
Combining the Coq Proof Assistant

with First-Order De
ision Pro
edures

Ni
olas Aya
he

1
and Jean-Christophe Filliâtre

2

1
CEA/Sa
lay

91191 Gif-sur-Yvette Cedex, Fran
e

ni
olas.aya
he�
ea.fr

2
CNRS � Université Paris-Sud

Laboratoire de Re
her
he en Informatique

F-91405 Orsay Cedex, Fran
e

filliatr�lri.fr

Abstra
t. We present an integration of �rst-order automati
 theorem

provers into the Coq proof assistant. This integration is based on a trans-

lation from the higher-order logi
 of Coq, the Cal
ulus of Indu
tive Con-

stru
tions, to a polymorphi
 �rst-order logi
. This translation is de�ned

and proved sound in this paper. It in
ludes not only the translation

of terms and predi
ates belonging to the �rst-order fragment, but also

several te
hniques to go well beyond: abstra
tions of higher-order sub-

terms,
ase-analysis, mutually re
ursive fun
tions and indu
tive types.

This pro
ess has been implemented in the Coq proof assistant to
all

the de
ision pro
edures Simplify, CVC Lite, haRVey and Zenon through

Coq ta
ti
s. The �rst experiments are promising.

1 Introdu
tion

Theorem provers based on highly expressive logi
s usually la
k a good support of

proof automation. This is parti
ularly true for the Coq proof assistant [2℄ whi
h

helps the user through very little automation during the proof sear
h. There are

two main reasons for this situation. The �rst reason is that the de
ision pro
e-

dures developed for �rst-order logi
s does not s
ale easily to ri
her logi
s. The

logi
 behind the Coq proof assistant, for instan
e, known as the Cal
ulus of In-

du
tive Constru
tions, intertwines features su
h as polymorphism, higher-order

or dependent types and any of them would require spe
i�
 adaptation of the

�rst-order te
hniques. The se
ond reason is that the Coq system is implemented

on top of the de Bruijn prin
iple: whatever the way it is built, a proof must

eventually be
he
ked by a small and trusted part of the system. This, again, is

in
ompatible with the state of the art de
ision pro
edures that usually do not

give any kind of justi�
ation: most of the time, they simply return a boolean

answer.

In this arti
le, we adopt a very pragmati
 and modest approa
h to the
hal-

lenge of improving proof automation in Coq: we simply a

ept the above two

limitations. Indeed, we are going to interfa
e Coq with external de
ision pro-

edures that only know about �rst-order logi
 and we will trust their results

i.e. we give up the de Bruijn prin
iple. Though it may seem very disappointing,

there is still a non-trivial task to a

omplish, that is the translation from the

ri
h logi
 of Coq to �rst-order logi
. On one hand, we want this translation to

be as powerful as possible and, on the other hand, we do not want the de
ision

pro
edures to be fooled by awful en
odings. This translation pro
ess is the main

subje
t of this paper.

Several integrations of higher-order proof assistants and �rst-order automati

theorem provers have been studied and implemented so far. Most of them fo
us

on resolution-based provers, su
h as Gandalf integrated into HOL [16, 17℄ and

Martin Löf's Type Theory [5℄, or the provers Vampire and SPASS integrated into

Isabelle/HOL [18℄. Su
h resolution provers take
lausal formulae as input, whi
h

requires skolemization and
onjun
tive normal forms to be embedded in the

translation pro
ess. They may also take some time to de
ide the given formula

when the
ontext is made of hundreds of de�nitions and lemmas. If it is not an

issue for one-shot
alls of the provers, as in the TPTP ben
hmarks [24℄ and the

related
ompetitions, it may be
ome a nuisan
e when
ombined with intera
tive

proof. That is why the Isabelle integration [18℄ opted for provers running in

ba
kground without (too mu
h) interferen
e with the user's intera
tive proof.

We are rather interested in de
ision pro
edures that
an answer within a few

se
onds and thus
an be used during the intera
tive proof as an alternative to the

Coq auto ta
ti
. From this point of view, our work is
loser to the integration of

the ICS de
ision pro
edure in PVS [14℄ (though ICS only handles a quanti�er-

free fragment of �rst-order logi
) or Harrison's use of tableau te
hniques in HOL

Light [15℄. Regarding theories, we only
onsider equality and linear arithmeti

to be relevant, as they are very
ommon in many proofs. The provers we are

urrently using are Simplify [4℄, CVC Lite [1℄, haRVey [21℄ and Zenon [12℄ (even

if the latter does not handle arithmeti
).

These tools do not implement exa
tly the same logi
: Simplify and Zenon

implement an unsorted logi
, haRVey a traditional many-sorted logi
 and CVC

Lite a slightly ri
her typed logi
 with PVS-like subtypes and even higher-order

features. In order to fa
tor out our translation, we need to �nd a
ommon target

logi
. Obviously, it needs to be typed. We adopt a polymorphi
 �rst-order logi
.

Polymorphism is mandatory to handle large fragments of the Coq
ontext. In-

deed, many formalizations, su
h as the theory of lists in the Coq standard library

for instan
e, are usually done in the most general way and thus polymorphi
. Not

being able to transmit the
orresponding de�nitions and lemmas to the de
ision

pro
edures would be unfortunate. Then going from polymorphi
 �rst-order logi

to the input logi
s of the various provers is
onsidered as a separate step in our

integration, for whi
h we
urrently delegate to the Why tool [13℄.

Our work is not the �rst integration of �rst-order provers into the Coq proof

assistant. We
an mention an interfa
e to the resolution prover Bliksem [8℄,

the theorem prover for �rst-order intuitionisti
 logi
 JProver [23℄ and the Elan

rewriting system [6℄. Less related to our work is a dire
t implementation of �rst-

order proof sear
h in Coq by Corbineau [10℄.

This paper is organized as follows. First, Se
tion 2 brie�y introdu
es the

sour
e and target logi
s, namely the Cal
ulus of Indu
tive Constru
tions and a

polymorphi
 �rst-order logi
. Then Se
tion 3 de�nes our translation from the

former to the latter and proves its soundness. Finally, Se
tion 4 details the

implementation in the Coq proof assistant and reports on the �rst experiments.

2 Logi
s

2.1 The Cal
ulus of Indu
tive Constru
tions

The logi
 behind the Coq proof assistant is the Cal
ulus of Indu
tive Constru
-

tions [9, 19℄, written CIC in the following. It is a typed λ-
al
ulus with polymor-

phism, higher-order, dependent types and a primitive notion of indu
tive types.

The Coq proof assistant relies on the Curry-Howard isomorphism: a proposition

is a type of the CIC and a proof of this proposition is a λ-term inhabitating this

type.

The CIC has a single synta
ti

ategory used for both types and terms and

de�ned as follows:

s ::= Set | Prop | Typei

t ::= s | x | c | C | I
| ∀x : t, t | λx : t, t | t t | case(t, t, t, . . . , t)
| fix x {x : t := t; . . . ; x : t := t}

where x ranges over variable names, c over
onstant names, C over
onstru
tor

names and I over indu
tive type names. Set and Prop should be thought of

as the sorts for datatypes and propositions respe
tively, and Typei as the sorts

of everything above in the type hierar
hy. The dependent produ
t ∀x : t1, t2
is written t1 → t2 whenever x does not appear in t2 and then
an be seen as

the fun
tion type or as the logi
al impli
ation, depending on whi
h side of the

Curry-Howard isomorphism one is
onsidering. The term case(e, P, t1, . . . , tn)
is a powerful elimination
onstru
t that redu
es to the bran
h ti whenever e
redu
es to the i-th
onstru
tor of some indu
tive type (P is a term giving the

type of the result). The term fix xk {(xi : Ti := ti)i=1,...,n} stands for the k-th
fun
tion of a blo
k of n mutually re
ursive fun
tions.

A CIC
ontext Γ is a list of de
larations that
an be of three kinds:

� a variable de
laration x : t,

� a
onstant de�nition c := t : t,

� a set of mutually indu
tive types de�nitions

Ind(I : t := C : t| . . . |C : t; . . . ; I : t := C : t| . . . |C : t)

Example 1. Here is a CIC
ontext introdu
ing Peano's natural numbers as an

indu
tive datatype nat and an addition fun
tion plus re
ursively de�ned on its

�rst argument:

Ind(nat : Set := O : nat | S : nat → nat)
plus := fix f {f : nat → nat → nat := λx : nat, λy : nat,

ase(x, (λ_ : nat, nat), y, λz : nat, S (f z y))}
: nat → nat → nat

Giving the CIC typing rules would go far beyond the s
ope of this paper.

The rules
orresponding to what is implemented in the Coq proof assistant
an

be found in the
hapter 4 of the Coq referen
e manual [2℄ or in the Coq'Art [7℄.

The
omplexity of the CIC typing is mainly due to a
onvertibility rule that

allows arbitrary redu
tions (i.e.
omputations) to be performed in types. Su
h

redu
tions ne
essarily terminate sin
e the CIC enjoys a normalization property.

In the following, we write nf(t) for the normal form of a term t.

2.2 Polymorphi
 First-Order Logi

Our target language is a Polymorphi
 First-Order Logi
, written PFOL in the

following. As usual with �rst-order settings, we introdu
e su

essively the syn-

ta
ti
 notions of types, terms and predi
ates.

A type is introdu
ed by its name s (an identi�er) and its arity n (a non-

negative integer) that is its number of type parameters. When n > 0 the type is

polymorphi
 (i.e. it is a type operator) and when n = 0 the type is monomorphi
.

Then type expressions τ are de�ned as follows, where s ranges over the set of

type names and α over an in�nite set of type variables:

types τ ::= α | s[τ, . . . , τ]

When a type s is monomorphi
, we write dire
tly s instead of s[]. As usual,

terms are built from variables and fun
tion symbols f and predi
ates are built

from predi
ate symbols p and the usual �rst-order
onne
tives:

terms t ::= x | f(t, . . . , t)
predicates P ::= ⊤ | ⊥ | P ∧ P | P ∨ P | ¬P | P ⇒ P

| p(t, . . . , t) | ∀x : τ. P | ∃x : τ. P

Constants are fun
tions with an arity 0. Finally, a theory Σ is a list of de
lara-

tions δ of types, variables, fun
tions, predi
ates and axioms:

δ ::= type s[n] | x : τ | fun f : ∀α. τ, . . . , τ → τ
| pred p : ∀α. τ, . . . , τ | axiom ∀α. P

The notation ∀α stands for the quanti�
ation over a (possibly empty) set of type

variables. This is pre
isely where the polymorphism is introdu
ed: fun
tions,

predi
ates and axioms may all be polymorphi
. These synta
ti

ategories being

set, we
an now introdu
e the following typing judgments:

Σ ⊢ τ wf the type τ is well-formed in Σ
Σ ⊢ t : τ the term t is well-typed in Σ, of type τ

Σ ⊢ P wf the predi
ate P is well-formed in Σ
⊢ Σ wf the theory Σ is well-formed

The rules de�ning these judgments are rather straightforward and gathered in

Appendix A.

We assume some prede�ned notions of equality and linear integer arith-

meti
, that is: a polymorphi
 equality with the usual in�x notation t1 = t2;
a monomorphi
 type int for the integers; the in�nite set of integer
onstants

. . . ,−2,−1,0,1,2,. . . of type int ; addition and subtra
tion fun
tion symbols with

the usual in�x notations + and −; and inequality predi
ates with the usual in�x

notations <,≤, > and ≥.
Finally, validity is introdu
ed as the judgement Σ |= P meaning �P is prov-

able in the theory Σ�. It is de�ned by a set of natural dedu
tion rules given in

Appendix A.

3 From CIC to PFOL

In order to
all a �rst-order de
ision pro
edure on the
urrent goal from the Coq

toplevel, we need to translate both the
ontext and the goal from CIC to PFOL.

This se
tion de�nes su
h a translation and proves its soundness.

3.1 The translation

The translation is de�ned as a bun
h of fun
tions translating respe
tively types,

terms, predi
ates and
ontexts. All these fun
tions are given here in pseudo-
ode

in Figures 1�5. They are partial fun
tions i.e. they may fail (when the CIC term

has no PFOL
ounterpart). Failures are handled impli
itly: when a fun
tion is

not de�ned, it is assumed to fail, and whenever a fun
tion
all fails, we impli
itly

jump to the next
ase of the fun
tion being de�ned. We now detail the various

translation fun
tions.

Translating types. The fun
tion tr-type(Σ, v, t) translates a CIC term t of type
Set into a PFOL type expression τ . Σ is a PFOL theory (it must be seen as the

translation of the CIC environment so far) and v is the set of type variables α of

type Set that may appear in t and thus in τ . The de�nition of tr-type is given

Figure 1. Noti
e that we
ompute the normal form of t before performing the

translation (using the fun
tion nf).

Translating terms. The fun
tion tr-term(Σ, t) translates a CIC term t of a

type T itself of type Set into a PFOL term. Σ is a PFOL theory. The de�nition

of tr-term is given Figure 2. The fun
tion abstra
t(t) used in tr-term is repla
ing

a CIC term t by a new variable, provided that t is
losed.

{ assumption t : Set }

tr-type(Σ,v,t) =

let t = nf(t) in

if t is a variable α in v then return α

if t = s t1 . . . tn and type s[n] ∈ Σ then

return s[tr-type(Σ,v,t1),. . . ,tr-type(Σ,v,tn)]

Fig. 1. Translating types

{ assumption t : T : Set }

tr-term(Σ,t) =

if t is a variable or a
onstant x bound in Σ then return x

if t is an integer
onstant n then return n

if t = plus t1 t2 then return tr-term(Σ,t1)+tr-term(Σ,t2)

if t = minus t1 t2 then return tr-term(Σ,t1)−tr-term(Σ,t2)

if t = f c1 . . . cn where f is a global and n ≥ 1 then

if fun f :∀α1 . . . αk.τ1, . . . , τn−k → τ ∈ Σ then

return f(tr-term(Σ,ck+1),. . . ,tr-term(Σ,cn))

else

let f0 = abstra
t(f c1) in return tr-term(Σ,f0 c2 . . . cn)

Fig. 2. Translating terms

Translating predi
ates. The fun
tion tr-pred(Σ, v, t) translates a CIC term

t of type Prop into a PFOL predi
ate. Σ is a PFOL theory and v is the set of

type variables that may be bound in t. In the CIC, all the logi
al
onne
tives

(apart from universal quanti�
ation) are not primitive but de�ned using indu
-

tive types. In order to translate them to the
orresponding PFOL
onne
tives,

we re
ognize these
onstants (namely True, False, not, and, or and ex). The

de�nition of tr-pred is given Figure 3.

Translating environments. The translation of environments is based on a

main fun
tion tr-de
l(Σ, x, t) that translates the CIC de
laration of x of type

t into a PFOL de
laration, that is either a type, a fun
tion, a predi
ate or an

axiom de
laration. Note that x may be either a CIC variable, a
onstant, an

indu
tive type or a
onstru
tor. The fun
tion tr-de
l handles the polymorphism

by extra
ting the prenex type quanti�
ations A1, . . . , Ak and the monomorphi

de
larations as a parti
ular
ase when k = 0. Similarly, it handles the
ase of

onstants whenever n = 0.

Finally, the translation of a CIC environment Γ in a PFOL theory Σ is

realized by the fun
tion tr-env whi
h is pro
essing all the de
larations in Γ one

by one using tr-de
l. Of
ourse, some of them may not be �rst-order and thus

will not be
onsidered. The de�nition of tr-env is given Figure 5.

The PFOL theory Σ resulting from the translation of a CIC
ontext Γ
on-

tains enough information for the translation of a CIC proposition to type-
he
k,

as we will show in Se
tion 3.3. We
an however transfer more information from

{ assumption t : Prop }

tr-pred(Σ,v,t) =

if t = eq T t1 t2 then return tr-term(Σ,t1)=tr-term(Σ,t2)

if t = lt t1 t2 then return tr-term(Σ,t1)<tr-term(Σ,t2)

if t = ... (similar for other arithmeti

omparisons) ...

if t = True then return ⊤
if t = False then return ⊥
if t = not q then return ¬ tr-pred(Σ,v,q)

if t = and p r then return tr-pred(Σ,v,q) ∧ tr-pred(Σ,v,r)

if t = or p r then return tr-pred(Σ,v,q) ∨ tr-pred(Σ,v,r)

if t = q → r then return tr-pred(Σ,v,q) ⇒ tr-pred(Σ,v,r)

if t = ex T (λx : T, q) then

let τ = tr-type(Σ,v,T) in return ∃x : τ. tr-pred(Σ + {x : τ},v,q)
if t = ∀x : T, q then

let τ = tr-type(Σ,v,T) in return ∀x : τ. tr-pred(Σ + {x : τ},v,q)
if t = p c1 . . . cn where p is a global

and pred p:∀α1 . . . αk.τ1, . . . , τn−k ∈ Σ then

return p(tr-term(Σ,ck+1),. . . ,tr-term(Σ,cn))

Fig. 3. Translating predi
ates

{ assumption x : t }

tr-de
l(Σ,x,t) =

let A1, . . . , Ak, T su
h that t = ∀A1 : Set, . . . , ∀Ak : Set, T in

if T = Set then return type x[k]
let v = {A1; . . . ; Ak} in

if T = T1 → · · · → Tn → Tn+1 with the Ti of type Set then

let τ1 = tr-type(Σ,v,T1) and . . . and τn+1 = tr-type(Σ,v,Tn+1) in

return fun x : ∀A. τ1, . . . , τn → τn+1

if T = T1 → · · · → Tn → Prop with the Ti of type Set then

let τ1 = tr-type(Σ,v,T1) and . . . and τn = tr-type(Σ,v,Tn) in

return pred x : ∀A. τ1, . . . , τn

if T is of type Prop then return axiom ∀A. tr-pred(Σ,v,T)

Fig. 4. Translating de
larations

tr-env(Γ) =

Σ := ∅
for ea
h de
laration δ in Γ do

if δ is x : t then Σ := Σ + tr-de
l(Σ,x,t)

if δ is c := t : T then Σ := Σ + tr-de
l(Σ,x,T)

if δ is Ind

(

Ii : Ti := (Ci,j := ti,j)j=1,...,ki

)

i=1,...,n
then

for i = 1, . . . , n do Σ := Σ + tr-de
l(Σ,Ii,Ti)

for i = 1, . . . , n do

for j = 1, . . . , ki do Σ := Σ + tr-de
l(Σ,Ci,j,ti,j)

return Σ

Fig. 5. Translating environments

CIC to PFOL by also translating
onstant de�nitions and some properties of

indu
tive types whenever possible.

Translating de�nitions. If a CIC de�nition c := t : T is translated into a

PFOL fun
tion fun f : ∀α. τ1, . . . , τn → τ or a predi
ate pred p : ∀α. τ1, . . . , τn,

we also try to interpret the de�nition body t as mu
h as possible. We distinguish

the two
ases of a non-re
ursive and of a re
ursive de�nition:

� non-re
ursive de�nition: performing some η-expansions if ne
essary, we
an
always put the body t into the form

t = λα1 : Set . . . λαk : Set, λx1 : T1 . . . λxn : Tn, b

with tr-type(Σ, α, Ti) = τi. Then we (try to) append the following axiom to

Σ in the
ase of a fun
tion f :

∀α. ∀x. f(x1, . . . , xn) = tr-term(Σ + {x1 : τ1, . . . , xn : τn}, b)

and the following axiom in the
ase of a predi
ate p:

∀α. ∀x. p(x1, . . . , xn) ⇔ tr-pred(Σ + {x1 : τ1, . . . , xn : τn}, α, b)

(where P ⇔ Q is simply a short
ut for P ⇒ Q ∧ Q ⇒ P).

� re
ursive de�nition: we only
onsider the
ase of a re
ursive de�nition of the

shape

f := fix f { f : T := λα1 : Set, . . . λαk : Set,
λx1 : T1, . . . λxn : Tn,

ase(xi, P, (λy1, t1), . . . , (λym, tm)) }

i.e. a re
ursive fun
tion performing an immediate
ase-analysis over one of

its arguments. Fortunately, this is the most
ommon situation. Then we (try

to) append one axiom for ea
h bran
h ti, that is

∀α. ∀x1, . . . , xi−1, xi+1, . . . , xn. ∀yi.
f(x1, . . . , xi−1, Ci(yi), xi+1, . . . , xn) = tr-term(Σ + x + yi, ti)

Translating Indu
tive Types Properties. For ea
h individual indu
tive

type I : t := C1 : t1 | . . . | Cn : tn su
h that tr-de
l(Σ, I, t) = type s[n] we
append to the PFOL theory the following axioms expressing that I is the free

algebra generated by the
onstru
tors C1, . . . , Cn:

� (inversion)

∀α. ∀x : I. (∃y1. x = Ci(y1)) ∨ · · · ∨ (∃yn. x = Cn(yn))

� (inje
tion) For ea
h non-
onstant
onstru
tor Ci,

∀α. ∀y. ∀y′. Ci(y) = Ci(y
′) ⇒ y1 = y′

1 ∧ · · · ∧ yki
= y′

ki

� (free algebra) For ea
h pair of
onstru
tors Ci, Cj with i 6= j,

∀α. ∀y. ∀y′. Ci(y) 6= Cj(y
′)

We
annot express that this is the smallest free algebra, however, sin
e this is

not expressible in �rst-order logi
.

3.2 Example

The CIC
ontext de�ning nat and plus in Example 1 page 4 is translated into

the following theory:

Σ := type nat[0]
fun O :→ nat

fun S : nat → nat

axiom ∀x : nat . x = O ∨ ∃y : nat . x = S(y)
axiom ∀x, y : nat . S(x) = S(y) ⇒ x = y
axiom ∀x : nat . O 6= S(x)
fun plus : nat → nat → nat

axiom ∀y : nat . plus(O, y) = y
axiom ∀z, y : nat . plus(S(z), y) = S(plus(z, y))

3.3 Soundness

This se
tion establishes that our translation is sound. First, it is
lear that the

translation is terminating, sin
e the size of the main argument in tr-type, tr-term

and tr-pred is de
reasing on ea
h re
ursive
all. Se
ond, we give type soundness

results stating that the various PFOL entities obtained by translation are well-

formed. In the following, Γ is a CIC
ontext and Σ = tr-env(Γ).

Lemma 1 (type soundness of tr-type). Let t be a CIC term of type Set in

Γ and α its variables of type Set. If tr-type(Σ, α, t) = τ then Σ ⊢ τ wf.

Proof. Straightforward by indu
tion on the size of t.

Lemma 2 (type soundness of tr-term). Let t be a CIC term of type T itself

of type Set in Γ . If tr-term(Σ, t) = t′ then there exists τ su
h that Σ ⊢ t′ : τ
and τ = tr-type(Σ, v, T) where v is the set of variables of type Set in T .

Proof. By indu
tion on the size of t. To apply the indu
tion hypothesis, we need

the property that two
onvertible CIC types are translated to the same PFOL

type, whi
h is ensured by the normalization of types in tr-type.

Lemma 3 (type soundness of tr-pred). Let t be a CIC term of type Prop in

Γ and α be the variables of t of type Set. If tr-pred(Σ, α, t) = P then Σ ⊢ P wf.

Proof. By indu
tion on the size of t. Proof similar to the one of Lemma 2.

Lemma 4 (type soundness of tr-env). Let Γ be a CIC environment and

Σ = tr-env(Γ). Then ⊢ Σ wf.

Proof. By indu
tion on Γ and by
ase analysis on tr-de
l. Then it is straightfor-

ward using Lemma 1 and Lemma 3.

Finally, we
an establish provability soundness: if the resulting PFOL predi-

ate is provable in the resulting PFOL theory then the CIC proposition is prov-

able in the CIC
ontext.

Theorem 1 (soundness). Let t be a CIC term of type Prop in Γ , α be the

variables of t of type Set and Σ = tr-env(Γ). If tr-pred(Σ, α, t) = P and Σ |= P
then t is
lassi
ally provable in Γ i.e. there exists a CIC term π of type t in

Γ + EM : ∀P : Prop.P ∨ ¬P .

Proof. By indu
tion on the derivation of Σ |= P . Ea
h
ase is justi�ed by a CIC

proof term:

� for the Ax rule, we must build a proof term for ea
h proposition inserted as an

axiom in Σ through our translation. The axioms related to fun
tions (being

re
ursive or not) and predi
ates de�nitions are justi�ed by the CIC redu
-

tion rules. The properties inherent to the indu
tive types (namely inversion,

inje
tion, and free algebra)
an be proved as lemmas using the appropriate

Coq ta
ti
s [11℄;

� the EM rule
orresponds to an instan
e of the axiom EM added to Γ ;

� every PFOL proposition proved through the Arith rule
an be proved in Coq

using the omega ta
ti
 [20℄;

� the remaining dedu
tion rules are easily simulated in CIC using the de�ni-

tion of the
onne
tives and the indu
tion hypothesis. To apply the indu
-

tion hypothesis, we need to exhibit a CIC term for ea
h PFOL sub-formula

appearing in the premises, whi
h is a
onsequen
e of the following three

lemmas:

Lemma 5 (surje
tion of tr-type). Let τ be a PFOL type. If Σ ⊢ τ wf then

there exists a CIC term t of type Set su
h that tr-type(Σ, α, t) = τ where α are

the type variables of t.

Proof. By indu
tion on the derivation of Σ ⊢ τ wf. It requires the extra property

that for any type s[n] ∈ Σ there is a CIC global s of type ∀A1, . . . , An : Set, T
with T of type Set in Γ, A1, . . . , An (de�nition of tr-de
l).

Lemma 6 (surje
tion of tr-term). Let t′ be a PFOL term, τ a PFOL type, T a

CIC type and α the variables of T of type Set. If Σ ⊢ t′ : τ and tr-type(Σ, α, T) =
τ then there exists a CIC term t of type T in Γ su
h that tr-term(Σ, t) = t′.

Proof. By indu
tion on the size of t′.

Lemma 7 (surje
tion of tr-pred). Let P ′
be a PFOL predi
ate. If Σ ⊢ P ′ wf

then there exists a CIC proposition P su
h that tr-pred(Σ, α, P) = P ′
where α

are the type variables of P ′
.

Proof. By indu
tion on the derivation of Σ ⊢ P ′ wf.

4 Implementation

The work presented in this paper has been implemented in the Coq proof assis-

tant [2℄ to
all the de
ision pro
edures Simplify [4℄, CVC Lite [1℄, Zenon [12℄ and

haRVey [21℄ through Coq ta
ti
s. Su
h ta
ti
s pro
eed in two steps, as illustrated

Figure 6. First, the Coq
ontext and the
urrent goal are translated to a
ontext

and a goal in PFOL, independently of the de
ision pro
edure to be used, in the

input syntax of the Why tool [13℄.

Then the Why tool is used to produ
e an input �le for the parti
ular prover

to be used. In parti
ular, this is the Why tool whi
h is responsible for trans-

lating PFOL to an unsorted �rst-order logi
 (for Simplify and Zenon) or to a

�monomorphi
� �rst-order logi
 (for CVC Lite and haRVey). This is not an obvi-

ous step (see for instan
e the dis
ussions in [5, 15, 18℄), but this is not the subje
t

of this paper.

Finally, the sele
ted prover is
alled (with a timeout, typi
ally 10 se
onds)

and whenever it validates the goal, an axiom is built in Coq
orresponding to

the
urrent Coq goal and is used to dis
harge it.

Coq

translation

PFOL

Why

Simplify

CVC Lite Zenon

haRVey

Fig. 6. Calling de
ision pro
edures from Coq

The Why tool is available independently of the Coq proof assistant. The

remaining of the implementation, namely the translation des
ribed in this paper,

is implemented in Obje
tive Caml [3℄ and integrated to the Coq sour
es. It

amounts to less than 600 lines of
ode, whi
h is fairly small for an integration

of four di�erent de
ision pro
edures within a proof assistant. Compared to the

theoreti
al presentation of this paper, it adds a lazy strategy that only translates

the pie
es of the
ontext that are needed, and a
a
he me
hanism that remembers

these translations from one
all to another.

The �rst experiments are promising. We took several existing Coq proofs and

tried to repla
e pie
es of proof s
ripts by
alls to external provers as mu
h as

possible. In most
ases, the Coq ta
ti
s auto, intuition, omega and firstorder

ould be repla
ed by the new ta
ti
s zenon or simplify. More signi�
atively,

ombinations of several ta
ti
s in
luding appli
ations of transitivity lemmas and

rewritings
ould be repla
ed by a single
all to a �rst-order prover. Interestingly,

the two provers Zenon and Simplify appear to be
omplementary. In parti
ular,

even if Zenon does not support arithmeti
 it sometimes su

eeds where Simplify

fails. In pra
ti
e, we observed one su

essful
all to an external prover ea
h 3

lines of ta
ti
s, with one
all to Simplify for two
alls to Zenon. The haRVey and

CVC Lite provers were tested too, but without signi�
ative improvement with

respe
t to Zenon or Simplify.

This implementation is
urrently available only as part of the development

version of Coq, whi
h is a

essible by anonymous CVS a

ess (see
oq.inria.fr

for details).

5 Con
lusion

We have presented an integration of four de
ision pro
edures into the Coq proof

assistant, based on a pragmati
 and sound translation from the Cal
ulus of

Indu
tive Constru
tions to a polymorphi
 �rst-order logi
. Though the �rst ex-

periments are very promising, this work
ould be improved in many ways.

First, we
ould interfa
e other de
ision pro
edures. This is rather easy, sin
e

it only requires a support for the new provers by the Why tool. This is even

immediate for provers a

epting the SMT-LIB input format [22℄, for that it is

already supported by Why. However, the issue is rather to �nd a prover powerful

enough, that is handling the full �rst-order logi
, equality and arithmeti
.

Se
ond, we should translate proofs generated by the de
ision provers ba
k to

Coq proof terms, when available. Currently, only Zenon and CVC Lite are able

to produ
e su
h proofs. Zenon
an even generate a s
ript of Coq ta
ti
s or a Coq

proof term, so the translation ba
k is immediate (this is not yet implemented

though). CVC Lite produ
es proof tra
es in its own format but due to la
k of

do
umentation on this format, we did not manage to translate them into Coq

proofs.

The JProver [23℄ ful�lls the two requirements above (it handles intuitionisti

�rst-order logi
 and produ
es proofs) and thus is a good
andidate for an integra-

tion into our framework. A
tually, the JProver has already been interfa
ed with

Coq, by Huang Guan-Shieng in 2002, but it would bene�t from our translation

that
overs a larger part of the
ontext than its
urrent integration.

Finally, we
ould use several other te
hniques to translate a wider fragment

of the Coq logi
, su
h as re
ognizing the usual logi
al
onne
tives in user-de�ned

indu
tive predi
ates (as already done by other Coq ta
ti
s su
h as intuition

or firstorder [10℄) or generating axioms for the inversion of indu
tive predi-

ates [11℄.

Referen
es

1. CVC Lite Homepage. http://verify.stanford.edu/CVCL.

2. The Coq Proof Assistant. http://
oq.inria.fr/.

3. The Obje
tive Caml language. http://
aml.inria.fr/.

4. The Simplify de
ision pro
edure (part of ESC/Java). http://resear
h.
ompaq.

om/SRC/es
/simplify/.

5. Andreas Abel, Thierry Coquand, and Ulf Norell. Conne
ting a Logi
al Frame-

work to a First-Order Logi
 Prover. In Bernhard Gramli
h, editor, 5th Interna-

tional Workshop on Frontiers of Combining Systems, FroCoS'05, Vienna, Austria,

September 19-21, 2005, Le
ture Notes in Computer S
ien
e. Springer Verlag, 2005.

6. Cuihtlaua
 Alvarado and Quang-Huy Nguyen. Elan for equational reasoning in

oq. In Pro
eeding of the 2nd Workshop on Logi
al Frameworks and Metalanguages,

Santa Barbara, California, 2000.

7. Yves Bertot and Pierre Castéran. Intera
tive Theorem Proving and Program De-

velopment. Texts in Theoreti
al Computer S
ien
e. An EATCS Series. Springer

Verlag, 2004. http://www.labri.fr/Perso/~
asteran/CoqArt/index.html.

8. Mar
 Bezem, Dimitri Hendriks, and Hans de Nivelle. Automated proof
onstru
tion

in type theory using resolution. J. Autom. Reasoning, 29(3-4):253�275, 2002.

9. Th. Coquand and G. Huet. The Cal
ulus of Constru
tions. Information and

Computation, 76(2/3), 1988.

10. Pierre Corbineau. First-order reasoning in the Cal
ulus of Indu
tive Constru
tions.

In TYPES 2003 : Types for Proofs and Programs, volume 3085 of LNCS, pages

162�177. Springer-Verlag, 2004.

11. Cristina Cornes and Delphine Terrasse. Automating Inversion of Indu
tive Pred-

i
ates in Coq. In Types for Proofs and Programs (TYPES'95), volume 1158 of

Le
ture Notes in Computer S
ien
e, pages 85�104. Springer-Verlag, 1996.

12. Damien Doligez. The Zenon prover. Distributed with the Fo
al Proje
t at http:

//fo
al.inria.fr/.

13. J.-C. Filliâtre. The Why veri�
ation tool. http://why.lri.fr/.

14. J.-C. Filliâtre, S. Owre, H. Rueÿ, and N. Shankar. ICS: Integrated Canonization

and Solving (Tool presentation). In G. Berry, H. Comon, and A. Finkel, editors,

Pro
eedings of CAV'2001, volume 2102 of Le
ture Notes in Computer S
ien
e,

pages 246�249, 2001.

15. John Harrison. First Order Logi
 in Pra
ti
e. In International Workshop on First-

Order Theorem Proving (FTP'97), Linz (Austria), 1997.

16. Joe Hurd. Integrating Gandalf and HOL. In International Conferen
e on Theorem

Proving in Higher Order Logi
s (TPHOLs'99), LNCS. Springer-Verlag, 1999.

17. Joe Hurd. An LCF-Style Interfa
e between HOL and First-Order Logi
. In CADE-

18: Pro
eedings of the 18th International Conferen
e on Automated Dedu
tion,

pages 134�138, London, UK, 2002. Springer-Verlag.

18. Jia Meng, Claire Quigley, and L. C. Paulson. Automation for Intera
tive Proof:

First Prototype. Information and Computation, 2005. In press.

19. Christine Paulin-Mohring. Indu
tive de�nitions in the system COQ. In Typed

Lambda Cal
uli and Appli
ations, volume 664 of Le
ture Notes in Computer S
i-

en
e, pages 328�345. Springer-Verlag, 1993.

20. William Pugh. The Omega Test: a fast and pra
ti
al integer programming al-

gorithm for dependen
e analysis. Communi
ations of the ACM, 35(8):102�114,

August 1992.

21. Silvio Ranise and David Déharbe. The haRVey de
ision pro
edure. http://www.

loria.fr/~ranise/haRVey/.

22. Silvio Ranise and Cesare Tinelli. The SMT-LIB Format: An Initial Proposal. In

PDPAR'03, July 2003. http://goedel.
s.uiowa.edu/smtlib/.

23. Stephan S
hmitt, Lori Lorigo, Christoph Kreitz, and Aleksey Nogin. JProver:

Integrating Conne
tion-Based Theorem Proving into Intera
tive Proof Assistants.

Le
ture Notes in Computer S
ien
e, 2083:421+, 2001.

24. Geo� Stut
li�e and Christian Suttner. The TPTP problem library: CNF Release

v1.2.1. Journal of Automated Reasoning, 21(2):177�203, 1998.

A Polymorphi
 First-Order Logi

Types (τ), terms (t) and predi
ates (P) are built a

ording to the following

grammars

τ ::= α | s[τ, . . . , τ]
t ::= x | f(t, . . . , t)

P ::= p(t, . . . , t)
| ⊤ | ⊥ | P ∧ P | P ∨ P | ¬P | P ⇒ P
| ∀x : τ. P | ∃x : τ. P

A theory Σ is a �nite list of de
larations δ where

δ ::= type s[n] | x : τ | fun f : ∀α. τ, . . . , τ → τ
| pred p : ∀α. τ, . . . , τ | axiom ∀α. P

Well-formed types (Σ ⊢ τ wf):

Σ ⊢ α wf
(Ty1)

type s[n] ∈ Σ ∀i, Σ ⊢ τi wf

Σ ⊢ s[τ1, . . . , τn] wf
(Ty2)

Well-typed terms (Σ ⊢ t : τ):

x : τ ∈ Σ

Σ ⊢ x : τ
(T1)

fun f : ∀α. τ1, . . . , τn → τ ∈ Σ

Subst(σ, Σ) ∀i, Σ ⊢ ti : σ(τi)

Σ ⊢ f(t1, . . . , tn) : σ(τ)
(T2)

where σ is a mapping from type variables to types, naturally extended to

types with σ(s[τ1, . . . , τn]) = s[σ(τ1), . . . , σ(τn)]. We write Subst(σ, Σ) when-
ever Σ ⊢ σ(α) wf holds for any type variable α.

Well-typed predi
ates (Σ ⊢ P wf):

pred p : ∀α. τ1, . . . , τn ∈ Σ Subst(σ, Σ) ∀i, Σ ⊢ ti : σ(τi)

Σ ⊢ p(t1, . . . , tn) wf
(P1)

Σ ⊢ ⊤ wf
(P2)

Σ ⊢ ⊥ wf
(P3)

Σ ⊢ P1 wf Σ ⊢ P2 wf

Σ ⊢ P1 ∧ P2 wf
(P4)

Σ ⊢ P1 wf Σ ⊢ P2 wf

Σ ⊢ P1 ∨ P2 wf
(P5)

Σ ⊢ P wf

Σ ⊢ ¬P wf
(P6)

Σ ⊢ P1 wf Σ ⊢ P2 wf

Σ ⊢ P1 ⇒ P2 wf
(P7)

Σ, x : τ ⊢ P wf

Σ ⊢ ∀x : τ. P wf
(P8)

Σ, x : τ ⊢ P wf

Σ ⊢ ∃x : τ. P wf
(P8)

Well-formed theories (⊢ Σ wf):

⊢ ∅ wf
(Th1)

type s 6∈ Σ

⊢ Σ, type s[n] wf
(Th2)

x 6∈ Σ Σ ⊢ τ wf

⊢ Σ, x : τ wf
(Th3)

fun f 6∈ Σ ∀i, Σ ⊢ τi wf

⊢ Σ, fun f : ∀α. τ1, . . . , τn → τn+1 wf
(Th4)

pred p 6∈ Σ ∀i, Σ ⊢ τi wf

⊢ Σ, pred p : ∀α. τ1, . . . , τn wf
(Th5)

Σ ⊢ P wf

⊢ Σ, axiom ∀α. P wf
(Th6)

Natural dedu
tion rules (Σ |= P). For the sake of
larity, we write Σ, P for

Σ, axiom P in the following. A substitution σ over from type variables to types

in extended to terms and predi
ates in the obvious way. We write P [t/x] for the
substitution of all the o

urren
es of a free variable x in P by a term t.

axiom ∀α. P ∈ Σ Subst(σ, Σ)

Σ |= σ(P)
(Ax)

Σ |= Q Σ, Q |= P

Σ |= P
(Cut)

Σ |= ⊤
(True)

Σ |= ⊥ Σ ⊢ P wf

Σ |= P
(False)

Σ ⊢ P wf

Σ |= P ∨ ¬P
(EM)

Σ |= P Σ |= Q

Σ |= P ∧ Q
(And1)

Σ |= P ∧ Q

Σ |= P
(And2)

Σ |= P ∧ Q

Σ |= Q
(And3)

Σ |= P Σ ⊢ Q wf

Σ |= P ∨ Q
(Or1)

Σ |= Q Σ ⊢ P wf

Σ |= P ∨ Q
(Or2)

Σ |= P ∨ Q Σ, P |= R Σ, Q |= R

Σ |= R
(Or3)

Σ ⊢ P wf Σ, P |= ⊥

Σ |= ¬P
(Not1)

Σ |= P Σ |= ¬P

Σ |= ⊥
(Not2)

Σ ⊢ P wf Σ, P |= Q

Σ |= P ⇒ Q
(Imp1)

Σ |= P ⇒ Q Σ |= P

Σ |= Q
(Imp2)

x 6∈ Σ Σ ⊢ τ wf Σ, x : τ |= P

Σ |= ∀x : τ. P
(Forall1)

Σ |= ∀x : τ. P Σ ⊢ t : τ

Σ |= P [t/x]
(Forall2)

Σ ⊢ t : τ x 6∈ Σ Σ |= P [t/x]

Σ |= ∃x : τ. P
(Exists1)

Σ |= ∃x : τ. P x 6∈ Σ Σ, x : τ, P |= Q

Σ |= Q
(Exists2)

Dedu
tion rules for equality:

Σ ⊢ t : τ

Σ |= t = t
(Eq1)

Σ |= x = y Σ, z : τ ⊢ P wf Σ |= P [x/z]

Σ |= P [y/z]
(Eq2)

Arithmeti
: An arithmeti
 proposition P is a proposition built from variables of

type int, integers
onstants, the fun
tions symbols add and sub, the predi
ates

lt, le, gt, ge and the equality. If x1, . . . , xn are the free variables of P , we write

x1, . . . , xn |=A P whenever P is valid (it is de
idable; see for instan
e the Omega

test [20℄). Then we have the following dedu
tion rule for arithmeti
:

x1, . . . , xn |=A P

Σ |= ∀x1 : int ∀xn : int . P
(Arith)

