
Chapter 1

Designing a Generic Graph
Library using ML Functors
Sylvain Conchon1, Jean-Christophe Filliâtre1, Julien Signoles2

Abstract: This paper details the design and implementation of OCAMLGRAPH,
a highly generic graph library for the programming language OCAML. This li-
brary features a large set of graph data structures—directed or undirected, with
or without labels on vertices and edges, as persistent or mutable data structures,
etc.—and a large set of graph algorithms. Algorithms are written independently
from graph data structures, which allows combining user data structure (resp.
algorithm) with OCAMLGRAPH algorithm (resp. data structure). Genericity is
obtained through massive use of the OCAML module system and its functions, the
so-called functors.

1.1 INTRODUCTION

Finding a graph library for one’s favorite programming language is usually easy.
But applying the provided algorithms to one’s own graph data structure or build-
ing undirected persistent graphs with vertices and edges labeled with data other
than integers is likely to be more difficult. Figure 1.1 quickly compares sev-
eral graph libraries according to the following criteria: number of graph data
structures; purely applicative or imperative nature of the structures; and ability
to apply the provided algorithms to a user-defined graph data structure. As one
can notice, none of these libraries gives full satisfaction. This paper introduces
OCAMLGRAPH 3, a highly generic graph library for the programming language
OCAML [7], which intends to fulfill all these criteria.

1LRI, Univ Paris-Sud, CNRS, INRIA Futurs (ProVal), 91893 Orsay, France;
Email: {Sylvain.Conchon,Jean-Christophe.Filliatre}@lri.fr

2CEA-LIST, Laboratoire Sûreté des Logiciels, 91191 Gif-sur-Yvette cedex, France;
Email: Julien.Signoles@cea.fr

3OCAMLGRAPH is an open source library available at http://ocamlgraph.lri.fr/.

1

graph data imperative / generic
language structures persistent4 algorithms

GTL [5] C++ 1 I no
LEDA [13] C++ 2 I no
BGL [2] C++ 2 I yes
JDSL [4] Java 1 I yes
FGL [3, 9] Haskell 1 P yes
MLRisc [6] SML 1 I no
Baire [1]5 OCAML 8 P/I meaningless

FIGURE 1.1. Comparison with other graph libraries

OCAMLGRAPH introduces genericity at two levels. First, OCAMLGRAPH does
not provide a single data structure for graphs but many of them, enumerating all
possible variations (19 altogether)—directed or undirected graphs, persistent or
mutable data structures, user-defined labels on vertices or edges, etc.—under a
common interface. Secondly, OCAMLGRAPH provides a large set of graph algo-
rithms that are written independently from the underlying graph data structure.
These can then be applied naturally to the data structures provided by OCAML-
GRAPH itself and also on user-defined data structures as soon as these implement
a minimal set of functionalities.

Without proper parameterization, such a large set of variants may easily re-
sult in unmanageable code. We avoid this pitfall using the OCAML module sys-
tem [12], which appears to be the tool of choice for this kind of meta-programming.
The genericity of OCAMLGRAPH is indeed achieved through a massive use of
OCAML functors. On one hand, they are used to avoid code duplication between
the many variations of graph data structures, which is mandatory here due to the
high number of similar but different implementations. On the other hand, they
are used to write graph algorithms independently from the underlying graph data
structure, with as much genericity as possible while keeping efficiency in mind.

This paper is organized as follows. Section 1.2 gives an overview of OCAML
module system. Section 1.3 demonstrates the use of OCAMLGRAPH through an
example. Section 1.4 exposes the design of the common interface for all graph
data structures and explains how the code is shared among various implementa-
tions. Section 1.5 describes the algorithms provided in OCAMLGRAPH and how
genericity is obtained with respect to the graph data structure. Finally Section 1.6
presents some benchmarks.

4An imperative graph is a mutable data structure where modifications are performed
in-place, while a persistent graph is an immutable data structure; see for instance
Okasaki’s book [14] for more details about persistent data structures.

5The Baire library seems to be no longer available from Internet.

2

1.2 OVERVIEW OF OCAML MODULE SYSTEM

This section quickly describes the OCAML module system. Any reader familiar
with OCAML can safely skip this section.

The module system of OCAML is a language by itself, on top of the core
OCAML language, which only fulfills software engineering purposes: separate
compilation, names space structuring, encapsulation and genericity. This lan-
guage appears to be independent of the core language [12] and may be unfolded
statically. It is a strongly typed higher-order functional language. Its terms are
called modules or structures. They are the basic blocks in OCAML programs, that
package together types, values, exceptions and sub-modules.

1.2.1 Structures

Modules are introduced using the struct...end construct and the (optional)
module binding is used to give them a name. Outside a module, its components
can be referred to using the dot notation: M.c denotes the component c defined
in the module M.

For instance, a module packaging together a type for a graph data structure
and some basic operations can be implemented in the following way:

module Graph = struct
type label = int
type t = (int × label) list array
let create n = Array.create n []
let add_edge g v1 v2 l = g.(v1) ← (v2,l)::g.(v1)
let iter_succ g f v = List.iter f g.(v)

end

The type Graph.t defines a naive graph data structure using adjacency lists with
edges labeled with integers: a graph is an array (indexed by integers representing
vertices) whose elements are lists of pairs of integers and labels (declared as an
alias for the type int).

1.2.2 Signatures

The type of a module is called a signature or an interface6 and can be used to
hide some components or the definition of a type (then called an abstract data
type). Signatures are defined using the sig...end construct and the (optional)
module type binding is used to give them a name. Constants and functions
are declared via the keyword val and types via the keyword type.

For instance, a possible signature for the Graph module above, that hides the
graph representation and the type of labels, could be the following:

module type GRAPH = sig

6with the same meaning as in MODULA but not as in JAVA

3

type label
type t
val create : int → t
val add_edge : t → int → int → label → unit
val iter_succ :

t → (int × label → unit) → int → unit
end

Restricting a structure by a signature results in another view of the structure. This
is done as follows:

module G’ = (G : GRAPH)

Since interfaces and structures are clearly separated, it is possible to have several
implementations for the same interface. Conversely, a structure may have several
signatures (hiding and restricting more or less components).

1.2.3 Functors

The functions of the module system are called functors and allow us to define
modules parameterized by other modules. Then they can be applied one or several
times to particular modules with the expected signature. The benefits of functors
in software engineering are appreciated as soon as one has to parameterize a set
of types and functions by another set of types and functions, in a sound way7. For
instance, to implement Dijkstra’s shortest path algorithm for any graph imple-
mentation where edges are labeled with integers, one can write a functor looking
like:

module type S = sig
type label
type t
val iter_succ :

t → (int × label → unit) → int → unit
end

module Dijkstra (G : S with type label = int) =
struct

let dijkstra g v1 v2 = (* ... *)
end

The with type annotation is used here to unify the abstract type label from
the signature S with the type int. One may also notice that the signature S
required for the functor’s argument only contains what is necessary to implement
the algorithm. However, we can apply the functor to any module whose signature
contains at least S i.e. is a subtype of S.

7See for instance Norman Ramsey’s ML Module Mania [15] as an example of a
massive use of ML functors.

4

module G = Imperative.Graph.Abstract
(struct type t = int × int end)

let g = G.create ()

let () =
... add vertices to g with G.add_vertex,

edges with G.add_edge and initial
constraints (20 lines of code) ...

module C = Coloring(G)

let () = C.coloring g 9

FIGURE 1.2. A Sudoku solver using OCAMLGRAPH

Functors are also first-class values, i.e they can be passed as arguments to
other functors. Finally, it is possible to aggregate signatures or modules using the
include construct which can be naively seen as a textual inclusion.

1.3 MOTIVATING EXAMPLE

To illustrate the use of OCAMLGRAPH, we consider a Sudoku solver based on
graph coloring. The idea is to represent the Sudoku grid as an undirected graph
with 9×9 vertices, each vertex being connected to all other vertices on the same
row, column and 3× 3 group. Solving the Sudoku is equivalent to 9-coloring
this graph. Figure 1.2 displays the sketch of a solution to this problem using
OCAMLGRAPH 8. There are four steps in this code:

1. We choose a graph data structure for our Sudoku solver: it is an imperative
undirected graph with vertices labeled with pairs of integers (the cells coordi-
nates) and unlabeled edges. In this structure, vertices are also equipped with
integer marks, that are used to store the assigned colors.

2. We create the Sudoku grid and fill it with the initial constraints.

3. We obtain a coloring algorithm for our graph data structure.

4. We solve the Sudoku problem by 9-coloring the graph.

This code is almost as efficient as a hand-coded Sudoku solver: on the average, a
Sudoku puzzle is solved in 0.2 seconds (on a Pentium IV 2.4 GHz). The remainder
of this paper goes into more details about the code above.

8Full source code for the Sudoku example is given in appendix A.

5

1.4 SIGNATURES AND GRAPH DATA STRUCTURES

Managing many variants of graph data structures without proper parameterization
results into unmanageable code. Here we show how we factorized the OCAML-
GRAPH implementation to avoid such pitfall. Section 1.4.1 describes the common
sub-signatures shared by all graphs. Section 1.4.2 details their various implemen-
tations.

1.4.1 Sharing Signatures for All Graphs

All graph data structures share a common sub-signature G for observers. Two
other signatures distinguish the modifiers for persistent and imperative graphs,
respectively.

The common signature G includes an abstract type t for the graph datatype
and two modules V and E for vertices and edges respectively. The signature for E
always includes a type label which is instantiated by the singleton type unit
for unlabeled graphs. Modules V and E both implement the standard compar-
ison and hashing functions so that graph algorithms may easily construct data
structures containing vertices and edges. G also includes usual observers such as
functions to iterate over vertices and edges, which are massively used in graph
algorithms. The common signature looks like:

module type G = sig
type t
module V : sig type t ... end
module E : sig

type t
type label
val label : t → label
...

end
val iter_vertex : (V.t → unit) → t → unit
val iter_succ : (V.t → unit) → t → V.t → unit
...

end

We distinguish the signature P for persistent graphs from the signature I for im-
perative graphs, since the modifiers do not have the same type in both:

module type P = sig
include G
val empty : t
val add_vertex : t → V.t → t
val add_edge : t → V.t → V.t → t
...

end

6

module type I = sig
include G
val create : unit → t
val add_vertex : t → V.t → unit
val add_edge : t → V.t → V.t → unit
...

end

1.4.2 19 Graph Data Structures in 1000 Lines of Code

OCAMLGRAPH provides 19 graph data structures, which include all the possible
combinations of the following 4 criteria:

• directed or undirected graph;

• labeled or unlabeled edges;

• persistent or imperative data structure;

• concrete or abstract type for vertices.

The last point requires some explanations. Vertices are always labeled internally
with the value provided by the user. Accessing this value depends on the choice of
concrete or abstract vertices. Concrete vertices allow unrestricted access to their
value. Abstract vertices hide their value inside an abstract data type. The former
allows a more immediate use of the data structure and the latter a more efficient
implementation. In particular, imperative graphs with abstract vertices can be
equipped with integer mutable marks, which are used in our Sudoku solver.

A functor is provided for each data structure. It is parameterized by user
types for vertex labels and possibly edge labels. These functors9 are displayed
in Figure 1.3 as square boxes mapping signatures of input modules (incoming
plain edges) to the signature of the graph module (outgoing plain edges). Of
these, 8 functors exist in both directed and undirected versions. Input signa-
tures ANY TYPE, ORDERED TYPE DFT and COMPARABLE define the user types
for vertices and edges labels. For instance, functor AbstractLabelled from
Imperative.Graph takes as arguments two modules of signatures ANY TYPE
and ORDERED TYPE DFT respectively and produces a module implementing sig-
nature IM. This signature extends signature Iwith mutable marks, as indicated by
the dashed edge from IM to I. Three other implementations complete the set of
graph data structures, namely ConcreteBidirectional for graphs with an
efficient access to predecessors, and Matrix.(Graph, Digraph) for graphs
implemented as adjacency matrices. For efficiency reasons, these three imple-
mentations do not offer the same combination of criteria as the previous ones.

Several functors are used internally to avoid code duplication among the func-
tors presented in Figure 1.3. For instance, a functor adds labels to unlabeled
graphs; another one encapsulates concrete vertices into an abstract data type; etc.

9The signatures of all these functors are available at http://ocamlgraph.lri.fr/doc/.

7

Abstract Concrete ConcreteBidirectional

G

I

Abstract Concrete

P

Matrix.DigraphMatrix.Graph

signature subtyping

AbstractLabelled ConcreteLabelled

AbstractLabelled ConcreteLabelled

IM

Persistent.[Di]Graph

Imperative.[Di]Graph

functor application

ANY_TYPE ORDERED_TYPE_DFT COMPARABLE

FIGURE 1.3. OCAMLGRAPH data structures components

Putting it all together, the code size for the 19 graph data structures is about 1000
lines. This is clearly small enough to be easily maintained. In Section 1.6 we will
show that this code is also quite efficient.

The graph data structure for our Sudoku solver is simply an imperative undi-
rected graph with abstract vertices labeled with pairs of integers and unlabeled
edges. It is obtained as:

module G = Imperative.Graph.Abstract
(struct type t = int × int end)

1.5 GENERIC ALGORITHMS

This section introduces the second use of functors in OCAMLGRAPH: generic
programming of graph algorithms.

1.5.1 Decoupling Algorithms and Graph Data Structures

As demonstrated in Section 1.4, our library provides many graph data structures.
It makes it necessary to factorize the code for graph algorithms that operate on
these structures. Again, functors provide a nice encoding of generic algorithms.

The basic idea when coding an algorithm is to focus only on the required oper-
ations that this algorithm imposes on the graph data structure. Then this algorithm
can be expressed naturally as a functor parameterized by these operations. These
operations usually form a subset of the operations provided by OCAMLGRAPH
graph data structures. In a few cases, the algorithm requires specific operations
that are independent of the graph data structure. In such a case, the specific oper-
ations are provided as an additional functor parameter.

Such a “functorization” of algorithms has two benefits: first, it allows to add
quickly new algorithms to the library, without duplicating code for all data struc-
tures; secondly, it allows the user to apply an existing algorithm on his own graph

8

data structure. Note that on the latter case the user is responsible for fulfilling
the requirements over the functor parameters (which are available from OCAML-
GRAPH documentation).

1.5.2 Example: Depth-First Traversal

We illustrate the generic programming of graph algorithms on the particular ex-
ample of depth-first prefix traversal (DFS). To implement DFS, we need to iterate
over the graph vertices and over the edges leaving a given vertex. If we do not as-
sume any kind of marks on vertices, we also need to build a data structure to store
the visited nodes. We choose a hash table for this purpose and thus we require a
hash function and an equality over vertices. Thus the minimal input signature for
the DFS functor is as follows:

module type G = sig
type t
module V : sig

type t
val hash : t → int
val equal : t → t → bool

end
val iter_vertex : (V.t → unit) → t → unit
val iter_succ : (V.t → unit) → t → V.t → unit

end

The DFS algorithm is then implemented as a functor with an argument of signa-
ture G. The result of functor application is a module providing a single function
dfs to traverse a given graph while applying a given function on all visited ver-
tices:

module Dfs(G : G) :
sig val dfs : (G.V.t → unit) → G.t → unit end

To implement this functor, we first instantiate OCAML’s generic hash tables on
graph vertices:

module Dfs(G : G) = struct
module H = Hashtbl.Make(G.V)

Then we can implement the traversal. The following code uses a hash table h to
store the vertices already visited and an explicit stack stack to store the vertices
to be visited (to avoid the possible stack overflow of a recursive implementation).
Function G.iter vertex is used to start a DFS on every vertex. The DFS itself
is performed in function loop using G.iter succ:

let dfs f g =
let h = H.create 65537 in
let stack = Stack.create () in

9

let push v =
if not (H.mem h v) then
begin H.add h v (); Stack.push v stack end

in
let loop () =

while not (Stack.is_empty stack) do
let v = Stack.pop stack in
f v;
G.iter_succ push g v

done
in
G.iter_vertex (fun v → push v; loop ()) g

end

Beside this simple algorithm, OCAMLGRAPH provides other kinds of traversals
(breadth-first, postfix, etc.) and more efficient implementations when the graph
data structure contains mutable marks on vertices.

1.5.3 Example: Graph Coloring

As a second example, we present a graph coloring algorithm used in our Sudoku
solver. For the purpose of our algorithm, we require the presence of get and set
operations on integer marks associated to vertices. We use these marks to store the
color assigned to each vertex. We also need iterators over vertices and successors.
Thus the minimal signature for a graph data structure used in our graph coloring
algorithm is the following:

module type GM = sig
type t
module V : sig type t ... end
module Mark : sig

val get : V.t → int
val set : V.t → int → unit

end
val iter_vertex : (V.t → unit) → t → unit
val iter_succ : (V.t → unit) → t → V.t → unit

end

OCAMLGRAPH already provides implementations for such a signature. This is
the case for the graph data structure used in our Sudoku solver. Then the graph
coloring algorithm is implemented as the following functor:

module Coloring(G : GM) : sig
val coloring : G.t → int → unit

end

It provides a single function coloring which colors a given graph with a given
number of colors. Some marks may contain initial constraints. The implementa-

10

tion of this coloring algorithm is given in appendix B. To complete our Sudoku
solver, we simply need to apply the above functor on our graph module G:

module C = Coloring(G)

If g contains the Sudoku graph, and assuming that the initial constraints are set in
g marks, solving the Sudoku amounts to 9-coloring graph g:

C.coloring g 9

1.5.4 Building Graphs

In Section 1.4.1, we have shown that persistent and imperative graphs have cre-
ation functions with different signatures. However, as we have written algorithms
in a generic way, we may want to build graphs in a generic way, that is indepen-
dently of the underlying data structure. For instance, we may want to implement
graph operations (such as union, transitive closure, etc.) or to build some classic
graphs (such as the full graph with n vertices, the de Bruijn graph of order n, etc.)
or even random graphs. In all these cases, the persistent or imperative nature of
the graph is not really significant but the signature difference disallows genericity.

To solve this issue, we introduce a module Builder. It defines a common
interface for graphs building:

module type S = sig
module G : Sig.G
val empty : unit → G.t
val copy : G.t → G.t
val add_vertex : G.t → G.V.t → G.t
val add_edge : G.t → G.V.t → G.V.t → G.t
val add_edge_e : G.t → G.E.t → G.t

end

It is immediate to realize such a signature for persistent or imperative graphs:

module P(G : Sig.P) : S with module G = G
module I(G : Sig.I) : S with module G = G

It is important to notice that for imperative graphs the values returned by the
functions add vertex, add edge and add edge e are meaningless.

Therefore, it is easy to write a generic algorithm that builds graphs. First we
write a generic version as a functor taking a module of signature Builder.S as
argument:

module Make(B : Builder.S) = struct ... end

and then we can trivially provide two variants of this functor for both persistent
and imperative graphs, with the following two lines:

module P(G : Sig.P) = Make(Builder.P(G))
module I(G : Sig.I) = Make(Builder.I(G))

Thus the use of the module Builder is entirely hidden from the user point of
view.

11

1.6 BENCHMARKS

Surprisingly, we could not find any standard benchmark for graph libraries. In
order to give an idea of OCAMLGRAPH efficiency, we present here the results of
a little benchmark of our own. We test four different data structures for undi-
rected graphs with unlabeled edges, that are either persistent (P) or imperative
(I) and with either abstract (A) or concrete (C) vertices. In the following, these
are referred to as PA, PC, IA and IC, respectively. All tests were performed on a
Pentium 4 2.4 GHz.

We first test the efficiency of graph creation and mutation. For that purpose,
we build cliques of V vertices (and thus E = V (V +1)/2 edges since we include
self loops). Then we repeatedly delete all edges and vertices in these graphs. Fig-
ure 1.4 displays the creation and deletion timings in seconds up to V = 1000 (that
is half a million edges). The speed of creation observed is roughly 100,000 edges
per second for imperative graphs. The creation of persistent graphs is slower but
within a constant factor (less than 2). Deletion is twice as fast as creation. Regard-
ing memory consumption, all four data structures use approximately 5 machine
words (typically 20 bytes) per edge.

Our second benchmark consists in generating graphs corresponding to 2D
mazes and traversing them using depth-first and breadth-first traversals. Given an
integer N, we build a graph with V = N2 vertices and E = V −1 edges. Figure 1.5
displays the timings in seconds for various values of N up to 600 (i.e. 360,000
vertices). The observed speed is between 500,000 and 1 million traversed edges
per second.

We also tested the adjacency matrix-based data structure. Creation and dele-
tion are much faster in that case, and the data structure for a dense graph is usually
much more compact (it is implemented using bit vectors). However, the use of
this particular implementation is limited to unlabeled imperative graphs with in-
teger vertices. The above benchmarks, on the contrary, do not depend on the
nature of vertices and edges types. Thus they are much more representative of
OCAMLGRAPH average performances.

1.7 CONCLUSION

We presented OCAMLGRAPH, a highly generic graph library for OCAML pro-
viding several graph data structures and graph algorithms. Algorithms are writ-
ten independently from graph data structures, which allows combining user data
structure (resp. algorithm) with OCAMLGRAPH algorithm (resp. data structure).
To our knowledge, there is no library for any applicative language as generic
as OCAMLGRAPH. This genericity is obtained using OCAML module system
and especially its functors which allow sharing large pieces of code and pro-
vide clear separation between data structures and algorithms. The same level
of genericity could probably be achieved using Haskell’s multi-parameter type
classes [8, 16, 11]. Regarding imperative languages, graph libraries are rarely as
generic and never provide as many different data structures.

12

0
2
4
6
8

10
12
14
16
18
20

100 200 300 400 500 600 700 800 900 1000
number of nodes V

IA
IC
PA
PC

0
1
2
3
4
5
6
7
8
9

100 200 300 400 500 600 700 800 900 1000
number of nodes V

IA
IC
PA
PC

FIGURE 1.4. Benchmarking creation (top) and deletion (bottom)

Since its first release (Feb. 2004), the number of OCAMLGRAPH users has
been increasing steadily and several of them contributed code to the library. Some
of them provided new graph data structures (e.g. ConcreteBidirectional)
and others new algorithms (e.g. minimal separators). It clearly shows the benefits
of a generic library where data structures and algorithms are separated.

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for their helpful comments.
We already improved the implementation of OCAMLGRAPH following one of the
reviewer suggestions (generalizing mutable marks from integer to arbitrary types).

REFERENCES

[1] Baire. http://www.edite-de-paris.com.fr/∼fpons/Caml/Baire/.

13

0

0.5

1

1.5

2

2.5

3

0 100 200 300 400 500 600
maze width N

IA
IC
PA
PC

0

0.5

1

1.5

2

2.5

3

3.5

0 100 200 300 400 500 600
maze width N

IA
IC
PA
PC

FIGURE 1.5. Benchmarking DFS (top) and BFS (bottom)

[2] BGL - The Boost Graph Library. http://www.boost.org/libs/graph/
doc/.

[3] FGL - A Functional Graph Library. http://web.engr.oregonstate.edu/
∼erwig/fgl/.

[4] The Data Structures Library in Java. http://www.cs.brown.edu/cgc/
jdsl/.

[5] The Graph Template Library. http://infosun.fmi.uni-passau.de/
GTL/.

[6] The MLRISC System. http://cs1.cs.nyu.edu/leunga/www/MLRISC/
Doc/html/INTRO.html.

[7] The Objective Caml language. http://caml.inria.fr/.

[8] D. Dreyer, R. Harper, and M. M. T. Chakravarty. Modular type classes. In POPL,
2007.

[9] Martin Erwig. Inductive graphs and functional graph algorithms. Journal of Func-
tional Programming, 11(5):467–492, 2001.

14

[10] Jean-Christophe Filliâtre. Backtracking Iterators. Research Report 1428, LRI,
Université Paris-Sud, January 2006. http://www.lri.fr/∼filliatr/ftp/
publis/enum-rr.ps.gz.

[11] Oleg Kiselyov. Applicative translucent functors in Haskell, 2004. At http://www.
haskell.org/pipermail/haskell/2004-August/014463.html.

[12] Xavier Leroy. A modular module system. Journal of Functional Programming,
10(3):269–303, 2000.

[13] Kurt Mehlhorn and Stefan Nher. Leda: a platform for combinatorial and geometric
computing. Commun. ACM, 38(1):96–102, 1995.

[14] Chris Okasaki. Purely Functional Data Structures. Cambridge University Press,
1998.

[15] Norman Ramsey. ML Module Mania: A Type-Safe Separately Compiled, Extensible
Interpreter. In ACM SIGPLAN Workshop on ML, 2005.

[16] Stefan Wehr. ML Modules and Haskell Type Classes: A Constructive Compari-
son, November 2005. Submitted for publication and available at http://www.
stefanwehr.de/diplom.

A SIMPLE SUDOKU SOLVER USING OCAMLGRAPH

Below is the full listing for a Sudoku solver using OCAMLGRAPH, as described in
this paper. This program reads the Sudoku problem on standard input and prints
the solution on standard output.

open Graph

(* We use undirected graphs with nodes containing
a pair of integers (the cell coordinates in
0..8 x 0..8). *)

module G = Imperative.Graph.Abstract
(struct type t = int * int end)

(* The Sudoku grid = a graph with 9x9 nodes *)
let g = G.create ()

(* We create the 9x9 nodes, add them to the graph
and keep them in a matrix for later access *)

let nodes =
let new_node i j =
let v = G.V.create (i, j) in G.add_vertex g v; v

in
Array.init 9 (fun i -> Array.init 9 (new_node i))

let node i j = nodes.(i).(j)

(* We add the edges: two nodes are connected whenever
they can’t have the same value *)

let () =

15

for i = 0 to 8 do for j = 0 to 8 do
for k = 0 to 8 do
if k <> i then G.add_edge g (node i j) (node k j);
if k <> j then G.add_edge g (node i j) (node i k);

done;
let gi = 3 * (i / 3) and gj = 3 * (j / 3) in
for di = 0 to 2 do for dj = 0 to 2 do
let i’ = gi + di and j’ = gj + dj in
if i’ <> i || j’ <> j then
G.add_edge g (node i j) (node i’ j’)

done done
done done

(* We read the initial constraints from standard input *)
let () =
for i = 0 to 8 do
let s = read_line () in
for j = 0 to 8 do match s.[j] with
| ’1’..’9’ as ch ->
G.Mark.set (node i j) (Char.code ch - Char.code ’0’)

| _ -> ()
done

done

(* We solve the Sudoku by 9-coloring the graph g *)
module C = Coloring.Mark(G)
let () = C.coloring g 9

(* We display the solution *)
let () =
for i = 0 to 8 do
for j = 0 to 8 do
Format.printf "%d" (G.Mark.get (node i j))

done;
Format.printf "\n";

done;
Format.printf "@?"

B GRAPH COLORING IMPLEMENTATION

Below is the code of the graph coloring functor introduced in Section 1.5.3 and used to
write the Sudoku solver. The code uses a simple backtracking algorithm which performs a
breadth-first traversal of the graph and successively tries each color for each visited vertex.
To be able to backtrack during the traversal we use persistent cursors [10] provided by
another OCAMLGRAPH functor, namely Traverse.Bfs. A persistent cursor is created
with function start, the visited element is obtained with function get and the cursor is
moved to the next element with function step. The latter returns a new cursor, contrary
to usual cursors which are modified in-place, thus allowing backtracking.

16

module Coloring(G : GM) = struct
module Bfs = Traverse.Bfs(G)

exception NoColoring

let coloring g k =
(* assign color i to vertex v, if possible,

and raise NoColoring otherwise *)
let try_color v i =
G.iter_succ
(fun w ->
if G.Mark.get w = i then raise NoColoring)

g v;
G.Mark.set v i

in
(* traversal of g using persistent cursor iter *)
let rec iterate iter =
let v = Bfs.get iter in
for i = 1 to k do
try try_color v i; iterate (Bfs.step iter);

assert false
with NoColoring -> ()

done;
G.Mark.set v 0; raise NoColoring

in
try iterate (Bfs.start g); assert false
with Exit -> ()

end

Note that the actual implementation in OCAMLGRAPH is slightly more complex since it
uses Kempe’s linear-time simplification (vertices of degree less than k are repeatedly re-
moved and pushed on a stack, then the backtracking algorithm above is performed and
finally vertices initially removed are popped from the stack and colored).

17

