A Functional Implementation of the Garsia–Wachs Algorithm

Jean-Christophe Filliâtre

CNRS

Workshop ML'08 September 21, Victoria, BC, Canada

INSTITUT NATION DE RECHERC EN INFORMATION ET EN AUTOMATION

centre de recherche SACLAY - ÎLE-DE-FRANCE

Save Endo

an opportunity to (re)discover ropes, a data structure for long strings

Hans-Juergen Boehm, Russell R. Atkinson, and Michael F. Plass *Ropes: An alternative to strings* Software - Practice and Experience, 25(12):1315–1330, 1995

access time to character *i* now proportional to the depth of its leaf \Rightarrow when height increases, access becomes costly

as binary search trees, ropes can be balanced an on-demand rebalancing algorithm is proposed in the original paper

question: can we rebalance ropes in an **optimal** way, *i.e.* with minimal mean time access to characters?

given values X_0, \ldots, X_n together with nonnegative weights w_0, \ldots, w_n , build a binary tree which **minimizes**

$$\sum_{i=0}^{n} w_i \times \operatorname{depth}(X_i)$$

and which has leaves X_0, \ldots, X_n in inorder

Adriano M. Garsia and Michelle L. Wachs A new algorithm for minimum cost binary trees SIAM Journal on Computing, 6(4):622–642, 1977

not widely known

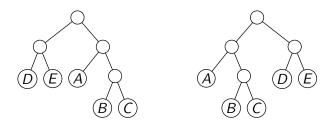
described in

Donald E. Knuth The Art of Computer Programming Optimum binary search trees (Vol. 3, Sec. 6.2.2)

three steps

- build a binary of optimum cost, but with leaf nodes in disorder
- Itraverse it to compute the depth of each leaf X_i
- Solution build a new binary tree where leaves have these depths and are in inorder X₀,..., X_n

example : A, 3; B, 2; C, 1; D, 4; E, 5



• determine the smallest *i* such that $weight(t_{i-1}) \leq weight(t_{i+1})$

• link t_{i-1} and t_i , with weight $w = weight(t_{i-1}) + weight(t_i)$

• insert t after t_{j-1} such that j < i and $weight(t_{j-1}) \ge w$

$(\widehat{A})_{,3}$ $(\widehat{B})_{,2}$ $(\widehat{C})_{,1}$ $(\widehat{D})_{,4}$ $(\widehat{E})_{,5}$ i=2

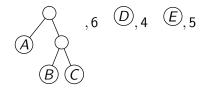
- determine the smallest *i* such that $weight(t_{i-1}) \leq weight(t_{i+1})$
- link t_{i-1} and t_i , with weight $w = weight(t_{i-1}) + weight(t_i)$
- insert t after t_{j-1} such that j < i and $weight(t_{j-1}) \ge w$

$$(\widehat{A}), 3$$
 $(\widehat{D}), 4$ $(\widehat{E}), 5$ $t =$

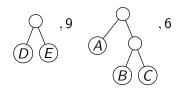
- determine the smallest *i* such that $weight(t_{i-1}) \leq weight(t_{i+1})$
- link t_{i-1} and t_i , with weight $w = weight(t_{i-1}) + weight(t_i)$
- insert t after t_{j-1} such that j < i and $weight(t_{j-1}) \ge w$

$$(\widehat{A})_{,3} \xrightarrow[B]{C},3 (\widehat{D})_{,4} (\widehat{E})_{,5}$$

- determine the smallest *i* such that $weight(t_{i-1}) \leq weight(t_{i+1})$
- link t_{i-1} and t_i , with weight $w = weight(t_{i-1}) + weight(t_i)$
- insert t after t_{j-1} such that j < i and $weight(t_{j-1}) \ge w$

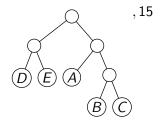


- determine the smallest *i* such that $weight(t_{i-1}) \leq weight(t_{i+1})$
- link t_{i-1} and t_i , with weight $w = weight(t_{i-1}) + weight(t_i)$
- insert t after t_{j-1} such that j < i and $weight(t_{j-1}) \ge w$



Step 1

- determine the smallest *i* such that $weight(t_{i-1}) \leq weight(t_{i+1})$
- link t_{i-1} and t_i , with weight $w = weight(t_{i-1}) + weight(t_i)$
- insert t after t_{j-1} such that j < i and $weight(t_{j-1}) \ge w$



we now have to build a binary tree with leaf nodes in inorder

A, B, C, D, E

with depths (in that order)

2, 3, 3, 2, 2

a result ensures that such a tree exists

a nice programming exercise!

```
type \alpha tree =
| Leaf of \alpha
| Node of \alpha tree \times \alpha tree
```

val garsia_wachs : $(\alpha \times int)$ list $\rightarrow \alpha$ tree

```
val phase1 : (\alpha tree \times int) list \rightarrow \alpha tree
```

we navigate in the list of weighted tree using a zipper

a zipper for a list is a **pair of lists**: the elements **before** the position (in revsere order) and the elements **after**

```
let phase1 l =
    let rec extract before after = ...
    and insert after t before = ... in
    extract [] l
```

```
let rec extract before = function
  |[] \rightarrow
        assert false
  |[t,]] \rightarrow
        t
  | [t1,w1; t2,w2] \rightarrow
        insert [] (Node (t1, t2), w1 + w2) before
  | (t1, w1) :: (t2, w2) :: ((_, w3) :: _ as after)
     when w1 < w3 \rightarrow
        insert after (Node (t1, t2), w1 + w2) before
  | e1 :: r \rightarrow
        extract (e1 :: before) r
```

```
and insert after ((\_,wt) as t) = function
  |[] \rightarrow
        extract [] (t :: after)
  | (_, wj_1) as tj_1 :: before when wj_1 \geq wt \rightarrow
        begin match before with
           | [] \rightarrow
                extract [] (tj_1 :: t :: after)
           | tj_2 :: before \rightarrow
               extract before (tj_2 :: tj_1 :: t :: after)
        end
   | ti :: before \rightarrow
        insert (tj :: after) t before
```

to retrieve depths easily, we associate a reference to each leaf

```
let garsia_wachs I =
let I = List.map (fun (x, wx) \rightarrow Leaf (x, ref 0), wx) I in
let t = phase1 I in
...
```

then it is easy to set the depths after step 1, using

```
\begin{array}{l} \mbox{let rec mark } d = \mbox{function} \\ | \mbox{ Leaf } (\_, \mbox{ dx}) \rightarrow \mbox{dx} := \mbox{d} \\ | \mbox{ Node } (\mbox{I}, \mbox{r}) \rightarrow \mbox{mark } (\mbox{d} + 1) \mbox{ I; mark } (\mbox{d} + 1) \mbox{ r} \end{array}
```

Sharing References



we build the tree from the list of its leaf nodes together with their depths

```
elegant solution due to R. Tarjan
```

```
let rec build d = function

| [] | (Node _, _) :: _ \rightarrow

assert false

| (Leaf (x, dx), _) :: r when !dx = d \rightarrow

Leaf x, r

| | \rightarrow

let left,l = build (d+1) | in

let right,l = build (d+1) | in

Node (left, right), |
```

```
\begin{array}{l} \mbox{let garsia\_wachs I} = \\ \mbox{let I} = List.map (fun (x, wx) \rightarrow Leaf (x, ref 0), wx) I in \\ \mbox{let t} = phase1 I in \\ \mbox{mark 0 t;} \\ \mbox{let t, []} = build 0 I in \\ \mbox{t} \end{array}
```

the presentation of the Garsia–Wachs algorithm in TAOCP has a companion C code

this C code

- has time complexity $O(n^2)$, as our code
- uses statically allocated arrays and has space complexity O(n)
- is longer and more complex than our code

for a fair comparison, the C program has been hand-translated to Ocaml

timings for 500 runs on randomly selected weights

n	"C"	Ocaml
100	0.61	0.59
200	0.68	0.68
300	0.72	0.82
400	0.77	0.91
500	0.83	1.03

note: in the ICFP 2007 contest, the average size of ropes is 97 nodes (over millions of ropes)

the Garsia-Wachs algorithm definitely needs a wider place in literature

from the point of view of functional programming

- no harm in being slightly impure from time to time
- especially when side-effects are purely local