
Why3
A Multi-Prover Platform for Program Verification

Jean-Christophe Filliâtre
CNRS

joint work with

Andrei Paskevich, Claude Marché, and François Bobot

ProVal team, Orsay, France

IFIP WG 1.9/2.14 “Verified Software”
June 2011



Why3 Tutorial: Same Fringe

given two binary trees,
do they contain the same elements when traversed in order?

8

3

1 5

4

4

1

3

8

5



Why3 Tutorial: Sparse Arrays

from VACID-0 (Rustan Leino and Micha l Moskal)



Why3 – Where Programs Meet Provers

file.why

file.mlw

WhyML

VCgen

Why

transform/translate

print/run

Coq Alt-Ergo Gappa Z3 etc.



A Little Bit of History

Why started 10 years ago

initially, as a Hoare-logic language, with Coq/PVS backends

evolutions

I logic: polymorphism, algebraic datatypes

I programming language: polymorphism, exceptions

I backend: more and more provers, more and more code

complete rewrite, started one year ago: Why3



Why3: Architecture



Why3: Architecture



Why3: Architecture

T1



Why3: Architecture

T1 T2



Why3: Architecture

Alt-Ergo

Z3

Vampire

T1 T2



Why3: Architecture

Alt-Ergo

Z3

Vampire

driver

T1 T2



Why3: Ocaml API and Plugins

Your code

Why3 API



Why3: Ocaml API and Plugins

Your code

Why3 API

WhyML

TPTP

etc.



Why3: Ocaml API and Plugins

Your code

Why3 API

WhyML

TPTP

etc.

Simplify

Alt-Ergo

SMT-lib

etc.



Why3: Ocaml API and Plugins

Your code

Why3 API

WhyML

TPTP

etc.

eliminate
algebraic

encode
polymorphism

etc.

Simplify

Alt-Ergo

SMT-lib

etc.



Why3: Logic

first-order polymorphic logic

I (mutually) (recursive) algebraic types

I (mutually) (recursive) functions and predicates

I (mutually) inductive predicates

I axioms / lemmas / goals

organized in theories

I a theory may use another theory (sharing)

I a theory may clone another theory (copy + substitution)



Demo: Einstein’s Puzzle

simple logical puzzle formalized by Stéphane Lescuyer

highlights

I enumeration types

I cloning of theories



Why3: A Programming Language

WhyML

I first-order ML

I embeds logical terms

I annotations (pre/post/assert/loop invariants)

I WP calculus

I a notion of modules, analogous to theories

currently used

I as a VCG intermediate language

I to verify small but challenging programs
(VSTTE’10, VACID-0, etc.)



Demo: N-Queens

classical combinatorial problem

q

q

q

q

q

q

q

q

highlights

I recursive functions

I exceptions

I why3ide



Perspectives

Why3

I higher-order logic

I Coq plugin to call external provers

WhyML

I ghost code

I Ocaml code extraction

I verified Ocaml libraries

I data invariants

I clone for modules

I higher-order programs


