T (Σ)

is a function r : dom(t) → Q such that
∀p ∈ dom(t), (r(p1), . . . , r(pk)) ∈ δ(r(p), t(p)), with |t(p)| = k .
A run is accepting if r(ϵ) ∈ I .
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Example

Consider the NTDTA A = ({q0, q1}, {f 2, a}, δ, {q0}) which (again)
recognizes the “right combs” {f 2, a}. The run of A on t = f (a, f (a, a))

is:

δ :

▶

q0, f 7→ {(q1, q0)}

▶

q0, a 7→ {}

▶

q1, a 7→ {}

f

a f

a a

q0
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Bottom-up vs Top-down

Theorem (Equivalence NTDTA-NTA)
The set of languages recognized by non-deterministict bottom-up tree
automata is exactly the set of languages recognized by
non-deterministic top-down tree automata.

Proof: it is easy to construct one from the other. Switch accepting
and initial states, and read the transitions backwards.
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Deterministic top-down tree automata

Theorem (Non equivalence of DTDTA and NTA)
The set of languages recognized by deterministic top-down tree
automata is a strict subset of regular tree languages.

in other words: TDdet ⊊ TDnondet = BUnondet = BUdet
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Counter example

Consider Σ = {f 2, a, b}. The language {f (a, b), f (b, a)} is not
recognizable by a deterministic top-down tree automaton.
Indeed, if we start the automaton in some state q0 on a symbol f , it
must recognize the left subtree in some state q1 and the right
subtree in some state q2. Therefore, q1 must recognize a or b (since
the automaton is deterministic, q0, f 7→ {(q1, q2)} is the only choice).
Likewise, q2 must recognize a or b. But in that case, the automaton
also accepts f (a, a) and f (b, b) which are not in the initial language.

Intuitively, a deterministic top-down tree automaton must decide
in which state to explore the subtree with only the knowledge of
the path taken up to the current node.
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(partial) conclusion

We have seen a new formalism, tree automata.
They recognize regular tree languages.
Most results transfer from the word case (except the
determinization, which does not hold for NTDTA).
We still need a high-level language (next week)!
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