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Why3 Tutorial: Same Fringe

given two binary trees,
do they contain the same elements when traversed in order?
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Why3 Tutorial: Sparse Arrays

from VACID-0 (Rustan Leino and Michat Moskal)



Why3 — Where Programs Meet Provers
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A Little Bit of History

Why started 10 years ago

initially, as a Hoare-logic language, with Coq/PVS backends

evolutions
» logic: polymorphism, algebraic datatypes
» programming language: polymorphism, exceptions

» backend: more and more provers, more and more code

complete rewrite, started one year ago: Why3



Why3: Architecture
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Why3: Architecture

e

'\
[gﬁgﬂgzg_
2

~

Alt-Ergo

e

— Z3

S\

- J

Vampire
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Why3: Ocaml API and Plugins

Your code

Why3 API
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Why3: Ocaml API and Plugins

Your code
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Why3: Ocaml API and Plugins

Your code
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Why3: Ocaml API and Plugins

Your code
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Why3: Logic

first-order polymorphic logic

v

(mutually) (recursive) algebraic types
(mutually) (recursive) functions and predicates

(mutually) inductive predicates

v vy

axioms / lemmas / goals

organized in theories
» a theory may use another theory (sharing)

» a theory may clone another theory (copy + substitution)



Demo: Einstein's Puzzle

simple logical puzzle formalized by Stéphane Lescuyer

highlights
> enumeration types

» cloning of theories



Why3: A Programming Language

WhyML
» first-order ML
» embeds logical terms
> annotations (pre/post/assert/loop invariants)
» WP calculus

» a notion of modules, analogous to theories

currently used
» as a VCG intermediate language

» to verify small but challenging programs
(VSTTE'10, VACID-0, etc.)



Demo: N-Queens

classical combinatorial problem
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highlights
» recursive functions
> exceptions
» why3ide




Perspectives

Why3
» higher-order logic

» Coq plugin to call external provers

WhyML

» ghost code
Ocaml code extraction
verified Ocaml libraries
data invariants

clone for modules

vV v v v .Y

higher-order programs



