
Combining the Coq Proof Assistant

with First-Order Deision Proedures

Niolas Ayahe

1
and Jean-Christophe Filliâtre

2

1
CEA/Salay

91191 Gif-sur-Yvette Cedex, Frane

niolas.ayahe�ea.fr

2
CNRS � Université Paris-Sud

Laboratoire de Reherhe en Informatique

F-91405 Orsay Cedex, Frane

filliatr�lri.fr

Abstrat. We present an integration of �rst-order automati theorem

provers into the Coq proof assistant. This integration is based on a trans-

lation from the higher-order logi of Coq, the Calulus of Indutive Con-

strutions, to a polymorphi �rst-order logi. This translation is de�ned

and proved sound in this paper. It inludes not only the translation

of terms and prediates belonging to the �rst-order fragment, but also

several tehniques to go well beyond: abstrations of higher-order sub-

terms, ase-analysis, mutually reursive funtions and indutive types.

This proess has been implemented in the Coq proof assistant to all

the deision proedures Simplify, CVC Lite, haRVey and Zenon through

Coq tatis. The �rst experiments are promising.

1 Introdution

Theorem provers based on highly expressive logis usually lak a good support of

proof automation. This is partiularly true for the Coq proof assistant [2℄ whih

helps the user through very little automation during the proof searh. There are

two main reasons for this situation. The �rst reason is that the deision proe-

dures developed for �rst-order logis does not sale easily to riher logis. The

logi behind the Coq proof assistant, for instane, known as the Calulus of In-

dutive Construtions, intertwines features suh as polymorphism, higher-order

or dependent types and any of them would require spei� adaptation of the

�rst-order tehniques. The seond reason is that the Coq system is implemented

on top of the de Bruijn priniple: whatever the way it is built, a proof must

eventually be heked by a small and trusted part of the system. This, again, is

inompatible with the state of the art deision proedures that usually do not

give any kind of justi�ation: most of the time, they simply return a boolean

answer.

In this artile, we adopt a very pragmati and modest approah to the hal-

lenge of improving proof automation in Coq: we simply aept the above two

limitations. Indeed, we are going to interfae Coq with external deision pro-

edures that only know about �rst-order logi and we will trust their results

i.e. we give up the de Bruijn priniple. Though it may seem very disappointing,

there is still a non-trivial task to aomplish, that is the translation from the

rih logi of Coq to �rst-order logi. On one hand, we want this translation to

be as powerful as possible and, on the other hand, we do not want the deision

proedures to be fooled by awful enodings. This translation proess is the main

subjet of this paper.

Several integrations of higher-order proof assistants and �rst-order automati

theorem provers have been studied and implemented so far. Most of them fous

on resolution-based provers, suh as Gandalf integrated into HOL [16, 17℄ and

Martin Löf's Type Theory [5℄, or the provers Vampire and SPASS integrated into

Isabelle/HOL [18℄. Suh resolution provers take lausal formulae as input, whih

requires skolemization and onjuntive normal forms to be embedded in the

translation proess. They may also take some time to deide the given formula

when the ontext is made of hundreds of de�nitions and lemmas. If it is not an

issue for one-shot alls of the provers, as in the TPTP benhmarks [24℄ and the

related ompetitions, it may beome a nuisane when ombined with interative

proof. That is why the Isabelle integration [18℄ opted for provers running in

bakground without (too muh) interferene with the user's interative proof.

We are rather interested in deision proedures that an answer within a few

seonds and thus an be used during the interative proof as an alternative to the

Coq auto tati. From this point of view, our work is loser to the integration of

the ICS deision proedure in PVS [14℄ (though ICS only handles a quanti�er-

free fragment of �rst-order logi) or Harrison's use of tableau tehniques in HOL

Light [15℄. Regarding theories, we only onsider equality and linear arithmeti

to be relevant, as they are very ommon in many proofs. The provers we are

urrently using are Simplify [4℄, CVC Lite [1℄, haRVey [21℄ and Zenon [12℄ (even

if the latter does not handle arithmeti).

These tools do not implement exatly the same logi: Simplify and Zenon

implement an unsorted logi, haRVey a traditional many-sorted logi and CVC

Lite a slightly riher typed logi with PVS-like subtypes and even higher-order

features. In order to fator out our translation, we need to �nd a ommon target

logi. Obviously, it needs to be typed. We adopt a polymorphi �rst-order logi.

Polymorphism is mandatory to handle large fragments of the Coq ontext. In-

deed, many formalizations, suh as the theory of lists in the Coq standard library

for instane, are usually done in the most general way and thus polymorphi. Not

being able to transmit the orresponding de�nitions and lemmas to the deision

proedures would be unfortunate. Then going from polymorphi �rst-order logi

to the input logis of the various provers is onsidered as a separate step in our

integration, for whih we urrently delegate to the Why tool [13℄.

Our work is not the �rst integration of �rst-order provers into the Coq proof

assistant. We an mention an interfae to the resolution prover Bliksem [8℄,

the theorem prover for �rst-order intuitionisti logi JProver [23℄ and the Elan

rewriting system [6℄. Less related to our work is a diret implementation of �rst-

order proof searh in Coq by Corbineau [10℄.

This paper is organized as follows. First, Setion 2 brie�y introdues the

soure and target logis, namely the Calulus of Indutive Construtions and a

polymorphi �rst-order logi. Then Setion 3 de�nes our translation from the

former to the latter and proves its soundness. Finally, Setion 4 details the

implementation in the Coq proof assistant and reports on the �rst experiments.

2 Logis

2.1 The Calulus of Indutive Construtions

The logi behind the Coq proof assistant is the Calulus of Indutive Constru-

tions [9, 19℄, written CIC in the following. It is a typed λ-alulus with polymor-

phism, higher-order, dependent types and a primitive notion of indutive types.

The Coq proof assistant relies on the Curry-Howard isomorphism: a proposition

is a type of the CIC and a proof of this proposition is a λ-term inhabitating this

type.

The CIC has a single syntati ategory used for both types and terms and

de�ned as follows:

s ::= Set | Prop | Typei

t ::= s | x | c | C | I
| ∀x : t, t | λx : t, t | t t | case(t, t, t, . . . , t)
| fix x {x : t := t; . . . ; x : t := t}

where x ranges over variable names, c over onstant names, C over onstrutor

names and I over indutive type names. Set and Prop should be thought of

as the sorts for datatypes and propositions respetively, and Typei as the sorts

of everything above in the type hierarhy. The dependent produt ∀x : t1, t2
is written t1 → t2 whenever x does not appear in t2 and then an be seen as

the funtion type or as the logial impliation, depending on whih side of the

Curry-Howard isomorphism one is onsidering. The term case(e, P, t1, . . . , tn)
is a powerful elimination onstrut that redues to the branh ti whenever e
redues to the i-th onstrutor of some indutive type (P is a term giving the

type of the result). The term fix xk {(xi : Ti := ti)i=1,...,n} stands for the k-th
funtion of a blok of n mutually reursive funtions.

A CIC ontext Γ is a list of delarations that an be of three kinds:

� a variable delaration x : t,

� a onstant de�nition c := t : t,

� a set of mutually indutive types de�nitions

Ind(I : t := C : t| . . . |C : t; . . . ; I : t := C : t| . . . |C : t)

Example 1. Here is a CIC ontext introduing Peano's natural numbers as an

indutive datatype nat and an addition funtion plus reursively de�ned on its

�rst argument:

Ind(nat : Set := O : nat | S : nat → nat)
plus := fix f {f : nat → nat → nat := λx : nat, λy : nat,

ase(x, (λ_ : nat, nat), y, λz : nat, S (f z y))}
: nat → nat → nat

Giving the CIC typing rules would go far beyond the sope of this paper.

The rules orresponding to what is implemented in the Coq proof assistant an

be found in the hapter 4 of the Coq referene manual [2℄ or in the Coq'Art [7℄.

The omplexity of the CIC typing is mainly due to a onvertibility rule that

allows arbitrary redutions (i.e. omputations) to be performed in types. Suh

redutions neessarily terminate sine the CIC enjoys a normalization property.

In the following, we write nf(t) for the normal form of a term t.

2.2 Polymorphi First-Order Logi

Our target language is a Polymorphi First-Order Logi, written PFOL in the

following. As usual with �rst-order settings, we introdue suessively the syn-

tati notions of types, terms and prediates.

A type is introdued by its name s (an identi�er) and its arity n (a non-

negative integer) that is its number of type parameters. When n > 0 the type is

polymorphi (i.e. it is a type operator) and when n = 0 the type is monomorphi.

Then type expressions τ are de�ned as follows, where s ranges over the set of

type names and α over an in�nite set of type variables:

types τ ::= α | s[τ, . . . , τ]

When a type s is monomorphi, we write diretly s instead of s[]. As usual,

terms are built from variables and funtion symbols f and prediates are built

from prediate symbols p and the usual �rst-order onnetives:

terms t ::= x | f(t, . . . , t)
predicates P ::= ⊤ | ⊥ | P ∧ P | P ∨ P | ¬P | P ⇒ P

| p(t, . . . , t) | ∀x : τ. P | ∃x : τ. P

Constants are funtions with an arity 0. Finally, a theory Σ is a list of delara-

tions δ of types, variables, funtions, prediates and axioms:

δ ::= type s[n] | x : τ | fun f : ∀α. τ, . . . , τ → τ
| pred p : ∀α. τ, . . . , τ | axiom ∀α. P

The notation ∀α stands for the quanti�ation over a (possibly empty) set of type

variables. This is preisely where the polymorphism is introdued: funtions,

prediates and axioms may all be polymorphi. These syntati ategories being

set, we an now introdue the following typing judgments:

Σ ⊢ τ wf the type τ is well-formed in Σ
Σ ⊢ t : τ the term t is well-typed in Σ, of type τ

Σ ⊢ P wf the prediate P is well-formed in Σ
⊢ Σ wf the theory Σ is well-formed

The rules de�ning these judgments are rather straightforward and gathered in

Appendix A.

We assume some prede�ned notions of equality and linear integer arith-

meti, that is: a polymorphi equality with the usual in�x notation t1 = t2;
a monomorphi type int for the integers; the in�nite set of integer onstants

. . . ,−2,−1,0,1,2,. . . of type int ; addition and subtration funtion symbols with

the usual in�x notations + and −; and inequality prediates with the usual in�x

notations <,≤, > and ≥.
Finally, validity is introdued as the judgement Σ |= P meaning �P is prov-

able in the theory Σ�. It is de�ned by a set of natural dedution rules given in

Appendix A.

3 From CIC to PFOL

In order to all a �rst-order deision proedure on the urrent goal from the Coq

toplevel, we need to translate both the ontext and the goal from CIC to PFOL.

This setion de�nes suh a translation and proves its soundness.

3.1 The translation

The translation is de�ned as a bunh of funtions translating respetively types,

terms, prediates and ontexts. All these funtions are given here in pseudo-ode

in Figures 1�5. They are partial funtions i.e. they may fail (when the CIC term

has no PFOL ounterpart). Failures are handled impliitly: when a funtion is

not de�ned, it is assumed to fail, and whenever a funtion all fails, we impliitly

jump to the next ase of the funtion being de�ned. We now detail the various

translation funtions.

Translating types. The funtion tr-type(Σ, v, t) translates a CIC term t of type
Set into a PFOL type expression τ . Σ is a PFOL theory (it must be seen as the

translation of the CIC environment so far) and v is the set of type variables α of

type Set that may appear in t and thus in τ . The de�nition of tr-type is given

Figure 1. Notie that we ompute the normal form of t before performing the

translation (using the funtion nf).

Translating terms. The funtion tr-term(Σ, t) translates a CIC term t of a

type T itself of type Set into a PFOL term. Σ is a PFOL theory. The de�nition

of tr-term is given Figure 2. The funtion abstrat(t) used in tr-term is replaing

a CIC term t by a new variable, provided that t is losed.

{ assumption t : Set }

tr-type(Σ,v,t) =

let t = nf(t) in

if t is a variable α in v then return α

if t = s t1 . . . tn and type s[n] ∈ Σ then

return s[tr-type(Σ,v,t1),. . . ,tr-type(Σ,v,tn)]

Fig. 1. Translating types

{ assumption t : T : Set }

tr-term(Σ,t) =

if t is a variable or a onstant x bound in Σ then return x

if t is an integer onstant n then return n

if t = plus t1 t2 then return tr-term(Σ,t1)+tr-term(Σ,t2)

if t = minus t1 t2 then return tr-term(Σ,t1)−tr-term(Σ,t2)

if t = f c1 . . . cn where f is a global and n ≥ 1 then

if fun f :∀α1 . . . αk.τ1, . . . , τn−k → τ ∈ Σ then

return f(tr-term(Σ,ck+1),. . . ,tr-term(Σ,cn))

else

let f0 = abstrat(f c1) in return tr-term(Σ,f0 c2 . . . cn)

Fig. 2. Translating terms

Translating prediates. The funtion tr-pred(Σ, v, t) translates a CIC term

t of type Prop into a PFOL prediate. Σ is a PFOL theory and v is the set of

type variables that may be bound in t. In the CIC, all the logial onnetives

(apart from universal quanti�ation) are not primitive but de�ned using indu-

tive types. In order to translate them to the orresponding PFOL onnetives,

we reognize these onstants (namely True, False, not, and, or and ex). The

de�nition of tr-pred is given Figure 3.

Translating environments. The translation of environments is based on a

main funtion tr-del(Σ, x, t) that translates the CIC delaration of x of type

t into a PFOL delaration, that is either a type, a funtion, a prediate or an

axiom delaration. Note that x may be either a CIC variable, a onstant, an

indutive type or a onstrutor. The funtion tr-del handles the polymorphism

by extrating the prenex type quanti�ations A1, . . . , Ak and the monomorphi

delarations as a partiular ase when k = 0. Similarly, it handles the ase of

onstants whenever n = 0.

Finally, the translation of a CIC environment Γ in a PFOL theory Σ is

realized by the funtion tr-env whih is proessing all the delarations in Γ one

by one using tr-del. Of ourse, some of them may not be �rst-order and thus

will not be onsidered. The de�nition of tr-env is given Figure 5.

The PFOL theory Σ resulting from the translation of a CIC ontext Γ on-

tains enough information for the translation of a CIC proposition to type-hek,

as we will show in Setion 3.3. We an however transfer more information from

{ assumption t : Prop }

tr-pred(Σ,v,t) =

if t = eq T t1 t2 then return tr-term(Σ,t1)=tr-term(Σ,t2)

if t = lt t1 t2 then return tr-term(Σ,t1)<tr-term(Σ,t2)

if t = ... (similar for other arithmeti omparisons) ...

if t = True then return ⊤
if t = False then return ⊥
if t = not q then return ¬ tr-pred(Σ,v,q)

if t = and p r then return tr-pred(Σ,v,q) ∧ tr-pred(Σ,v,r)

if t = or p r then return tr-pred(Σ,v,q) ∨ tr-pred(Σ,v,r)

if t = q → r then return tr-pred(Σ,v,q) ⇒ tr-pred(Σ,v,r)

if t = ex T (λx : T, q) then

let τ = tr-type(Σ,v,T) in return ∃x : τ. tr-pred(Σ + {x : τ},v,q)
if t = ∀x : T, q then

let τ = tr-type(Σ,v,T) in return ∀x : τ. tr-pred(Σ + {x : τ},v,q)
if t = p c1 . . . cn where p is a global

and pred p:∀α1 . . . αk.τ1, . . . , τn−k ∈ Σ then

return p(tr-term(Σ,ck+1),. . . ,tr-term(Σ,cn))

Fig. 3. Translating prediates

{ assumption x : t }

tr-del(Σ,x,t) =

let A1, . . . , Ak, T suh that t = ∀A1 : Set, . . . , ∀Ak : Set, T in

if T = Set then return type x[k]
let v = {A1; . . . ; Ak} in

if T = T1 → · · · → Tn → Tn+1 with the Ti of type Set then

let τ1 = tr-type(Σ,v,T1) and . . . and τn+1 = tr-type(Σ,v,Tn+1) in

return fun x : ∀A. τ1, . . . , τn → τn+1

if T = T1 → · · · → Tn → Prop with the Ti of type Set then

let τ1 = tr-type(Σ,v,T1) and . . . and τn = tr-type(Σ,v,Tn) in

return pred x : ∀A. τ1, . . . , τn

if T is of type Prop then return axiom ∀A. tr-pred(Σ,v,T)

Fig. 4. Translating delarations

tr-env(Γ) =

Σ := ∅
for eah delaration δ in Γ do

if δ is x : t then Σ := Σ + tr-del(Σ,x,t)

if δ is c := t : T then Σ := Σ + tr-del(Σ,x,T)

if δ is Ind

(

Ii : Ti := (Ci,j := ti,j)j=1,...,ki

)

i=1,...,n
then

for i = 1, . . . , n do Σ := Σ + tr-del(Σ,Ii,Ti)

for i = 1, . . . , n do

for j = 1, . . . , ki do Σ := Σ + tr-del(Σ,Ci,j,ti,j)

return Σ

Fig. 5. Translating environments

CIC to PFOL by also translating onstant de�nitions and some properties of

indutive types whenever possible.

Translating de�nitions. If a CIC de�nition c := t : T is translated into a

PFOL funtion fun f : ∀α. τ1, . . . , τn → τ or a prediate pred p : ∀α. τ1, . . . , τn,

we also try to interpret the de�nition body t as muh as possible. We distinguish

the two ases of a non-reursive and of a reursive de�nition:

� non-reursive de�nition: performing some η-expansions if neessary, we an
always put the body t into the form

t = λα1 : Set . . . λαk : Set, λx1 : T1 . . . λxn : Tn, b

with tr-type(Σ, α, Ti) = τi. Then we (try to) append the following axiom to

Σ in the ase of a funtion f :

∀α. ∀x. f(x1, . . . , xn) = tr-term(Σ + {x1 : τ1, . . . , xn : τn}, b)

and the following axiom in the ase of a prediate p:

∀α. ∀x. p(x1, . . . , xn) ⇔ tr-pred(Σ + {x1 : τ1, . . . , xn : τn}, α, b)

(where P ⇔ Q is simply a shortut for P ⇒ Q ∧ Q ⇒ P).

� reursive de�nition: we only onsider the ase of a reursive de�nition of the

shape

f := fix f { f : T := λα1 : Set, . . . λαk : Set,
λx1 : T1, . . . λxn : Tn,
ase(xi, P, (λy1, t1), . . . , (λym, tm)) }

i.e. a reursive funtion performing an immediate ase-analysis over one of

its arguments. Fortunately, this is the most ommon situation. Then we (try

to) append one axiom for eah branh ti, that is

∀α. ∀x1, . . . , xi−1, xi+1, . . . , xn. ∀yi.
f(x1, . . . , xi−1, Ci(yi), xi+1, . . . , xn) = tr-term(Σ + x + yi, ti)

Translating Indutive Types Properties. For eah individual indutive

type I : t := C1 : t1 | . . . | Cn : tn suh that tr-del(Σ, I, t) = type s[n] we
append to the PFOL theory the following axioms expressing that I is the free

algebra generated by the onstrutors C1, . . . , Cn:

� (inversion)

∀α. ∀x : I. (∃y1. x = Ci(y1)) ∨ · · · ∨ (∃yn. x = Cn(yn))

� (injetion) For eah non-onstant onstrutor Ci,

∀α. ∀y. ∀y′. Ci(y) = Ci(y
′) ⇒ y1 = y′

1 ∧ · · · ∧ yki
= y′

ki

� (free algebra) For eah pair of onstrutors Ci, Cj with i 6= j,

∀α. ∀y. ∀y′. Ci(y) 6= Cj(y
′)

We annot express that this is the smallest free algebra, however, sine this is

not expressible in �rst-order logi.

3.2 Example

The CIC ontext de�ning nat and plus in Example 1 page 4 is translated into

the following theory:

Σ := type nat[0]
fun O :→ nat

fun S : nat → nat

axiom ∀x : nat . x = O ∨ ∃y : nat . x = S(y)
axiom ∀x, y : nat . S(x) = S(y) ⇒ x = y
axiom ∀x : nat . O 6= S(x)
fun plus : nat → nat → nat

axiom ∀y : nat . plus(O, y) = y
axiom ∀z, y : nat . plus(S(z), y) = S(plus(z, y))

3.3 Soundness

This setion establishes that our translation is sound. First, it is lear that the

translation is terminating, sine the size of the main argument in tr-type, tr-term

and tr-pred is dereasing on eah reursive all. Seond, we give type soundness

results stating that the various PFOL entities obtained by translation are well-

formed. In the following, Γ is a CIC ontext and Σ = tr-env(Γ).

Lemma 1 (type soundness of tr-type). Let t be a CIC term of type Set in

Γ and α its variables of type Set. If tr-type(Σ, α, t) = τ then Σ ⊢ τ wf.

Proof. Straightforward by indution on the size of t.

Lemma 2 (type soundness of tr-term). Let t be a CIC term of type T itself

of type Set in Γ . If tr-term(Σ, t) = t′ then there exists τ suh that Σ ⊢ t′ : τ
and τ = tr-type(Σ, v, T) where v is the set of variables of type Set in T .

Proof. By indution on the size of t. To apply the indution hypothesis, we need

the property that two onvertible CIC types are translated to the same PFOL

type, whih is ensured by the normalization of types in tr-type.

Lemma 3 (type soundness of tr-pred). Let t be a CIC term of type Prop in

Γ and α be the variables of t of type Set. If tr-pred(Σ, α, t) = P then Σ ⊢ P wf.

Proof. By indution on the size of t. Proof similar to the one of Lemma 2.

Lemma 4 (type soundness of tr-env). Let Γ be a CIC environment and

Σ = tr-env(Γ). Then ⊢ Σ wf.

Proof. By indution on Γ and by ase analysis on tr-del. Then it is straightfor-

ward using Lemma 1 and Lemma 3.

Finally, we an establish provability soundness: if the resulting PFOL predi-

ate is provable in the resulting PFOL theory then the CIC proposition is prov-

able in the CIC ontext.

Theorem 1 (soundness). Let t be a CIC term of type Prop in Γ , α be the

variables of t of type Set and Σ = tr-env(Γ). If tr-pred(Σ, α, t) = P and Σ |= P
then t is lassially provable in Γ i.e. there exists a CIC term π of type t in

Γ + EM : ∀P : Prop.P ∨ ¬P .

Proof. By indution on the derivation of Σ |= P . Eah ase is justi�ed by a CIC

proof term:

� for the Ax rule, we must build a proof term for eah proposition inserted as an

axiom in Σ through our translation. The axioms related to funtions (being

reursive or not) and prediates de�nitions are justi�ed by the CIC redu-

tion rules. The properties inherent to the indutive types (namely inversion,

injetion, and free algebra) an be proved as lemmas using the appropriate

Coq tatis [11℄;

� the EM rule orresponds to an instane of the axiom EM added to Γ ;

� every PFOL proposition proved through the Arith rule an be proved in Coq

using the omega tati [20℄;

� the remaining dedution rules are easily simulated in CIC using the de�ni-

tion of the onnetives and the indution hypothesis. To apply the indu-

tion hypothesis, we need to exhibit a CIC term for eah PFOL sub-formula

appearing in the premises, whih is a onsequene of the following three

lemmas:

Lemma 5 (surjetion of tr-type). Let τ be a PFOL type. If Σ ⊢ τ wf then

there exists a CIC term t of type Set suh that tr-type(Σ, α, t) = τ where α are

the type variables of t.

Proof. By indution on the derivation of Σ ⊢ τ wf. It requires the extra property

that for any type s[n] ∈ Σ there is a CIC global s of type ∀A1, . . . , An : Set, T
with T of type Set in Γ, A1, . . . , An (de�nition of tr-del).

Lemma 6 (surjetion of tr-term). Let t′ be a PFOL term, τ a PFOL type, T a

CIC type and α the variables of T of type Set. If Σ ⊢ t′ : τ and tr-type(Σ, α, T) =
τ then there exists a CIC term t of type T in Γ suh that tr-term(Σ, t) = t′.

Proof. By indution on the size of t′.

Lemma 7 (surjetion of tr-pred). Let P ′
be a PFOL prediate. If Σ ⊢ P ′ wf

then there exists a CIC proposition P suh that tr-pred(Σ, α, P) = P ′
where α

are the type variables of P ′
.

Proof. By indution on the derivation of Σ ⊢ P ′ wf.

4 Implementation

The work presented in this paper has been implemented in the Coq proof assis-

tant [2℄ to all the deision proedures Simplify [4℄, CVC Lite [1℄, Zenon [12℄ and

haRVey [21℄ through Coq tatis. Suh tatis proeed in two steps, as illustrated

Figure 6. First, the Coq ontext and the urrent goal are translated to a ontext

and a goal in PFOL, independently of the deision proedure to be used, in the

input syntax of the Why tool [13℄.

Then the Why tool is used to produe an input �le for the partiular prover

to be used. In partiular, this is the Why tool whih is responsible for trans-

lating PFOL to an unsorted �rst-order logi (for Simplify and Zenon) or to a

�monomorphi� �rst-order logi (for CVC Lite and haRVey). This is not an obvi-

ous step (see for instane the disussions in [5, 15, 18℄), but this is not the subjet

of this paper.

Finally, the seleted prover is alled (with a timeout, typially 10 seonds)

and whenever it validates the goal, an axiom is built in Coq orresponding to

the urrent Coq goal and is used to disharge it.

Coq

translation

PFOL

Why

Simplify

CVC Lite Zenon

haRVey

Fig. 6. Calling deision proedures from Coq

The Why tool is available independently of the Coq proof assistant. The

remaining of the implementation, namely the translation desribed in this paper,

is implemented in Objetive Caml [3℄ and integrated to the Coq soures. It

amounts to less than 600 lines of ode, whih is fairly small for an integration

of four di�erent deision proedures within a proof assistant. Compared to the

theoretial presentation of this paper, it adds a lazy strategy that only translates

the piees of the ontext that are needed, and a ahe mehanism that remembers

these translations from one all to another.

The �rst experiments are promising. We took several existing Coq proofs and

tried to replae piees of proof sripts by alls to external provers as muh as

possible. In most ases, the Coq tatis auto, intuition, omega and firstorder

ould be replaed by the new tatis zenon or simplify. More signi�atively,

ombinations of several tatis inluding appliations of transitivity lemmas and

rewritings ould be replaed by a single all to a �rst-order prover. Interestingly,

the two provers Zenon and Simplify appear to be omplementary. In partiular,

even if Zenon does not support arithmeti it sometimes sueeds where Simplify

fails. In pratie, we observed one suessful all to an external prover eah 3

lines of tatis, with one all to Simplify for two alls to Zenon. The haRVey and

CVC Lite provers were tested too, but without signi�ative improvement with

respet to Zenon or Simplify.

This implementation is urrently available only as part of the development

version of Coq, whih is aessible by anonymous CVS aess (see oq.inria.fr

for details).

5 Conlusion

We have presented an integration of four deision proedures into the Coq proof

assistant, based on a pragmati and sound translation from the Calulus of

Indutive Construtions to a polymorphi �rst-order logi. Though the �rst ex-

periments are very promising, this work ould be improved in many ways.

First, we ould interfae other deision proedures. This is rather easy, sine

it only requires a support for the new provers by the Why tool. This is even

immediate for provers aepting the SMT-LIB input format [22℄, for that it is

already supported by Why. However, the issue is rather to �nd a prover powerful

enough, that is handling the full �rst-order logi, equality and arithmeti.

Seond, we should translate proofs generated by the deision provers bak to

Coq proof terms, when available. Currently, only Zenon and CVC Lite are able

to produe suh proofs. Zenon an even generate a sript of Coq tatis or a Coq

proof term, so the translation bak is immediate (this is not yet implemented

though). CVC Lite produes proof traes in its own format but due to lak of

doumentation on this format, we did not manage to translate them into Coq

proofs.

The JProver [23℄ ful�lls the two requirements above (it handles intuitionisti

�rst-order logi and produes proofs) and thus is a good andidate for an integra-

tion into our framework. Atually, the JProver has already been interfaed with

Coq, by Huang Guan-Shieng in 2002, but it would bene�t from our translation

that overs a larger part of the ontext than its urrent integration.

Finally, we ould use several other tehniques to translate a wider fragment

of the Coq logi, suh as reognizing the usual logial onnetives in user-de�ned

indutive prediates (as already done by other Coq tatis suh as intuition

or firstorder [10℄) or generating axioms for the inversion of indutive predi-

ates [11℄.

Referenes

1. CVC Lite Homepage. http://verify.stanford.edu/CVCL.

2. The Coq Proof Assistant. http://oq.inria.fr/.

3. The Objetive Caml language. http://aml.inria.fr/.

4. The Simplify deision proedure (part of ESC/Java). http://researh.ompaq.

om/SRC/es/simplify/.

5. Andreas Abel, Thierry Coquand, and Ulf Norell. Conneting a Logial Frame-

work to a First-Order Logi Prover. In Bernhard Gramlih, editor, 5th Interna-

tional Workshop on Frontiers of Combining Systems, FroCoS'05, Vienna, Austria,

September 19-21, 2005, Leture Notes in Computer Siene. Springer Verlag, 2005.

6. Cuihtlaua Alvarado and Quang-Huy Nguyen. Elan for equational reasoning in

oq. In Proeeding of the 2nd Workshop on Logial Frameworks and Metalanguages,

Santa Barbara, California, 2000.

7. Yves Bertot and Pierre Castéran. Interative Theorem Proving and Program De-

velopment. Texts in Theoretial Computer Siene. An EATCS Series. Springer

Verlag, 2004. http://www.labri.fr/Perso/~asteran/CoqArt/index.html.

8. Mar Bezem, Dimitri Hendriks, and Hans de Nivelle. Automated proof onstrution

in type theory using resolution. J. Autom. Reasoning, 29(3-4):253�275, 2002.

9. Th. Coquand and G. Huet. The Calulus of Construtions. Information and

Computation, 76(2/3), 1988.

10. Pierre Corbineau. First-order reasoning in the Calulus of Indutive Construtions.

In TYPES 2003 : Types for Proofs and Programs, volume 3085 of LNCS, pages

162�177. Springer-Verlag, 2004.

11. Cristina Cornes and Delphine Terrasse. Automating Inversion of Indutive Pred-

iates in Coq. In Types for Proofs and Programs (TYPES'95), volume 1158 of

Leture Notes in Computer Siene, pages 85�104. Springer-Verlag, 1996.

12. Damien Doligez. The Zenon prover. Distributed with the Foal Projet at http:

//foal.inria.fr/.

13. J.-C. Filliâtre. The Why veri�ation tool. http://why.lri.fr/.

14. J.-C. Filliâtre, S. Owre, H. Rueÿ, and N. Shankar. ICS: Integrated Canonization

and Solving (Tool presentation). In G. Berry, H. Comon, and A. Finkel, editors,

Proeedings of CAV'2001, volume 2102 of Leture Notes in Computer Siene,

pages 246�249, 2001.

15. John Harrison. First Order Logi in Pratie. In International Workshop on First-

Order Theorem Proving (FTP'97), Linz (Austria), 1997.

16. Joe Hurd. Integrating Gandalf and HOL. In International Conferene on Theorem

Proving in Higher Order Logis (TPHOLs'99), LNCS. Springer-Verlag, 1999.

17. Joe Hurd. An LCF-Style Interfae between HOL and First-Order Logi. In CADE-

18: Proeedings of the 18th International Conferene on Automated Dedution,

pages 134�138, London, UK, 2002. Springer-Verlag.

18. Jia Meng, Claire Quigley, and L. C. Paulson. Automation for Interative Proof:

First Prototype. Information and Computation, 2005. In press.

19. Christine Paulin-Mohring. Indutive de�nitions in the system COQ. In Typed

Lambda Caluli and Appliations, volume 664 of Leture Notes in Computer Si-

ene, pages 328�345. Springer-Verlag, 1993.

20. William Pugh. The Omega Test: a fast and pratial integer programming al-

gorithm for dependene analysis. Communiations of the ACM, 35(8):102�114,

August 1992.

21. Silvio Ranise and David Déharbe. The haRVey deision proedure. http://www.

loria.fr/~ranise/haRVey/.

22. Silvio Ranise and Cesare Tinelli. The SMT-LIB Format: An Initial Proposal. In

PDPAR'03, July 2003. http://goedel.s.uiowa.edu/smtlib/.

23. Stephan Shmitt, Lori Lorigo, Christoph Kreitz, and Aleksey Nogin. JProver:

Integrating Connetion-Based Theorem Proving into Interative Proof Assistants.

Leture Notes in Computer Siene, 2083:421+, 2001.

24. Geo� Stutli�e and Christian Suttner. The TPTP problem library: CNF Release

v1.2.1. Journal of Automated Reasoning, 21(2):177�203, 1998.

A Polymorphi First-Order Logi

Types (τ), terms (t) and prediates (P) are built aording to the following

grammars

τ ::= α | s[τ, . . . , τ]
t ::= x | f(t, . . . , t)

P ::= p(t, . . . , t)
| ⊤ | ⊥ | P ∧ P | P ∨ P | ¬P | P ⇒ P
| ∀x : τ. P | ∃x : τ. P

A theory Σ is a �nite list of delarations δ where

δ ::= type s[n] | x : τ | fun f : ∀α. τ, . . . , τ → τ
| pred p : ∀α. τ, . . . , τ | axiom ∀α. P

Well-formed types (Σ ⊢ τ wf):

Σ ⊢ α wf
(Ty1)

type s[n] ∈ Σ ∀i, Σ ⊢ τi wf

Σ ⊢ s[τ1, . . . , τn] wf
(Ty2)

Well-typed terms (Σ ⊢ t : τ):

x : τ ∈ Σ

Σ ⊢ x : τ
(T1)

fun f : ∀α. τ1, . . . , τn → τ ∈ Σ

Subst(σ, Σ) ∀i, Σ ⊢ ti : σ(τi)

Σ ⊢ f(t1, . . . , tn) : σ(τ)
(T2)

where σ is a mapping from type variables to types, naturally extended to

types with σ(s[τ1, . . . , τn]) = s[σ(τ1), . . . , σ(τn)]. We write Subst(σ, Σ) when-
ever Σ ⊢ σ(α) wf holds for any type variable α.

Well-typed prediates (Σ ⊢ P wf):

pred p : ∀α. τ1, . . . , τn ∈ Σ Subst(σ, Σ) ∀i, Σ ⊢ ti : σ(τi)

Σ ⊢ p(t1, . . . , tn) wf
(P1)

Σ ⊢ ⊤ wf
(P2)

Σ ⊢ ⊥ wf
(P3)

Σ ⊢ P1 wf Σ ⊢ P2 wf

Σ ⊢ P1 ∧ P2 wf
(P4)

Σ ⊢ P1 wf Σ ⊢ P2 wf

Σ ⊢ P1 ∨ P2 wf
(P5)

Σ ⊢ P wf

Σ ⊢ ¬P wf
(P6)

Σ ⊢ P1 wf Σ ⊢ P2 wf

Σ ⊢ P1 ⇒ P2 wf
(P7)

Σ, x : τ ⊢ P wf

Σ ⊢ ∀x : τ. P wf
(P8)

Σ, x : τ ⊢ P wf

Σ ⊢ ∃x : τ. P wf
(P8)

Well-formed theories (⊢ Σ wf):

⊢ ∅ wf
(Th1)

type s 6∈ Σ

⊢ Σ, type s[n] wf
(Th2)

x 6∈ Σ Σ ⊢ τ wf

⊢ Σ, x : τ wf
(Th3)

fun f 6∈ Σ ∀i, Σ ⊢ τi wf

⊢ Σ, fun f : ∀α. τ1, . . . , τn → τn+1 wf
(Th4)

pred p 6∈ Σ ∀i, Σ ⊢ τi wf

⊢ Σ, pred p : ∀α. τ1, . . . , τn wf
(Th5)

Σ ⊢ P wf

⊢ Σ, axiom ∀α. P wf
(Th6)

Natural dedution rules (Σ |= P). For the sake of larity, we write Σ, P for

Σ, axiom P in the following. A substitution σ over from type variables to types

in extended to terms and prediates in the obvious way. We write P [t/x] for the
substitution of all the ourrenes of a free variable x in P by a term t.

axiom ∀α. P ∈ Σ Subst(σ, Σ)

Σ |= σ(P)
(Ax)

Σ |= Q Σ, Q |= P

Σ |= P
(Cut)

Σ |= ⊤
(True)

Σ |= ⊥ Σ ⊢ P wf

Σ |= P
(False)

Σ ⊢ P wf

Σ |= P ∨ ¬P
(EM)

Σ |= P Σ |= Q

Σ |= P ∧ Q
(And1)

Σ |= P ∧ Q

Σ |= P
(And2)

Σ |= P ∧ Q

Σ |= Q
(And3)

Σ |= P Σ ⊢ Q wf

Σ |= P ∨ Q
(Or1)

Σ |= Q Σ ⊢ P wf

Σ |= P ∨ Q
(Or2)

Σ |= P ∨ Q Σ, P |= R Σ, Q |= R

Σ |= R
(Or3)

Σ ⊢ P wf Σ, P |= ⊥

Σ |= ¬P
(Not1)

Σ |= P Σ |= ¬P

Σ |= ⊥
(Not2)

Σ ⊢ P wf Σ, P |= Q

Σ |= P ⇒ Q
(Imp1)

Σ |= P ⇒ Q Σ |= P

Σ |= Q
(Imp2)

x 6∈ Σ Σ ⊢ τ wf Σ, x : τ |= P

Σ |= ∀x : τ. P
(Forall1)

Σ |= ∀x : τ. P Σ ⊢ t : τ

Σ |= P [t/x]
(Forall2)

Σ ⊢ t : τ x 6∈ Σ Σ |= P [t/x]

Σ |= ∃x : τ. P
(Exists1)

Σ |= ∃x : τ. P x 6∈ Σ Σ, x : τ, P |= Q

Σ |= Q
(Exists2)

Dedution rules for equality:

Σ ⊢ t : τ

Σ |= t = t
(Eq1)

Σ |= x = y Σ, z : τ ⊢ P wf Σ |= P [x/z]

Σ |= P [y/z]
(Eq2)

Arithmeti: An arithmeti proposition P is a proposition built from variables of

type int, integers onstants, the funtions symbols add and sub, the prediates

lt, le, gt, ge and the equality. If x1, . . . , xn are the free variables of P , we write

x1, . . . , xn |=A P whenever P is valid (it is deidable; see for instane the Omega

test [20℄). Then we have the following dedution rule for arithmeti:

x1, . . . , xn |=A P

Σ |= ∀x1 : int ∀xn : int . P
(Arith)

