
Formal Verification of MIX Programs

Jean-Christophe Filliâtre

CNRS

LRI, Univ Paris-Sud, Orsay F-91405

INRIA Futurs, ProVal, Orsay F-91893

Abstract

We introduce a methodology to formally verify MIX programs. It consists in annotating
a MIX program with logical annotations and then to turn it into a set of purely sequential
programs on which classical techniques can be applied. Contrary to other approaches of
verification of unstructured programs, we do not impose the location of annotations but only
the existence of at least one invariant on each cycle in the control flow graph. A prototype
has been implemented and used to verify several programs from The Art of Computer
Programming.

1 Introduction

MIX is a machine introduced by D. Knuth in The Art of Computer Programming [5] and equipped
with an assembly language. If it looks outdated compared to today’s computers, it is nonetheless
a language with a clearly exposed semantics and the vehicle of many algorithms described in
this set of books. It is thus quite natural to consider proving such programs in a formal way.
Moreover, the techniques involved in the verification of assembly-like programs have direct
applications in domains such as Proof Carrying Code [8] or safety of low-level C programs.

Our approach to formally verifying MIX programs is built on previous works on the veri-
fication of C and Java programs [3]. The general idea is to specify a program using logical
annotations inserted in its source code, and then to translate the program into an intermedi-
ate language suitable for Hoare logic [4]. The output is a set of verification conditions, that
is a set of logical formulae whose validity implies the correctness of the program. Discharg-
ing the verification conditions can be done using existing theorem provers, either automatic or
interactive.

The formal specification of structured programs is naturally done using pre- and postcon-
ditions for functions and loop invariants. Assembly programs, on the contrary, do not favor
any particular program point for logical assertions. Recent work has identified the entry points
of natural loops as obvious candidates for such assertions [1], but our first experiments show
that it can be a constraint. This is why we choose an approach where assertions can be freely
inserted at any program point. We only impose that any cycle in the control flow graph contains
at least one assertion. Then it is possible to turn a MIX program into a set of purely sequential
programs without jumps (either conditional or unconditional). In a second step, these programs
are interpreted in a model where it is possible to apply the usual techniques of Hoare logic.

Section 2 introduces our methodology. Section 3 describes a prototype and our first experi-
ments. We conclude with possible future work.

1



X EQU 1000

ORIG 3000

MAXIMUM STJ EXIT
←− Pre

INIT ENT3 0,1

JMP CHANGEM

LOOP CMPA X,3

JGE *+3

CHANGEM ENT2 0,3

LDA X,3

DEC3 1
←− Inv

J3P LOOP
←− Post

EXIT JUMP *

Figure 1: Program M (TAOCP, vol. 1, page 145).

2 Methodology

We first show how to annotate a MIX program using logical assertions (section 2.1). Then we give
an algorithm to turn this program into a set of purely sequential programs (section 2.2). Finally
we explain how to get verification conditions from these sequential programs (section 2.3) and
we prove the soundness of our method (section 2.4).

2.1 Specification

Let us consider the first program illustrating MIX, namely program M finding the maximum of
the elements of an array [5, page 145]. This program is given Figure 1. It assumes that the size
of the array is in register I1, that the array contains at least one element, and that the elements
are stored in memory at addresses X + 1, . . . , X + I1. When the program return, accumulator
A contains the maximum element and register I2 an index where it appears. The first step
consists in specifying this behavior by inserting logical annotations in program M. There are
three such annotations:

• a precondition indicating the assumption at the program entry point, namely

Pre ≡ I1 ≥ 1

inserted at program point MAXIMUM;

• a postcondition indicating the expected property at the end of execution, namely the
annotation

Post ≡ 1 ≤ I2 ≤ I1 ∧A = X[I2] ∧ ∀i, 1 ≤ i ≤ I1 ⇒ A ≥ X[i]

inserted a program point EXIT;

• and an invariant indicating the property maintained by the program, namely the anno-
tation

Inv ≡ 0 ≤ I3 ≤ I1 ∧ 1 ≤ I2 ≤ I1 ∧A = X[I2] ∧ ∀i, I3 < i ≤ I1 ⇒ A ≥ X[i]

inserted right before instruction J3P.

These three annotations are indicated on Figure 1. The meaning of an annotation is clear: each
time execution reaches an annotation, it must be verified.

2



Pre

CHANGEM

InvPost

ENT3 0,1

ENT2 0,3

LDA X,3

DEC3 1

I3 > 0; CMPA X,3I3 ≤ 0

A ≥ X[I3]

A < X[I3]

Figure 2: Control flow graph for program M.

traverse(n) =
if n is currently visited then fail (we found a cycle with no invariant)
if n has not yet been visited then

for each transition n
s
→ m

call traverse(m)
if m is an invariant I then

associate to n the code s; assert I

else
associate to n the code s; s′ for each code s′ associated to m

if n is an invariant J the prefix each code of m by assume J

Figure 3: Sequentialization algorithm.

2.2 Sequentialization

The next step is to turn the MIX program into a set of purely sequential programs which do
not contain jumps anymore, and whose correctness imply the correctness of the initial program.
To do so, we first build the control flow graph, where nodes correspond to program points and
transitions to sequences of instructions and test results. Such a control flow graph for program
M is given Figure 2.

The key idea is to impose the presence of (at least) one annotation on each cycle in the
control flow graph. Annotations are considered as invariants here: they must be verified when
reached initially and maintained by any path used to come back. (In the remainder of this
section we will refer to annotations as invariants instead of assertions to make it clearer.)
Our sequentialization algorithm simply performs a depth-first traversal of the graph from the
entry point, associating to each node a set of purely sequential programs. Pseudo-code for this
algorithm is given Figure 3.

The result of sequentialization is the set of programs associated to the entry point and
to each invariant encountered during the traversal. The result for program M is the set of
four codes, given Figure 4. Keyword assume introduces an assumption and keyword assert a
property to be verified. These programs are naturally interpreted as follows: seq

1
is the initial

validity of the invariant Inv ; seq
2

and seq
3

express the preservation of Inv on the two possible
paths; finally seq

4
expresses the validity of the postcondition.

It is important to notice that this algorithm is not related to MIX but could be used with
any assembly-like language.

3



seq1 ≡
assume Pre
ENT3 0,1

ENT2 0,3

LDA X,3

DEC3 1

assert Inv

seq2 ≡
assume Inv
assume I3 > 0
CMPA X,3

assume CMP ≥ 0
DEC3 1

assert Inv

seq3 ≡
assume Inv
assume I3 > 0
CMPA X,3

assume CMP < 0
ENT2 0,3

LDA X,3

DEC3 1

assert Inv

seq4 ≡
assume Inv
assume I3 ≤ 0
assert Post

Figure 4: Sequentializing program M.

2.3 Generating the Verification Conditions

The last step consists in generating verification conditions from the sequential programs i.e. log-
ical formulae whose validity implies the correctness of the initial program. For this purpose, we
can use traditional Hoare logic [4], or more conveniently a calculus of weakest preconditions [2],
provided some logical model of MIX programs:

• registers A,X, I1, . . . I6 are modeled as global integer variables;

• the memory is modeled as a global array of integers;

• flags E, G and L are interpreted as the sign of a unique global variable CMP .

Furthermore, we make the following assumptions:

• direct use of register J is not supported (only the co-routine pattern is recognized and
handled separately);

• input-output instructions are not modeled: they can be used in programs but the user
has to state assumptions about data which is read.

2.4 Soundness

In this section we prove the soundness of our method. Let us write S = {seq1, . . . , seqk} the set
of purely sequential programs resulting from the sequentialization. Each seq i has the following
shape

assume Pi

si

assert Qi

where Pi and Qi are user invariants and si is a purely sequential program which does not contain
any invariant (but with possible assume declarations corresponding to test results).

Let us assume an operational semantics for purely sequential MIX programs, as a set of states
and a transition relation between states written S1

s
−→ S2 which means “execution of program

s in state S1 leads to state S2”. We note S |= I if invariant I holds in state S. The correctness
of each program seq i means that in any state S1 such that S1 |= Pi and for any state S2 such

that S1

si−→ S2 we have S2 |= Qi. Note that we are only considering partial correctness.
Soundness can be stated as follows:

Theorem 1 (soundness) Let S be a state satisfying the invariant I at entry point, i.e. S |= I,
and let us consider an execution reaching a program point with an invariant J in state S′. Then
S′ |= J .

4



Proof. Let us consider all the intermediate states where the execution reaches an invariant.
By definition of the sequentialization algorithm, there is a finite number of steps between two
such states (otherwise we would have a cycle in the control flow graph without any invariant).
Therefore the execution looks like

S = S0

s1−→ S1

s2−→ S2 . . .
sn−→ Sn = S′

where each state Si is associated to an invariant Ii, with I0 = I and In = J . Each triple
(Ii−1, si, Ii) exactly corresponds to one sequential program in S, since invariant Ii−1 can be
reached in the control flow graph from the entry point, and since there is path from Ii−1 to Ii in
this graph which does not cross any other invariant. Then proving Si |= Ii is a straightforward
induction, since S0 |= I0 by assumption and since the correctness of the sequential programs

implies that if Si−1 |= Ii−1 and Si−1

si−→ Si then Si |= Ii. �

3 Implementation

3.1 Prototype

We implemented our method as a prototype tool, called demixify, taking annotated MIX programs
as input and generating verification conditions in the native syntax of several theorem provers.
Our tool uses the back-end of the Why platform [3], which provides an intermediate language
dedicated to program verification. Thus our prototype is simply a front-end which parses
annotated MIX programs, performs the sequentialization and then prints the resulting programs
in the syntax of the Why tool. Then we rely on the Why tool to compute the verification
conditions and to dispatch them to interactive provers (such as Coq, PVS, Isabelle/HOL, etc.)
or automatic provers (Simplify, Ergo, Yices, etc.).

In practice, demixify is run on a file file.mix to produce a Why file file.why. Then
it is possible to use tools from the Why platform on this file (to compute the verification
conditions, display them, launch provers, display the results, etc.). Inside file.mix annotations
are inserted between brackets. One pair of brackets { P } stands for an assertion to be verified
at the corresponding program point and double brackets {{ P }} stands for an invariant. A
quotation mechanism allows to insert pure Why code inside the input file, using the syntax {{{
why code }}}. This is typically used to insert a prelude containing parameters for the program
or logical declarations for its specification.

Within annotations, the current values of registers is referred to using the names A, I1, I2,
etc. The current value at address p in memory is denoted by mem[p].

3.2 Case Studies

Up to now, we only verified very simple MIX programs, such as program M above (which is
verified fully automatically). We briefly describe some of these case studies in this section.

3.2.1 Sequential Searching

We consider here three implementations of sequential searching from Section 6.1 of The Art of
Computer Programming [7, page 397]. The goal is to check whether a given value stored at
address K appears in an array of N values stored at addresses KEY+ 1, . . . , KEY + N.

First, we introduce KEY, K and N as parameters, using the quotation for Why code:

{{{ logic KEY,K,N:int }}}

5



The first implementation (Program S page 397) simply scans the array from index 1 to index
N. It can be annotated as follows:

start: {{ N ≥ 1 }}
lda K

ent1 1-N

2H: {{ 1 ≤ N + I1 ≤ N ∧A = mem[K] ∧
∀i, 1 ≤ i < N+ I1 ⇒ mem[K] 6= mem[KEY+ i] }}

cmpa KEY+N,1

je success

inc1 1

j1np 2B

failure:{ ∀i, 1 ≤ i ≤ N⇒ mem[K] 6= mem[KEY + i] }
hlt

success:{ mem[K] = mem[KEY + N + I1] }

The postcondition is split into two assertions at labels failure and success, respectively. The
loop invariant is here located at the loop entry point (label 2H). It may seem unnecessary to add
A = mem[K] in the loop invariant, since A and K are not modified in the loop body, but there is
currently no mechanism to get such invariant for free. When demixify is run on this program, it
generates 10 verification conditions (when splitting conjunctions), all discharged automatically
using an automatic theorem prover such as Simplify or Ergo.

The next implementation (Program Q page 397) improves on the previous one by setting a
sentinel at address KEY+ N + 1, namely the value to be searched for. The annotated code is as
follows:

start: {{ N ≥ 1 }}
lda K

sta KEY+N+1

ent1 -N

inc1 1

{{ 1 ≤ N + I1 ≤ N + 1 ∧A = mem[K] ∧mem[KEY + N + 1] = A ∧
∀i, 1 ≤ i < N+ I1 ⇒ mem[K] 6= mem[KEY+ i] }}

cmpa KEY+N,1

jne *-2

j1np success

failure:{ ∀i, 1 ≤ i ≤ N⇒ mem[K] 6= mem[KEY + i] }
hlt

success:{ mem[K] = mem[KEY + N + I1] }

The specification is exactly the same, apart from the addition of a specification for the sentinel
in the loop invariant, namely mem[KEY+ N+ 1] = A. Note that the loop invariant is placed one
instruction after the loop entry point (which is located here right before instruction inc1 1).
As we already did with program M, we notice that it is convenient to have freedom in invariant
locations. For this second implementation, 12 verification conditions are generated and all are
automatically discharged.

The last improvement consists in unrolling the loop once, in order to save one increment
(Program Q’ page 398). The specification is exactly the same as for program Q:

start: {{ N ≥ 1 }}
lda K

6



sta KEY+N+1

ent1 -1-N

3H: inc1 2

{{ 1 ≤ N + I1 ≤ N + 1 ∧A = mem[K] ∧mem[KEY + N + 1] = A ∧
∀i, 1 ≤ i < N+ I1 ⇒ mem[K] 6= mem[KEY+ i] }}

cmpa KEY+N,1

je 4F

cmpa KEY+N+1,1

jne 3B

inc1 1

4H: j1np success

failure:{ ∀i, 1 ≤ i ≤ N⇒ mem[K] 6= mem[KEY + i] }
hlt

success:{ mem[K] = mem[KEY + N + I1] }

Again the loop invariant is not placed at the loop entry point but immediately after the in-
crement instruction (inc1 2 here). Running demixify on program Q’ results in 14 verification
conditions. All are automatically discharged, but one. Not surprisingly, this is the preservation
of the property

∀i, 1 ≤ i < N + I1 ⇒ mem[K] 6= mem[KEY + i]

when I1 is incremented by 2, i.e. after two successive negative tests. Thus the proof requires
two case analyzes to distinguish between 1 ≤ i < N+ I1, i = N+ I1 and i = N+ I1 + 1. It seems
to be out of reach of the heuristics involved in the automatic theorem provers we are using.

3.2.2 Selection Sort

Our last case study is a proof of straight selection sort [7, Program S page 140]. The purpose
of this program is to sort in place the values stored at locations INPUT + 1, . . . , INPUT + N, in
increasing order. We start a Why prelude with the declaration of parameters N and INPUT:

{{{
logic N,INPUT:int

Next we introduce predicate definitions to simplify annotations. The first such predicate is
the main invariant of selection sort, which states that the upper part of the array INPUT +
i, . . . , INPUT + N is already sorted and that all values in the lower part are smaller than values
in the upper part:

predicate Inv(a: int array, i: int) =

sorted_array(a, INPUT+i, INPUT+N) and

forall k,l:int. 1 <= k <= i-1 -> i <= l <= N -> a[INPUT+k] <= a[INPUT+l]

Here we use a predefined predicate sorted array from Why’s standard library. The second
predicate is the permutation property. Indeed, we not only need to prove that the final array is
sorted but also that it is a permutation of the initial. For this purpose we introduce an auxiliary
variable mem0 representing the initial contents of the memory and we use a predefined predicate
sub permut from Why’s standard library:

logic mem0: int farray

predicate Perm(m: int array) = sub_permut(INPUT+1, INPUT+N, m, mem0)

}}}

7



We are now in position to annotate the MIX code for selection sort:

init: {{ N ≥ 2 ∧ Perm(mem) }}
ent1 N-1

2H: {{ 1 ≤ I1 ≤ N− 1 ∧ Inv(mem, I1 + 2) ∧ Perm(mem) }}
ent2 0,1

ent3 1,1

lda INPUT,3

8H: {{ 1 ≤ I1 ≤ N− 1 ∧ Inv(mem, I1 + 2) ∧ Perm(mem) ∧
1 ≤ I2 < I3 ≤ I1 + 1 ∧A = mem[INPUT + I3] ∧
∀k, I2 + 1 ≤ k ≤ I1 + 1⇒ mem[INPUT+ k] ≤ mem[INPUT+ I3] }}

cmpa INPUT,2

jge *+3

ent3 0,2

lda INPUT,3

dec2 1

j2p 8B

ldx INPUT+1,1

stx INPUT,3

sta INPUT+1,1

dec1 1

j1p 2B

{ sorted array(mem, INPUT+ 1, INPUT + N) ∧ Perm(mem) }

This annotated code generates 42 verification conditions, all discharged automatically.

3.2.3 Other Case Studies

A proof of algorithm I (inversion of a permutation in place) is already engaged. We could also
consider the formal proof of Knuth’s algorithm for the first N prime numbers performed by
L. Théry a few years ago [9]: the proof was done using Why and Coq directly and we could turn
it into a proof of the original MIX code.

4 Conclusion and Future Work

We have presented a methodology for the formal verification of MIX programs. A prototype
has been implemented and the first experiments are encouraging. There are many possible
extensions for this work. One improvement would be the ability to prove the termination of MIX
programs, by addition of variants on each cycle of the control flow graph, as we did for invariants.
Another interesting extension would be formal reasonings regarding the complexity of MIX

programs, since one of MIX’s main interests is precisely to allow a detailed complexity analysis.
For this purpose, we could automatically associate counters to program lines in our model of
MIX programs, and make it possible for the user to refer to these counters in annotations.

Acknowledgements. I am sincerely grateful to L. Théry for his suggestion to consider the
formal proof of MIX programs.

8



References

[1] Mike Barnett and K. Rustan M. Leino. Weakest-Precondition of Unstructured Programs.
In 6th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and
Engineering (PASTE), Lisbon Portugal, September 2005.

[2] Edsger W. Dijkstra. A discipline of programming. Series in Automatic Computation. Pren-
tice Hall Int., 1976.

[3] Jean-Christophe Filliâtre and Claude Marché. The Why/Krakatoa/Caduceus Platform for
Deductive Program Verification. In 19th International Conference on Computer Aided Ver-
ification, 2007.

[4] C. A. R. Hoare. An axiomatic basis for computer programming. Communications of the
ACM, 12(10):576–580,583, 1969.

[5] D. E. Knuth. The Art of Computer Programming. Volume 1: Fundamental Algorithms.
Addison-Wesley, 1968.

[6] D. E. Knuth. The Art of Computer Programming. Volume 2: Seminumerical Algorithms.
Addison-Wesley, 1969.

[7] D. E. Knuth. The Art of Computer Programming. Volume 3: Sorting and Searching.
Addison-Wesley, 1973.

[8] George C. Necula. Proof-carrying code. In Conference Record of POPL ’97: The 24th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 106–119,
Paris, France, jan 1997.

[9] Laurent Théry. Proving Pearl: Knuth’s algorithm for prime numbers. In Proceedings of
the 16th International Conference on Theorem Proving in Higher Order Logics (TPHOLs
2003), 2003.

9


