
A Functional Implementation
of the

Garsia–Wachs Algorithm

Jean-Christophe Filliâtre

CNRS

Workshop ML’08
September 21, Victoria, BC, Canada

Jean-Christophe Filliâtre The Garsia–Wachs Algorithm ML’08 1 / 20

Save Endo

IIIPIPIIPCIIIPFFFFFPIIIPFFFFFPIIIPCCCCCPIIIPIIIIIPIII...

Jean-Christophe Filliâtre The Garsia–Wachs Algorithm ML’08 2 / 20

Ropes

an opportunity to (re)discover ropes, a data structure for long strings

Hans-Juergen Boehm, Russell R. Atkinson, and Michael F. Plass
Ropes: An alternative to strings
Software - Practice and Experience, 25(12):1315–1330, 1995

type t =
| Str of string
| App of t × t

ICFP

FP IIIC

ICPPC

Jean-Christophe Filliâtre The Garsia–Wachs Algorithm ML’08 3 / 20

Balancing Ropes

access time to character i now proportional to the depth of its leaf
⇒ when height increases, access becomes costly

as binary search trees, ropes can be balanced
an on-demand rebalancing algorithm is proposed in the original paper

question: can we rebalance ropes in an optimal way,
i.e. with minimal mean time access to characters?

Jean-Christophe Filliâtre The Garsia–Wachs Algorithm ML’08 4 / 20

The Abstract Problem

given values X0, . . . ,Xn together with nonnegative weights w0, . . . ,wn,
build a binary tree which minimizes

n∑
i=0

wi × depth(Xi)

and which has leaves X0, . . . ,Xn in inorder

Jean-Christophe Filliâtre The Garsia–Wachs Algorithm ML’08 5 / 20

One Solution: The Garsia–Wachs Algorithm

Adriano M. Garsia and Michelle L. Wachs
A new algorithm for minimum cost binary trees
SIAM Journal on Computing, 6(4):622–642, 1977

not widely known

described in

Donald E. Knuth
The Art of Computer Programming
Optimum binary search trees (Vol. 3, Sec. 6.2.2)

Jean-Christophe Filliâtre The Garsia–Wachs Algorithm ML’08 6 / 20

The Algorithm

three steps

1 build a binary of optimum cost, but with leaf nodes in disorder

2 traverse it to compute the depth of each leaf Xi

3 build a new binary tree where leaves have these depths
and are in inorder X0, . . . ,Xn

example : A, 3; B, 2; C , 1; D, 4; E , 5

D E A

B C

A

B C

D E

Jean-Christophe Filliâtre The Garsia–Wachs Algorithm ML’08 7 / 20

Step 1

similar to Huffman’s algorithm : works on a list of weighted trees, started
with X0,w0, . . . ,Xn,wn, and group trees two by two, until only one is left

determine the smallest i such that weight(ti−1) ≤ weight(ti+1)

link ti−1 and ti , with weight w = weight(ti−1) + weight(ti)

insert t after tj−1 such that j < i and weight(tj−1) ≥ w

A , 3 B , 2 C , 1 D , 4 E , 5 i = 2

Jean-Christophe Filliâtre The Garsia–Wachs Algorithm ML’08 8 / 20

Step 1

similar to Huffman’s algorithm : works on a list of weighted trees, started
with X0,w0, . . . ,Xn,wn, and group trees two by two, until only one is left

determine the smallest i such that weight(ti−1) ≤ weight(ti+1)

link ti−1 and ti , with weight w = weight(ti−1) + weight(ti)

insert t after tj−1 such that j < i and weight(tj−1) ≥ w

A , 3 D , 4 E , 5 t =

B C

Jean-Christophe Filliâtre The Garsia–Wachs Algorithm ML’08 8 / 20

Step 1

similar to Huffman’s algorithm : works on a list of weighted trees, started
with X0,w0, . . . ,Xn,wn, and group trees two by two, until only one is left

determine the smallest i such that weight(ti−1) ≤ weight(ti+1)

link ti−1 and ti , with weight w = weight(ti−1) + weight(ti)

insert t after tj−1 such that j < i and weight(tj−1) ≥ w

A , 3

B C

, 3 D , 4 E , 5

Jean-Christophe Filliâtre The Garsia–Wachs Algorithm ML’08 8 / 20

Step 1

similar to Huffman’s algorithm : works on a list of weighted trees, started
with X0,w0, . . . ,Xn,wn, and group trees two by two, until only one is left

determine the smallest i such that weight(ti−1) ≤ weight(ti+1)

link ti−1 and ti , with weight w = weight(ti−1) + weight(ti)

insert t after tj−1 such that j < i and weight(tj−1) ≥ w

A

B C

, 6 D , 4 E , 5

Jean-Christophe Filliâtre The Garsia–Wachs Algorithm ML’08 8 / 20

Step 1

similar to Huffman’s algorithm : works on a list of weighted trees, started
with X0,w0, . . . ,Xn,wn, and group trees two by two, until only one is left

determine the smallest i such that weight(ti−1) ≤ weight(ti+1)

link ti−1 and ti , with weight w = weight(ti−1) + weight(ti)

insert t after tj−1 such that j < i and weight(tj−1) ≥ w

D E

, 9

A

B C

, 6

Jean-Christophe Filliâtre The Garsia–Wachs Algorithm ML’08 8 / 20

Step 1

similar to Huffman’s algorithm : works on a list of weighted trees, started
with X0,w0, . . . ,Xn,wn, and group trees two by two, until only one is left

determine the smallest i such that weight(ti−1) ≤ weight(ti+1)

link ti−1 and ti , with weight w = weight(ti−1) + weight(ti)

insert t after tj−1 such that j < i and weight(tj−1) ≥ w

D E A

B C

, 15

Jean-Christophe Filliâtre The Garsia–Wachs Algorithm ML’08 8 / 20

Steps 2 and 3

we now have to build a binary tree with leaf nodes in inorder

A,B,C ,D,E

with depths (in that order)
2, 3, 3, 2, 2

a result ensures that such a tree exists

a nice programming exercise!

Jean-Christophe Filliâtre The Garsia–Wachs Algorithm ML’08 9 / 20

ML Implementation

type α tree =
| Leaf of α
| Node of α tree × α tree

val garsia wachs : (α × int) list → α tree

Jean-Christophe Filliâtre The Garsia–Wachs Algorithm ML’08 10 / 20

ML Implementation (step 1)

val phase1 : (α tree × int) list → α tree

we navigate in the list of weighted tree using a zipper

a zipper for a list is a pair of lists: the elements before the position (in
revsere order) and the elements after

let phase1 l =
let rec extract before after = ...
and insert after t before = ... in
extract [] l

Jean-Christophe Filliâtre The Garsia–Wachs Algorithm ML’08 11 / 20

ML Implementation (step 1)

let rec extract before = function
| [] →

assert false
| [t,] →

t
| [t1,w1; t2,w2] →

insert [] (Node (t1, t2), w1 + w2) before
| (t1, w1) : : (t2, w2) : : ((, w3) : : as after)

when w1 ≤ w3 →
insert after (Node (t1, t2), w1 + w2) before

| e1 : : r →
extract (e1 : : before) r

Jean-Christophe Filliâtre The Garsia–Wachs Algorithm ML’08 12 / 20

ML Implementation (step 1)

and insert after ((,wt) as t) = function
| [] →

extract [] (t : : after)
| (, wj 1) as tj 1 : : before when wj 1 ≥ wt →

begin match before with
| [] →

extract [] (tj 1 : : t : : after)
| tj 2 : : before →

extract before (tj 2 : : tj 1 : : t : : after)
end

| tj : : before →
insert (tj : : after) t before

Jean-Christophe Filliâtre The Garsia–Wachs Algorithm ML’08 13 / 20

ML Implementation (step 2)

to retrieve depths easily, we associate a reference to each leaf

let garsia wachs l =
let l = List.map (fun (x, wx) → Leaf (x, ref 0), wx) l in
let t = phase1 l in
...

then it is easy to set the depths after step 1, using

let rec mark d = function
| Leaf (, dx) → dx := d
| Node (l, r) → mark (d + 1) l; mark (d + 1) r

Jean-Christophe Filliâtre The Garsia–Wachs Algorithm ML’08 14 / 20

Sharing References

t

l A, ref 2

B, ref 3

C , ref 3

D, ref 2

E , ref 2

Jean-Christophe Filliâtre The Garsia–Wachs Algorithm ML’08 15 / 20

ML Implementation (step 3)

we build the tree from the list of its leaf nodes together with their depths

elegant solution due to R. Tarjan

let rec build d = function
| [] | (Node ,) : : →

assert false
| (Leaf (x, dx),) : : r when !dx = d →

Leaf x, r
| l →

let left,l = build (d+1) l in
let right,l = build (d+1) l in
Node (left, right), l

Jean-Christophe Filliâtre The Garsia–Wachs Algorithm ML’08 16 / 20

Putting All Together

let garsia wachs l =
let l = List.map (fun (x, wx) → Leaf (x, ref 0), wx) l in
let t = phase1 l in
mark 0 t;
let t, [] = build 0 l in
t

Jean-Christophe Filliâtre The Garsia–Wachs Algorithm ML’08 17 / 20

Comparison with a C Implementation

the presentation of the Garsia–Wachs algorithm in TAOCP has a
companion C code

this C code

has time complexity O(n2), as our code

uses statically allocated arrays and has space complexity O(n)

is longer and more complex than our code

Jean-Christophe Filliâtre The Garsia–Wachs Algorithm ML’08 18 / 20

Benchmarks

for a fair comparison, the C program has been hand-translated to Ocaml

timings for 500 runs on randomly selected weights

n “C” Ocaml

100 0.61 0.59

200 0.68 0.68

300 0.72 0.82

400 0.77 0.91

500 0.83 1.03

note: in the ICFP 2007 contest, the average size of ropes is 97 nodes (over
millions of ropes)

Jean-Christophe Filliâtre The Garsia–Wachs Algorithm ML’08 19 / 20

Conclusion

the Garsia–Wachs algorithm definitely needs a wider place in literature

from the point of view of functional programming

no harm in being slightly impure from time to time

especially when side-effects are purely local

Jean-Christophe Filliâtre The Garsia–Wachs Algorithm ML’08 20 / 20

