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Abstract. We present an integration of first-order automatic theorem
provers into the Coq proof assistant. This integration is based on a trans-
lation from the higher-order logic of Coq, the Calculus of Inductive Con-
structions, to a polymorphic first-order logic. This translation is defined
and proved sound in this paper. It includes not only the translation
of terms and predicates belonging to the first-order fragment, but also
several techniques to go well beyond: abstractions of higher-order sub-
terms, case-analysis, mutually recursive functions and inductive types.
This process has been implemented in the Coq proof assistant to call
the decision procedures Simplify, CVC Lite, haRVey and Zenon through
Coq tactics. The first experiments are promising.

1 Introduction

Theorem provers based on highly expressive logics usually lack a good support of
proof automation. This is particularly true for the Coq proof assistant [2] which
helps the user through very little automation during the proof search. There are
two main reasons for this situation. The first reason is that the decision proce-
dures developed for first-order logics does not scale easily to richer logics. The
logic behind the Coq proof assistant, for instance, known as the Calculus of In-
ductive Constructions, intertwines features such as polymorphism, higher-order
or dependent types and any of them would require specific adaptation of the
first-order techniques. The second reason is that the Coq system is implemented
on top of the de Bruijn principle: whatever the way it is built, a proof must
eventually be checked by a small and trusted part of the system. This, again, is
incompatible with the state of the art decision procedures that usually do not
give any kind of justification: most of the time, they simply return a boolean
answer.

In this article, we adopt a very pragmatic and modest approach to the chal-
lenge of improving proof automation in Coq: we simply accept the above two



limitations. Indeed, we are going to interface Coq with external decision pro-
cedures that only know about first-order logic and we will trust their results
i.e. we give up the de Bruijn principle. Though it may seem very disappointing,
there is still a non-trivial task to accomplish, that is the translation from the
rich logic of Coq to first-order logic. On one hand, we want this translation to
be as powerful as possible and, on the other hand, we do not want the decision
procedures to be fooled by awful encodings. This translation process is the main
subject of this paper.

Several integrations of higher-order proof assistants and first-order automatic
theorem provers have been studied and implemented so far. Most of them focus
on resolution-based provers, such as Gandalf integrated into HOL [16,17] and
Martin Lof’s Type Theory [5], or the provers Vampire and SPASS integrated into
Isabelle/HOL [18]. Such resolution provers take clausal formulae as input, which
requires skolemization and conjunctive normal forms to be embedded in the
translation process. They may also take some time to decide the given formula
when the context is made of hundreds of definitions and lemmas. If it is not an
issue for one-shot calls of the provers, as in the TPTP benchmarks [24] and the
related competitions, it may become a nuisance when combined with interactive
proof. That is why the Isabelle integration [18] opted for provers running in
background without (too much) interference with the user’s interactive proof.

We are rather interested in decision procedures that can answer within a few
seconds and thus can be used during the interactive proof as an alternative to the
Coq auto tactic. From this point of view, our work is closer to the integration of
the ICS decision procedure in PVS [14] (though ICS only handles a quantifier-
free fragment of first-order logic) or Harrison’s use of tableau techniques in HOL
Light [15]. Regarding theories, we only consider equality and linear arithmetic
to be relevant, as they are very common in many proofs. The provers we are
currently using are Simplify [4], CVC Lite [1], haRVey [21] and Zenon [12] (even
if the latter does not handle arithmetic).

These tools do not implement exactly the same logic: Simplify and Zenon
implement an unsorted logic, haRVey a traditional many-sorted logic and CVC
Lite a slightly richer typed logic with PVS-like subtypes and even higher-order
features. In order to factor out our translation, we need to find a common target
logic. Obviously, it needs to be typed. We adopt a polymorphic first-order logic.
Polymorphism is mandatory to handle large fragments of the Coq context. In-
deed, many formalizations, such as the theory of lists in the Coq standard library
for instance, are usually done in the most general way and thus polymorphic. Not
being able to transmit the corresponding definitions and lemmas to the decision
procedures would be unfortunate. Then going from polymorphic first-order logic
to the input logics of the various provers is considered as a separate step in our
integration, for which we currently delegate to the Why tool [13].

Our work is not the first integration of first-order provers into the Coq proof
assistant. We can mention an interface to the resolution prover Bliksem [§],
the theorem prover for first-order intuitionistic logic JProver [23] and the Elan



rewriting system [6]. Less related to our work is a direct implementation of first-
order proof search in Coq by Corbineau [10].

This paper is organized as follows. First, Section 2 briefly introduces the
source and target logics, namely the Calculus of Inductive Constructions and a
polymorphic first-order logic. Then Section 3 defines our translation from the
former to the latter and proves its soundness. Finally, Section 4 details the
implementation in the Coq proof assistant and reports on the first experiments.

2 Logics

2.1 The Calculus of Inductive Constructions

The logic behind the Coq proof assistant is the Calculus of Inductive Construc-
tions [9,19], written CIC in the following. It is a typed A-calculus with polymor-
phism, higher-order, dependent types and a primitive notion of inductive types.
The Coq proof assistant relies on the Curry-Howard isomorphism: a proposition
is a type of the CIC and a proof of this proposition is a A-term inhabitating this
type.

The CIC has a single syntactic category used for both types and terms and
defined as follows:

s u= Set | Prop | Type,
t = s|lxz|c|C|I
| Vo:t,t]| A x:t,t]|tt]|case(t,t,t,... 1)
| fixaz{z:t:=t;..;2:t:=1t}

where x ranges over variable names, ¢ over constant names, C' over constructor
names and I over inductive type names. Set and Prop should be thought of
as the sorts for datatypes and propositions respectively, and Type, as the sorts
of everything above in the type hierarchy. The dependent product Vx : 1, to
is written t; — to whenever x does not appear in t2 and then can be seen as
the function type or as the logical implication, depending on which side of the
Curry-Howard isomorphism one is considering. The term case(e, P,t1,...,t5)
is a powerful elimination construct that reduces to the branch ¢; whenever e
reduces to the i-th constructor of some inductive type (P is a term giving the
type of the result). The term fix zy {(z; : T; :=1t;),_, ,} stands for the k-th
function of a block of n mutually recursive functions. o
A CIC context I' is a list of declarations that can be of three kinds:

— a variable declaration x : t,
— a constant definition c:=t:t,
— a set of mutually inductive types definitions

Ind([:t:=C:t|]...|C:¢t; ...; [:t:=C:t]...|C:t)



Ezample 1. Here is a CIC context introducing Peano’s natural numbers as an
inductive datatype nat and an addition function plus recursively defined on its
first argument:

Ind(nat: Set := O: nat | S: nat — nat)
plus = fix f {f : nat — nat — nat := Az : nat, \y : nat,
case(z, (A_ : nat, nat),y, Az : nat, S (f z y))}
: nat — nat — nat

Giving the CIC typing rules would go far beyond the scope of this paper.
The rules corresponding to what is implemented in the Coq proof assistant can
be found in the chapter 4 of the Coq reference manual [2] or in the Coqg’Art [7].
The complexity of the CIC typing is mainly due to a convertibility rule that
allows arbitrary reductions (i.e. computations) to be performed in types. Such
reductions necessarily terminate since the CIC enjoys a normalization property.
In the following, we write nf(¢) for the normal form of a term t.

2.2 Polymorphic First-Order Logic

Our target language is a Polymorphic First-Order Logic, written PFOL in the
following. As usual with first-order settings, we introduce successively the syn-
tactic notions of types, terms and predicates.

A type is introduced by its name s (an identifier) and its arity n (a non-
negative integer) that is its number of type parameters. When n > 0 the type is
polymorphic (i.e. it is a type operator) and when n = 0 the type is monomorphic.
Then type expressions T are defined as follows, where s ranges over the set of
type names and « over an infinite set of type variables:

types T u= alsr..., 7]

When a type s is monomorphic, we write directly s instead of s[]. As usual,
terms are built from variables and function symbols f and predicates are built
from predicate symbols p and the usual first-order connectives:

terms t u= x| flt,..., 1)
predicates P = T|L|PANP|PVP|-P|P=P
| p(t,....¢) |VYx:7.P|3x:7.P

Constants are functions with an arity 0. Finally, a theory X is a list of declara-
tions 0 of types, variables, functions, predicates and axioms:

§ == typesn||z:7|fun f:Vo.7,....,T > T
| predp:Ve.7,...,7 | axiom Va. P

The notation Ve stands for the quantification over a (possibly empty) set of type
variables. This is precisely where the polymorphism is introduced: functions,
predicates and axioms may all be polymorphic. These syntactic categories being
set, we can now introduce the following typing judgments:



Y B 7 wf the type 7 is well-formed in X
Y Ft:7 the term ¢ is well-typed in X, of type 7
Y F P wf the predicate P is well-formed in X
F X wf the theory X' is well-formed

The rules defining these judgments are rather straightforward and gathered in
Appendix A.

We assume some predefined notions of equality and linear integer arith-
metic, that is: a polymorphic equality with the usual infix notation ¢t; = to;
a monomorphic type int for the integers; the infinite set of integer constants

.,—2,—1,0,1,2,...of type int; addition and subtraction function symbols with
the usual infix notations + and —; and inequality predicates with the usual infix
notations <, <,> and >.

Finally, validity is introduced as the judgement X = P meaning “P is prov-
able in the theory X”. It is defined by a set of natural deduction rules given in
Appendix A.

3 From CIC to PFOL

In order to call a first-order decision procedure on the current goal from the Coq
toplevel, we need to translate both the context and the goal from CIC to PFOL.
This section defines such a translation and proves its soundness.

3.1 The translation

The translation is defined as a bunch of functions translating respectively types,
terms, predicates and contexts. All these functions are given here in pseudo-code
in Figures 1-5. They are partial functions i.e. they may fail (when the CIC term
has no PFOL counterpart). Failures are handled implicitly: when a function is
not defined, it is assumed to fail, and whenever a function call fails, we implicitly
jump to the next case of the function being defined. We now detail the various
translation functions.

Translating types. The function tr-type(X, v, t) translates a CIC term ¢ of type
Set into a PFOL type expression 7. X' is a PFOL theory (it must be seen as the
translation of the CIC environment so far) and v is the set of type variables « of
type Set that may appear in ¢ and thus in 7. The definition of tr-type is given
Figure 1. Notice that we compute the normal form of ¢ before performing the
translation (using the function nf).

Translating terms. The function tr-term(X,t) translates a CIC term ¢ of a
type T itself of type Set into a PFOL term. X is a PFOL theory. The definition
of tr-term is given Figure 2. The function abstract(t) used in tr-term is replacing
a CIC term t by a new variable, provided that ¢ is closed.



{ assumption t : Set }
tr-type(X,v,t) =
let t = nf(¢) in
if ¢ is a variable « in v then return «
ift=st1 ... t, and type s[n] € X then
return str-type(X,v,t1),. .. tr-type(X,v,tn)]

Fig. 1. Translating types

{ assumption t : T : Set }
tr-term(X,t) =
if ¢ is a variable or a constant z bound in X' then return z
if ¢ is an integer constant n then return n
if t = plus t1 ¢2 then return tr-term(X,t1)+tr-term(X,t2)
if t = minus t; t2 then return tr-term(X,t1)—tr-term(X t2)
ift=fc ... c, where f is a global and n > 1 then
if fun fVay ...k 71,...,Tn—k — 7 € X then
return f(tr-term(X,cx41)... . tr-term(X,cy))
else
let fo = abstract(f c1) in return tr-term(X,fo c2 ... cn)

Fig. 2. Translating terms

Translating predicates. The function tr-pred(X,v,t) translates a CIC term
t of type Prop into a PFOL predicate. X' is a PFOL theory and v is the set of
type variables that may be bound in ¢. In the CIC, all the logical connectives
(apart from universal quantification) are not primitive but defined using induc-
tive types. In order to translate them to the corresponding PFOL connectives,
we recognize these constants (namely True, False, not, and, or and ex). The
definition of tr-pred is given Figure 3.

Translating environments. The translation of environments is based on a
main function tr-decl(X, x,t) that translates the CIC declaration of = of type
t into a PFOL declaration, that is either a type, a function, a predicate or an
axiom declaration. Note that x may be either a CIC variable, a constant, an
inductive type or a constructor. The function tr-decl handles the polymorphism
by extracting the prenex type quantifications Ay,..., Ay and the monomorphic
declarations as a particular case when k& = 0. Similarly, it handles the case of
constants whenever n = 0.

Finally, the translation of a CIC environment I' in a PFOL theory X is
realized by the function tr-env which is processing all the declarations in I" one
by one using tr-decl. Of course, some of them may not be first-order and thus
will not be considered. The definition of tr-env is given Figure 5.

The PFOL theory X resulting from the translation of a CIC context I" con-
tains enough information for the translation of a CIC proposition to type-check,
as we will show in Section 3.3. We can however transfer more information from



{ assumption t : Prop }
tr-pred(X,v,t) =
if t = eq T t1 t2 then return tr-term(X,¢1)=tr-term(X,2)
if t = 1t ¢1 t2 then return tr-term(X,t1)<tr-term(Xt2)
if t = ... (similar for other arithmetic comparisons) ...
if t = True then return T
if t = False then return L
if t = not ¢ then return — tr-pred(X,v,q)
if t = and p r then return tr-pred(X,v,q) A tr-pred(X,v,r)
if t = or p r then return tr-pred(X,v,q) V tr-pred(X,v,r)
if t = ¢ — r then return tr-pred(X,v,q) = tr-pred(X,v,r)
ift=exT (Az:T, q) then
let 7 = tr-type(X,0,T) in return 3z : 7. tr-pred(X + {z : 7},v,q)
if t =Vax:T, q then
let 7 = tr-type(X,0,T) in return VY : 7. tr-pred(X + {z : 7},v,q)
ift=peci ... ¢, where pis a global
and pred p:Vai ... T1,...,Tn—r € X then
return p(tr-term(X,ck+1),. - . ,tr-term(X,c,))

Fig. 3. Translating predicates

{ assumption x : t }
tr-decl(X,z,t) =
let A1,..., A, T such that t =VA; : Set, ... ,VAg : Set, T in
if T' = Set then return type z[k]
let v ={A1;...;Ax} in
if T =T, — -+ — T, — Thi1 with the T; of type Set then
let 71 = tr-type(X,v,71) and ...and Trhy1 = tr-type(X,0,Tn41) in
return fun z : VA. 71, ..., Th — Tnt1
if =T, — --- — T, — Prop with the T; of type Set then
let 71 = tr-type(X,v,71) and ...and 7, = tr-type(X,v,1%) in
return pred  : VA.71,...,7n
if T is of type Prop then return axiom VA. tr-pred(X,v,T)

Fig. 4. Translating declarations

tr-env([") =
X=0
for each declaration 6 in I" do
if § is x : t then X := X+ tr-decl(X,z,t)
if §isc:=¢:T then X := ¥ + tr-decl(X,z,T)
If 6 iS Ind([i . TZ = (Ci’j = tivj)j:l """ ki)i—l

. then
fori=1,...,ndo X := X+ tr-decI(E,Ii,Tif

fori=1,...,ndo
for j =1,.. .,ki do X := XY+ tr—decI(E,Ci,j,ti,]-)
return X

Fig. 5. Translating environments



CIC to PFOL by also translating constant definitions and some properties of
inductive types whenever possible.

Translating definitions. If a CIC definition ¢ := ¢ : T is translated into a
PFOL function fun f :Va.m,...,7, — 7 or a predicate pred p : Va. 11, ..., Ty,
we also try to interpret the definition body ¢ as much as possible. We distinguish
the two cases of a non-recursive and of a recursive definition:

— non-recursive definition: performing some n-expansions if necessary, we can
always put the body ¢ into the form

t=MAay:Set... ag :Set, Az :T1... Az, : T, b
with tr-type(X, a, T;) = 7;. Then we (try to) append the following axiom to
X in the case of a function f:
Va.Ve. f(x1,...,2,) =tr-term(X + {z1 : 71, ..., Zp : T}, b)
and the following axiom in the case of a predicate p:
Va.Ve.p(xy,...,xn) & tr-pred(X + {z1: 71, ..., &0 : Tu},a,b)

(where P < @ is simply a shortcut for P = Q A Q = P).
— recursive definition: we only consider the case of a recursive definition of the
shape
fi=1fix f { f: T := Aoy : Set,... Ay : Set,
Ary Ty, . ey - Ty,
case(z;, P, (Ay1, 1), s (AYm, tm)) }
i.e. a recursive function performing an immediate case-analysis over one of
its arguments. Fortunately, this is the most common situation. Then we (try
to) append one axiom for each branch ¢;, that is
Va.Vxl, ey Lj—15 Lj415 - - - ,anyz
f(l‘l, e, Ti—1, Oi(!h), Ligly--- ,xn) = tr—term(Z +x + vy, tz)

Translating Inductive Types Properties. For each individual inductive
type I :t:=Cy:t1 | ... | Cp : ty such that tr-decl(X,I,t) = type s[n] we
append to the PFOL theory the following axioms expressing that I is the free
algebra generated by the constructors C1,...,Cy:

— (inversion)
Va.Vr: I.(Fy1.2 = Ci(y1)) V-V Byn.-x = Cr(yn))
— (injection) For each non-constant constructor Cj,
Va.Vy. Yy’ Ci(y) = Ci(y') = y1 = y1 A Ay, = Y,
— (free algebra) For each pair of constructors C;, C; with i # j,
Va.Vy.Vy'. Ci(y) # Ci(y')

We cannot express that this is the smallest free algebra, however, since this is
not expressible in first-order logic.



3.2 Example

The CIC context defining nat and plus in Example 1 page 4 is translated into
the following theory:

Y = type nat0]
fun O :— nat
fun S : nat — nat
axiomVx : nat.x = OV Jy : nat.x = S(y)
axiomVx,y : nat. S(zx) = S(y) =>x =y
axiom Vz : nat. O # S(x)
fun plus : nat — nat — nat
axiom Vy : nat. plus(O,y) =y
axiom Vz,y : nat. plus(S(z),y) = S(plus(z,y))

3.3 Soundness

This section establishes that our translation is sound. First, it is clear that the
translation is terminating, since the size of the main argument in tr-type, tr-term
and tr-pred is decreasing on each recursive call. Second, we give type soundness
results stating that the various PFOL entities obtained by translation are well-
formed. In the following, I" is a CIC context and X = tr-env(I").

Lemma 1 (type soundness of tr-type). Let ¢t be a CIC term of type Set in
I and « its variables of type Set. If tr-type(X, o, t) = 7 then X b 7 wf.

Proof. Straightforward by induction on the size of ¢.

Lemma 2 (type soundness of tr-term). Let t be a CIC term of type T itself
of type Set in I'. If tr-term(X,t) = t' then there exists T such that X - t' : 7
and T = tr-type(X, v, T) where v is the set of variables of type Set in T.

Proof. By induction on the size of t. To apply the induction hypothesis, we need
the property that two convertible CIC types are translated to the same PFOL
type, which is ensured by the normalization of types in tr-type.

Lemma 3 (type soundness of tr-pred). Let t be a CIC term of type Prop in
I" and « be the variables of t of type Set. If tr-pred( X, o, t) = P then X+ P wf.

Proof. By induction on the size of t. Proof similar to the one of Lemma 2.

Lemma 4 (type soundness of tr-env). Let I' be a CIC environment and
Y =trenv(I"). Then + X wf.

Proof. By induction on I" and by case analysis on tr-decl. Then it is straightfor-
ward using Lemma 1 and Lemma 3.

Finally, we can establish provability soundness: if the resulting PFOL predi-
cate is provable in the resulting PFOL theory then the CIC proposition is prov-
able in the CIC context.



Theorem 1 (soundness). Let t be a CIC term of type Prop in I', o be the
variables of t of type Set and X = tr-env(I"). If tr-pred( X, o, t) = P and X = P
then t is classically provable in I i.e. there exists a CIC term w of type t in
I'+ EM:VP :Prop.PV —P.

Proof. By induction on the derivation of X' |= P. Each case is justified by a CIC
proof term:

— for the Ax rule, we must build a proof term for each proposition inserted as an
axiom in X' through our translation. The axioms related to functions (being
recursive or not) and predicates definitions are justified by the CIC reduc-
tion rules. The properties inherent to the inductive types (namely inversion,
injection, and free algebra) can be proved as lemmas using the appropriate
Coq tactics [11];

— the EM rule corresponds to an instance of the axiom EM added to I

— every PFOL proposition proved through the Arith rule can be proved in Coq
using the omega tactic [20];

— the remaining deduction rules are easily simulated in CIC using the defini-
tion of the connectives and the induction hypothesis. To apply the induc-
tion hypothesis, we need to exhibit a CIC term for each PFOL sub-formula
appearing in the premises, which is a consequence of the following three
lemmas:

Lemma 5 (surjection of tr-type). Let 7 be a PFOL type. If ¥ & 7 wf then
there ezists a CIC term t of type Set such that tr-type(X, a,t) = T where a are
the type variables of t.

Proof. By induction on the derivation of X' - 7 wf. It requires the extra property
that for any type s[n] € X there is a CIC global s of type VAy,..., A, : Set, T
with T of type Set in I, Ay, ..., A, (definition of tr-decl).

Lemma 6 (surjection of tr-term). Lett’ be a PFOL term, T a PFOL type, T a
CIC type and c the variables of T of type Set. If ¥ =t : 7 and tr-type(X, a0, T) =
T then there exists a CIC term t of type T in I such that tr-term(X,t) = t'.

Proof. By induction on the size of ¢'.

Lemma 7 (surjection of tr-pred). Let P’ be a PFOL predicate. If ¥ + P’ wf
then there exists a CIC proposition P such that tr-pred(X, o, P) = P’ where
are the type variables of P'.

Proof. By induction on the derivation of X' P’ wf.

4 Implementation

The work presented in this paper has been implemented in the Coq proof assis-
tant [2] to call the decision procedures Simplify [4], CVC Lite [1], Zenon [12] and
haRVey [21] through Coq tactics. Such tactics proceed in two steps, as illustrated



Figure 6. First, the Coq context and the current goal are translated to a context
and a goal in PFOL, independently of the decision procedure to be used, in the
input syntax of the Why tool [13].

Then the Why tool is used to produce an input file for the particular prover
to be used. In particular, this is the Why tool which is responsible for trans-
lating PFOL to an unsorted first-order logic (for Simplify and Zenon) or to a
“monomorphic” first-order logic (for CVC Lite and haRVey). This is not an obvi-
ous step (see for instance the discussions in [5,15, 18]), but this is not the subject
of this paper.

Finally, the selected prover is called (with a timeout, typically 10 seconds)
and whenever it validates the goal, an axiom is built in Coq corresponding to
the current Coq goal and is used to discharge it.

Coq

\

| TrRANSLATION |

— 7 N

Simplify CVC Lite Zenon haRVey

Fig. 6. Calling decision procedures from Coq

The Why tool is available independently of the Coq proof assistant. The
remaining of the implementation, namely the translation described in this paper,
is implemented in Objective Caml [3] and integrated to the Coq sources. It
amounts to less than 600 lines of code, which is fairly small for an integration
of four different decision procedures within a proof assistant. Compared to the
theoretical presentation of this paper, it adds a lazy strategy that only translates
the pieces of the context that are needed, and a cache mechanism that remembers
these translations from one call to another.

The first experiments are promising. We took several existing Coq proofs and
tried to replace pieces of proof scripts by calls to external provers as much as
possible. In most cases, the Coq tactics auto, intuition, omega and firstorder
could be replaced by the new tactics zenon or simplify. More significatively,
combinations of several tactics including applications of transitivity lemmas and
rewritings could be replaced by a single call to a first-order prover. Interestingly,
the two provers Zenon and Simplify appear to be complementary. In particular,
even if Zenon does not support arithmetic it sometimes succeeds where Simplify
fails. In practice, we observed one successful call to an external prover each 3
lines of tactics, with one call to Simplify for two calls to Zenon. The haRVey and



CVC Lite provers were tested too, but without significative improvement with
respect to Zenon or Simplify.

This implementation is currently available only as part of the development
version of Coq, which is accessible by anonymous CVS access (see coq.inria.fr
for details).

5 Conclusion

We have presented an integration of four decision procedures into the Coq proof
assistant, based on a pragmatic and sound translation from the Calculus of
Inductive Constructions to a polymorphic first-order logic. Though the first ex-
periments are very promising, this work could be improved in many ways.

First, we could interface other decision procedures. This is rather easy, since
it only requires a support for the new provers by the Why tool. This is even
immediate for provers accepting the SMT-LIB input format [22], for that it is
already supported by Why. However, the issue is rather to find a prover powerful
enough, that is handling the full first-order logic, equality and arithmetic.

Second, we should translate proofs generated by the decision provers back to
Coq proof terms, when available. Currently, only Zenon and CVC Lite are able
to produce such proofs. Zenon can even generate a script of Coq tactics or a Coq
proof term, so the translation back is immediate (this is not yet implemented
though). CVC Lite produces proof traces in its own format but due to lack of
documentation on this format, we did not manage to translate them into Coq
proofs.

The JProver [23] fulfills the two requirements above (it handles intuitionistic
first-order logic and produces proofs) and thus is a good candidate for an integra-
tion into our framework. Actually, the JProver has already been interfaced with
Coq, by Huang Guan-Shieng in 2002, but it would benefit from our translation
that covers a larger part of the context than its current integration.

Finally, we could use several other techniques to translate a wider fragment
of the Coq logic, such as recognizing the usual logical connectives in user-defined
inductive predicates (as already done by other Coq tactics such as intuition
or firstorder [10]) or generating axioms for the inversion of inductive predi-
cates [11].
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A Polymorphic First-Order Logic

Types (1), terms (t) and predicates (P) are built according to the following
grammars

T o= als[r,...,T]
t o u= x| ft,...,0)

T|L|PAP|PVP|-P|P=P

P = p(t,..., 1)
|
| YVe:7.P|3x:7.P

A theory X is a finite list of declarations § where

§ == types[n]|z:7|fun f:Vo.7,....,7T > T
| predp:Ve.rt,...,7 | axiom Va. P

Well-formed types (X + 7 wf):
type s[n] € ¥ Vi, X F 1; wf

—(T T
El—awf( Y1) Y b s, ..., 7] wf (Ty)
Well-typed terms (X' ¢ : 7):
fun f:Va.7,...,Tn = TEX
x:TeEX Subst(c, X) Vi, X t;:o(m;)
(T2)

El—x:T( ) X flty,... ty) o(7)

where o is a mapping from type variables to types, naturally extended to
types with o(s[r1,...,m]) = slo(m1),...,0(m,)]. We write Subst(c, X') when-
ever X' F o(a) wf holds for any type variable a.

Well-typed predicates (X + P wf):

pred p:Va.7y,...,7, € X Subst(o,X) Vi, Xt t;:0(m)

XEplty,... ty) wf (Py)
YEPwf YFP,wf
TP Tr T SreAmw 7Y
YEPwf Y Pywf Y P wf
SER v Bw ) S opwre)
YEPwf YEP Wf(P7)
XE P = Pywf
Yox:17kFPwf Yox:mkHPwf
Srve i Pwi' ) Srm o pwi )

Well-formed theories (- X wf):

type s ¢ X (Thy) z¢g X X1 wf
2

Th
F X, type s[n] wf FXx:7mwf (Ths)

(Thy)

O wf



fun f¢ X Vi, X F 7 wf
F X fun f:Va.7m,..., 7 — Tpe1 W
predp ¢ X Vi, X F 1 wf (Ths) XE P wf
F X predp:Va.7,...,7 wf F X axiom Va. P wf
Natural deduction rules (X |= P). For the sake of clarity, we write X, P for
XY, axiom P in the following. A substitution ¢ over from type variables to types
in extended to terms and predicates in the obvious way. We write P[t/z] for the
substitution of all the occurrences of a free variable x in P by a term t.
axiomVa. P € X Subst(c, X) YEQ XY,QEP
S o) (Ax) YEP (Cut)
YEL EI—PWf(False) X+ P wf
YEP YEPV-P
SEPAQ SEPAQ
YEP YEQ
E|:EP El—wa(Orl) YEQ El—ow(OrQ)
EPVQ YEPVQ
YEPVQ S, PER X,QER
(Ors)

YER
SEP YE-P
Y E=-P YE1L
SEPw SPEQ, . SEP=Q SEP
SEP=Q : TEQ
xg X ZEI—’;'V\/,\;/;:T%’J,Dm.T':P(Foraul)
YEVzx:T.P Xkt:T
Y | Plt/x]
Yht:m a¢gX X Plt/a]
YEZJz:1.P
YEJz:r.P z¢X¥ XYaz:1,PEQ
SEQ

(Thy)

(The)

(True) (EM)

SET
SEP YEQ

) ’: PA Q (Andg)

(And) (Ands)

YEPw Y PEL
d ’ ': (NOtQ)

(NOtl)

(Impy)

(Forally)

(Existsy)

(Existss)

Deduction rules for equality:
El—t:T( ) YExz=y X, z:7FPwf X[ Plz/Z]
SEt=t 1 T F Ply/]
Arithmetic: An arithmetic proposition P is a proposition built from variables of
type int, integers constants, the functions symbols add and sub, the predicates
It, le, gt, ge and the equality. If z1,...,z, are the free variables of P, we write
Z1,...,%, FEa P whenever P is valid (it is decidable; see for instance the Omega
test [20]). Then we have the following deduction rule for arithmetic:

Llye-ey Ty ':AP
Y |EVay sint. ... Vx, :int. P

(Eqz)

(Arith)




