A Functional Implementation

of the
Garsia—Wachs Algorithm

Jean-Christophe Fillidtre
CNRS
Workshop ML'08
September 21, Victoria, BC, Canada

771 N RIA ‘ M | 3 PARIS-SUD 11

[NFORMATIGUE

7] centre amow
DE LA RECHERCHE

Jean-Christophe Filliatre The Garsia—Wachs Algorithm

Save Endo

IIIPIPIIPCIIIPFFFFFPITIIPFFFFFPIITIPCCCCCPIIIPIIIIIPIII. ..

Jean-Christophe Filliatre The Garsia—Wachs Algorithm ML'08 2 /20

an opportunity to (re)discover ropes, a data structure for long strings

0&6 Hans-Juergen Boehm, Russell R. Atkinson, and Michael F. Plass

@2 Ropes: An alternative to strings
Software - Practice and Experience, 25(12):1315-1330, 1995

type t =
| Str of string
| App of t X t

Jean-Christophe Filliatre The Garsia—Wachs Algorithm

Balancing Ropes

access time to character i now proportional to the depth of its leaf
= when height increases, access becomes costly

as binary search trees, ropes can be balanced
an on-demand rebalancing algorithm is proposed in the original paper

question: can we rebalance ropes in an optimal way,
i.e. with minimal mean time access to characters?

Jean-Christophe Filliatre The Garsia—Wachs Algorithm

The Abstract Problem

given values Xp, ..., X, together with nonnegative weights wy, ..., wp,
build a binary tree which minimizes

> w; x depth(X))
i=0

and which has leaves Xj, ..., X, in inorder

Jean-Christophe Filliatre

The Garsia—Wachs Algorithm

One Solution: The Garsia—Wachs Algorithm

Adriano M. Garsia and Michelle L. Wachs
A new algorithm for minimum cost binary trees
SIAM Journal on Computing, 6(4):622-642, 1977

not widely known

described in
Donald E. Knuth
The Art of Computer Programming
Optimum binary search trees (Vol. 3, Sec. 6.2.2)

Jean-Christophe Filliatre

The Garsia—Wachs Algorithm

ML'08 6 /20

The Algorithm

three steps
@ build a binary of optimum cost, but with leaf nodes in disorder
@ traverse it to compute the depth of each leaf X;

© build a new binary tree where leaves have these depths
and are in inorder Xp, ..., X,

example : A 3; B,2; C,1;, D,4; E,5

Jean-Christophe Filliatre The Garsia—Wachs Algorithm

similar to Huffman’s algorithm : works on a list of weighted trees, started
with X, wo, . .., Xn, Wy, and group trees two by two, until only one is left

@ determine the smallest i such that weight(t;_1) < weight(t; ;1)

@3 B, ©; @,4 ®s5 -2

Jean-Christophe Filliatre The Garsia—Wachs Algorithm

similar to Huffman’s algorithm : works on a list of weighted trees, started
with Xp, wo, ..., X, w,, and group trees two by two, until only one is left

@ determine the smallest i such that weight(t;—1) < weight(ti ;1)
@ link ti_1 and t;, with weight w = weight(t;_1) + weight(t;)

@,3 @,4 @,5 t= O
® ©

Jean-Christophe Filliatre The Garsia—Wachs Algorithm

similar to Huffman’s algorithm : works on a list of weighted trees, started
with Xp, wo, ..., X, w,, and group trees two by two, until only one is left

@ determine the smallest i such that weight(t;—1) < weight(ti ;1)
@ link ti_1 and t;, with weight w = weight(t;_1) + weight(t;)
e insert t after t;_; such that j </ and weight(tj_1) > w

@,3 () .3 @,4 @,5
® ©

Jean-Christophe Filliatre The Garsia—Wachs Algorithm ML'08 8 /20

similar to Huffman’s algorithm : works on a list of weighted trees, started
with Xp, wo, ..., X,, w,, and group trees two by two, until only one is left

o determine the smallest i such that weight(t;_1) < weight(t;+1)
@ link t;_1 and t;, with weight w = weight(t;_1) + weight(t;)
e insert t after t;_; such that j </ and weight(tj_1) > w

R 6 @4 B
ol

Jean-Christophe Filliatre The Garsia—Wachs Algorithm

similar to Huffman’s algorithm : works on a list of weighted trees, started
with Xp, wo, ..., X,, w,, and group trees two by two, until only one is left

o determine the smallest i such that weight(t;_1) < weight(t;+1)
@ link t;_1 and t;, with weight w = weight(t;_1) + weight(t;)
e insert t after t;_; such that j </ and weight(tj_1) > w

() ,9 ® .6
D® @ R
® ©

Jean-Christophe Filliatre The Garsia—Wachs Algorithm

similar to Huffman’s algorithm : works on a list of weighted trees, started
with X, wo, . .., Xp, Wy, and group trees two by two, until only one is left

o determine the smallest i such that weight(t;—1) < weight(t; ;1)
@ link tj_1 and t;, with weight w = weight(t;_1) + weight(t;)
e insert t after tj_; such that j < i and weight(tj_1) > w

Jean-Christophe Filliatre The Garsia—Wachs Algorithm ML'08 8 /20

Steps 2 and 3

we now have to build a binary tree with leaf nodes in inorder
AB,C,D E

with depths (in that order)
2,3,3,2,2

a result ensures that such a tree exists

a nice programming exercise!

Jean-Christophe Filliatre The Garsia—Wachs Algorithm

ML Implementation

type « tree =
| Leaf of «
| Node of « tree x « tree

val garsia_wachs : (a x int) list — « tree

Jean-Christophe Filliatre The Garsia—Wachs Algorithm

ML Implementation (step 1)

val phasel : (« tree x int) list — « tree
we navigate in the list of weighted tree using a zipper

a zipper for a list is a pair of lists: the elements before the position (in
revsere order) and the elements after

let phasel | =
let rec extract before after = ...
and insert after t before = ... in
extract [] |

Jean-Christophe Filliatre The Garsia—Wachs Algorithm ML'08 11 /20

ML Implementation (step 1)

let rec extract before = function
-
assert false
] -
t
| [tl,wl; t2,w2] —
insert [] (Node (t1, t2), wl + w2) before
| (t1, wl) :: (t2, w2) @@ ((-, w3) :: _ as after)
when wl < w3 —
insert after (Node (t1, t2), wl 4+ w2) before
el i r—
extract (el :: before) r

Jean-Christophe Filliatre The Garsia—Wachs Algorithm

ML Implementation (step 1)

and insert after ((_,wt) as t) = function
-
extract [| (t :: after)
| (o, wj_1) as tj_1 :: before when wj_1 > wt —
begin match before with
-
extract [| (tj_1 :: t :: after)
| tj-2 :: before —
extract before (tj-2 :: tj_-1 :: t :: after)
end
| tj :: before —
insert (tj :: after) t before

Jean-Christophe Filliatre The Garsia—Wachs Algorithm ML'08 13 /20

ML Implementation (step 2)

to retrieve depths easily, we associate a reference to each leaf

let garsia_wachs | =
let | = List.map (fun (x, wx) — Leaf (x, ref 0), wx) | in
let t = phasel | in

then it is easy to set the depths after step 1, using

let rec mark d = function
| Leaf (|, dx) — dx :=d
| Node (I, r) — mark (d + 1) I; mark (d + 1) r

Jean-Christophe Filliatre The Garsia—Wachs Algorithm

Sharing References

Jean-Christophe Filliatre The Garsia—Wachs Algorithm ML'08 15 / 20

ML Implementation (step 3)

we build the tree from the list of its leaf nodes together with their depths
elegant solution due to R. Tarjan

let rec build d = function

0] (Node .,) = —
assert false

| (Leaf (x, dx),) :: r when ldx =d —
Leaf x, r

=
let left,| = build (d+1) | in
let right,| = build (d+1) I in
Node (left, right), |

Jean-Christophe Filliatre

The Garsia—Wachs Algorithm

ML'08 16 / 20

Putting All Together

let garsia_wachs | =
let | = List.map (fun (x, wx) — Leaf (x, ref 0), wx) | in
let t = phasel | in
mark 0 t;
let t, [] = build 0 Iin
t

17 / 20

The Garsia—Wachs Algorithm ML'08

Jean-Christophe Filliatre

Comparison with a C Implementation

the presentation of the Garsia—Wachs algorithm in TAOCP has a
companion C code

this C code
@ has time complexity O(n?), as our code

@ uses statically allocated arrays and has space complexity O(n)

@ is longer and more complex than our code

Jean-Christophe Filliatre The Garsia—Wachs Algorithm

for a fair comparison, the C program has been hand-translated to Ocaml

timings for 500 runs on randomly selected weights

n “C" | Ocaml
100 | 0.61 0.59
200 | 0.68 0.68
300 | 0.72 0.82
400 | 0.77 0.91
500 | 0.83 1.03

note: in the ICFP 2007 contest, the average size of ropes is 97 nodes (over
millions of ropes)

Jean-Christophe Filliatre The Garsia—Wachs Algorithm ML'08 19 / 20

Conclusion

the Garsia—Wachs algorithm definitely needs a wider place in literature

from the point of view of functional programming
@ no harm in being slightly impure from time to time

@ especially when side-effects are purely local

Jean-Christophe Filliatre The Garsia—Wachs Algorithm ML'08 20 / 20

