Why3
A Multi-Prover Platform for Program Verification

Jean-Christophe Fillidtre
CNRS

joint work with
Andrei Paskevich, Claude Marché, and Francois Bobot

ProVal team, Orsay, France

IFIP WG 1.9/2.14 “Verified Software”
June 2011

e PARIS-SUD 11

Why3 Tutorial: Same Fringe

given two binary trees,
do they contain the same elements when traversed in order?

8 4
{0 Ty
N /7 \ /N
1 5 3 5
/ \ 4/\ /N / \

/ N\

Why3 Tutorial: Sparse Arrays

from VACID-0 (Rustan Leino and Michat Moskal)

Why3 — Where Programs Meet Provers

file.mlw

l WhyML
file.why VCgen

/-

transform/translate

prlnt/run

//\\

Coq Alt-Ergo Gappa etc.

A Little Bit of History

Why started 10 years ago

initially, as a Hoare-logic language, with Coq/PVS backends

evolutions
» logic: polymorphism, algebraic datatypes
» programming language: polymorphism, exceptions

» backend: more and more provers, more and more code

complete rewrite, started one year ago: Why3

Why3: Architecture

Why3: Architecture

Why3: Architecture

P

L
E-E"E
f

o

Why3: Architecture

P

K
| =-E"E"B
f

o

~

J

Why3: Architecture

e

'\
[gﬁgﬂgzg_
2

~

Alt-Ergo

e

— Z3

S\

- J

Vampire

Why3: Architecture

~
K /;It—Ergo
[_’—E—ﬁ » 73
%
) \\‘/ampire

Why3: Ocaml API and Plugins

Your code

Why3 API

/

E

~

P\
e EBE
%

o

J

Why3: Ocaml API and Plugins

Your code

Why3 AP

/RNhyML

TPTP

etc.

E

S

K
e EBE
N

~

J

Why3: Ocaml API and Plugins

Your code

~

Why3 API

R WhyML /K h Simplify\
TPTP -Alt—Ergo
etc [_’*_’
bl |
etc.

- J

Why3: Ocaml API and Plugins

Your code

Why3 API

[WhyML

etc.

~

X
E-E 88
%

h Simplify

\ J
eliminate encode etc.
algebraic | | polymorphism

Alt-Ergo

iy

SMT-lib

etc.

Why3: Logic

first-order polymorphic logic

v

(mutually) (recursive) algebraic types
(mutually) (recursive) functions and predicates

(mutually) inductive predicates

v vy

axioms / lemmas / goals

organized in theories
» a theory may use another theory (sharing)

» a theory may clone another theory (copy + substitution)

Demo: Einstein's Puzzle

simple logical puzzle formalized by Stéphane Lescuyer

highlights
> enumeration types

» cloning of theories

Why3: A Programming Language

WhyML
» first-order ML
» embeds logical terms
> annotations (pre/post/assert/loop invariants)
» WP calculus

» a notion of modules, analogous to theories

currently used
» as a VCG intermediate language

» to verify small but challenging programs
(VSTTE'10, VACID-0, etc.)

Demo: N-Queens

classical combinatorial problem

W

g

g

D3

D3

highlights
» recursive functions
> exceptions
» why3ide

Perspectives

Why3
» higher-order logic

» Coq plugin to call external provers

WhyML

» ghost code
Ocaml code extraction
verified Ocaml libraries
data invariants

clone for modules

vV v v v .Y

higher-order programs

