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Foreword

This is the manual for the Why platform version 3, or Why3 for short. Why3 is a complete
reimplementation [5] of the former Why platform [10] for program verification. Among the
new features are: numerous extensions to the input language, a new architecture for calling
external provers, and a well-designed API, allowing to use Why3 as a software library. An
important emphasis is put on modularity and genericity, giving the end user a possibility
to easily reuse Why3 formalizations or to add support for a new external prover if wanted.

Availability

Why3 project page is http://why3.1ri.fr/. The last distribution is available, in source
format, together with this documentation and several examples.

Why3 is distributed as open source and freely available under the terms of the GNU
LGPL 2.1. See the file LICENSE.

See the file INSTALL for quick installation instructions, and Section 8.1 of this document
for more detailed instructions.

Contact

There is a public mailing list for users’ discussions: http://lists.gforge.inria.fr/
mailman/listinfo/why3-club.

Report any bug to the Why3 Bug Tracking System: https://gforge.inria.fr/
tracker/?7atid=10293&group_id=2990&func=browse.
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Summary of Changes w.r.t. Why 2

The main new features with respect to Why 2.xx are the following.
1. Completely redesigned input syntax for logic declarations

e new syntax for terms and formulas

e enumerated and algebraic data types, pattern matching

e recursive definitions of logic functions and predicates, with termination checking
e inductive definitions of predicates

e declarations are structured in components called "theories", which can be reused
and instantiated
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2. More generic handling of goals and lemmas to prove

e concept of proof task
e generic concept of task transformation

e generic approach for communicating with external provers

3. Source code organized as a library with a documented API, to allow access to Why3
features programmatically.

4. GUI with new features w.r.t. the former GWhy

e session save and restore

prover calls in parallel

splitting, and more generally applying task transformations, on demand

ability to edit proofs for interactive provers (Coq only for the moment) on any
subtask

5. Extensible architecture via plugins

e users can define new transformations

e users can add connections to additional provers
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Chapter 1

Getting Started

1.1 Hello Proofs

The first and basic step in using Why3 is to write a suitable input file. When one wants
to learn a programming language, you start by writing a basic program. Here we start by
writing a file containing a basic set of goals.

Here is our first Why3 file, which is the file examples/hello_proof.why of the distri-
bution.

theory HelloProof "My very first Why3 theory"
goal G1 : true
goal G2 : (true -> false) /\ (true \/ false)
use import int.Int
goal G3: forall x:int. x*x >= 0

end

Any declaration must occur inside a theory, which is in that example called Theo-
ryProof and labelled with a comment inside double quotes. It contains three goals named
G1,G2,Gs. The first two are basic propositional goals, whereas the third involves some
integer arithmetic, and thus it requires to import the theory of integer arithmetic from the
Why3 standard library, which is done by the use declaration above.

We don’t give more details here about the syntax and refer to Chapter 2 for detailed
explanations. In the following, we show how this file is handled in the Why3 GUI (Sec-
tion 1.2) then in batch mode using the why3 executable (Section 1.3).

1.2 Getting Started with the GUI

The graphical interface allows to browse into a file or a set of files, and check the validity
of goals with external provers, in a friendly way. This section presents the basic use of this
GUIL Please refer to Section 8.5 for a more complete description.

The GUI is launched on the file above as follows.

why3ide hello_proof.why
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Figure 1.1: The GUI when started the very first time

When the GUI is started for the first time, you should get a window which looks like the
screenshot of Figure 1.1.

The left column is a tool bar which provides different actions to apply on goals. The
section “Provers” displays the provers that were detected as installed on your computer!.
Three provers were detected, in this case these are Alt-Ergo [6], Coq [3] and Simplify [8].

The middle part is a tree view that allows to browse inside the theories. In this tree
view, we have a structured view of the file: this file contains one theory, itself containg
three goals.

In Figure 1.2, we clicked on the row corresponding to goal GG1. The task associated
with this goal is then displayed on the top right, and the corresponding part of the input
file is shown on the bottom right part.

Calling provers on goals

You are now ready to call these provers on the goals. Whenever you click on a prover
button, this prover is called on the goal selected in the tree view. You can select several
goals at a time, either by using multi-selection (typically by clicking while pressing the
Shift or Ctrl key) or by selecting the parent theory or the parent file. Let us now select the

'Tf not done yet, you must perform prover autodetection using why3config -detect-provers
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» file: examples/hello_prooff../hello_proofwhy

Figure 1.2: The GUI with goal G1 selected

theory “HelloProof” and click on the Simplify button. After a short time, you should get
the display of Figure 1.3.

The goal G is now marked with a green “checked” icon in the status column. This
means that the goal is proved by the Simplify prover. On the contrary, the two other goals
are not proved, they remain marked with an orange question mark.

You can immediately attempt to prove the remaining goals using another prover, e.g.
Alt-Ergo, by clicking on the corresponding button. The goal G5 should be proved now,
but not Gs.

Applying transformations

Instead of calling a prover on a goal, you can apply a transformation to it. Since G3 is a
conjunction, a possibility is to split it into subgoals. You can do that by clicking on the
Split button of section “Transformations” of the left toolbar. Now you have two subgoals,
and you can try again a prover on them, for example Simplify. We already have a lot
of goals and proof attempts, so it is a good idea to close the sub-trees which are already
proved: this can be done by the menu View/Collapse proved goals, or even better by its
shortcut “Ctrl-C”. You should see now what is displayed on Figure 1.4.

The first part of goal Ga is still unproved. As a last resort, we can try to call the Coq
proof assistant. The first step is to click on the Coq button. A new sub-row appear for
Coq, and unsurprisingly the goal is not proved by Coq either. What can be done now
is editing the proof: select that row and then click on the Edit button in section “Tools”
of the toolbar. This should launch the Coq proof editor, which is coqide by default (see
Section 8.5 for details on how to configure this). You get now a regular Coq file to fill in, as
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Figure 1.3: The GUI after Simplify prover is run on each goal
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Figure 1.4: The GUI after splitting goal G2 and collapsing proved goals
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Eile Edit Nawigation TIry Tactics Templates Queries Display Compile Windov
HEHO ¥4 47 0O

vhello_proof HelloProof G2 1w

(* This file is generated by Why3's Coq driver *)
(* Beware! Only edit allowed sections below *)
Require Import ZArith.

Require Import Rbase.

Theorem G2 : False.

(* YOU MAY EDIT THE PROOF BELOW *)

intuition.

Qed.
(* DO NOT EDIT BELOW *)

Figure 1.5: CoqlDE on subgoal 1 of Go

shown on Figure 1.5. Please take care of the comments of this file. Only the part between
the two last comments can be modified. Moreover, these comments themselves should not
be modified at all, they are used to mark the part you modify, in order to regenerate the
file if the goal is changed.

Of course, in that particular case, the goal cannot be proved since it is not valid. The
only thing to do is to fix the input file, as explained below.

Modifying the input

Currently, the GUI does not allow to modify the input file. You must edit the file external
by some editor of your choice. Let’s assume we change the goal G2 by replacing the first
occurrence of true by false, e.g.

goal G2 : (false -> false) /\ (true \/ false)

We can reload the modified file in the IDE using menu File/Reload, or the shortcut “Ctrl-R”.
We get the tree view shown on Figure 1.6.

The important feature to notice first is that all the previous proof attempts and trans-
formations were saved in a database — an XML file created when the Why3 file was opened
in the GUI for the first time. Then, for all the goals that remain unchanged, the previous
proofs are shown again. For the parts that changed, the previous proofs attempts are
shown but marked with "(obsolete)" so that you know the results are not accurate. You
can now retry to prove all what remains unproved using any of the provers.
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Figure 1.6: File reloaded after modifying goal Go

Replaying obsolete proofs

Instead of pushing a prover’s button to rerun its proofs, you can replay the existing but
obsolete proof attempts, by clicking on the Replay button. By default, Replay only replays
proofs that were successful before. If you want to replay all of them, you must select the
context all goals at the top of the left tool bar.

Notice that replaying can be done in batch mode, using the why3replayer tool (see
Section 8.8) For example, running the replayer on the hello_proof example is as follows
(assuming G still is (true -> false) / (true false)).

$ why3replayer hello_proof
Info: found directory ’hello_proof’ for the project
Opening session...[Xml warning] prolog ignored
[Reload] file ’../hello_proof.why’
[Reload] theory ’HelloProof’
[Reload] transformation split_goal for goal G2
done
Progress: 9/9
2/3
+--file ../hello_proof.why: 2/3
+--theory HelloProof: 2/3
+--goal G2 not proved
Everything OK.

The last line tells us that no difference was detected between the current run and the
informations in the XML file. The tree above reminds us that the G2 is not proved.
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Cleaning

You may want to clean some the proof attempts, e.g. removing the unsuccessful ones when
a project is finally fully proved.

A proof or a transformation can be removed by selecting it and clicking on button
Remove. You must confirm the removal. Beware that there is no way to undo such a
removal.

The Clean button performs an automatic removal of all proofs attempts that are un-
successful, while there exists a successful proof attempt for the same goal.

1.3 Getting Started with the Why3 Command

The why3 command allows to check the validity of goals with external provers, in batch
mode. This section presents the basic use of this tool. Refer to Section 8.4 for a more
complete description of this tool and all its command-line options.

The very first time you want to use Why, you should proceed with autodetection of
external provers. We have already seen how to do it in the Why3 GUI. On the command
line, this is done as follows (here “>” is the prompt):

> why3config --detect

This prints some information messages on what detections are attempted. To know which
provers have been successfully detected, you can do as follows.

> why3 --list-provers
Known provers:
alt-ergo (Alt-Ergo)
coq (Coq)
simplify (Simplify)

The first word of each line is a unique identifier for the associated prover. We thus have
now the three provers Alt-Ergo 6], Coq [3] and Simplify [&].

Let’s assume now we want to run Simplify on the HelloProof example. The command
to type and its output are as follows, where the -P option is followed by the unique prover
identifier (as shown by -list-provers option).

> why3 -P simplify hello_proof.why

hello_proof.why HelloProof Gl : Valid (0.10s)
hello_proof.why HelloProof G2 : Unknown: Unknown (0.01s)
hello_proof.why HelloProof G3 : Unknown: Unknown (0.00s)

Unlike Why3 GUI, the command-line tool does not save the proof attempts or applied
transformations in a database.

We can also specify which goal or goals to prove. This is done by giving first a theory
identifier, then goal identifier(s). Here is the way to call Alt-Ergo on goals G5 and G3.

> why3 -P alt-ergo hello_proof.why -T HelloProof -G G2 -G G3
hello_proof.why HelloProof G2 : Unknown: Unknown (0.01s)
hello_proof.why HelloProof G3 : Valid (0.01s)

Finally, a transformation to apply to goals before proving them can be specified. To
know the unique identifier associated to a transformation, do as follows.
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> why3 --list-transforms
Known non-splitting transformations:

[...]

Known splitting transformations:
[...]
split_goal
split_intro

Here is how you can split the goal Gy before calling Simplify on resulting subgoals.

> why3 -P simplify hello_proof.why -a split_goal -T HelloProof -G G2
hello_proof.why HelloProof G2 : Unknown: Unknown (0.00s)
hello_proof.why HelloProof G2 : Valid (0.00s)

Section 8.11 gives the description of the various transformations available.



Chapter 2

The Why3 Language

This chapter describes the input syntax, and informally gives its semantics, illustrated by
examples.

A Why3 text contains a list of theories. A theory is a list of declarations. Declarations
introduce new types, functions and predicates, state axioms, lemmas and goals. These
declarations can be directly written in the theory or taken from existing theories. The
base logic of Why3 is first-order logic with polymorphic types.

Example 1: lists

The Figure 2.1 contains an example of Why3 input text, containing three theories. The
first theory, List, declares a new algebraic type for polymorphic lists, 1ist ’a. Asin ML,
’a stands for a type variable. The type 1ist ’a has two constructors, Nil and Cons. Both
constructors can be used as usual function symbols, respectively of type 1list ’a and ’a
x list ’a — 1list ’a. We deliberately make this theory that short, for reasons which
will be discussed later.

The next theory, Length, introduces the notion of list length. The use import List
command indicates that this new theory may refer to symbols from theory List. These
symbols are accessible in a qualified form, such as List.list or List.Cons. The import
qualifier additionally allows us to use them without qualification.

Similarly, the next command use import int.Int adds to our context the theory
int.Int from the standard library. The prefix int indicates the file in the standard
library containing theory Int. Theories referred to without prefix either appear earlier in
the current file, e.g. List, or are predefined.

The next declaration defines a recursive function, length, which computes the length of
a list. The function and predicate keywords are used to introduce function and predicate
symbols, respectively. Why3 checks every recursive, or mutually recursive, definition for
termination. Basically, we require a lexicographic and structural descent for every recursive
call for some reordering of arguments. Notice that matching must be exhaustive and that
every match expression must be terminated by the end keyword.

Despite using higher-order “curried” syntax, Why3 does not permit partial application:
function and predicate arities must be respected.

The last declaration in theory Length is a lemma stating that the length of a list is
non-negative.

The third theory, Sorted, demonstrates the definition of an inductive predicate. Every
such definition is a list of clauses: universally closed implications where the consequent is
an instance of the defined predicate. Moreover, the defined predicate may only occur in
positive positions in the antecedent. For example, a clause:

17
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theory List
type list ’a = Nil | Comns ’a (list ’a)
end

theory Length
use import List
use import int.Int

function length (1 : list ’a) : int =
match 1 with

| Nil ->0
| Cons _ r -> 1 + length r
end

lemma Length_nonnegative : forall 1l:1list ’a. length 1 >= 0
end

theory Sorted
use import List
use import int.Int

inductive sorted (list int) =

| Sorted_Nil :
sorted Nil

| Sorted_One :
forall x:int. sorted (Cons x Nil)

| Sorted_Two :
forall x y : int, 1 : list int.
X <= y -> sorted (Cons y 1) -> sorted (Cons x (Cons y 1))

end

Figure 2.1: Example of Why3 text.

| Sorted_Bad :
forall x y : int, 1 : list int.
(sorted (Cons y 1) -> y > x) -> sorted (Cons x (Cons y 1))

would not be allowed. This positivity condition assures the logical soundness of an induc-
tive definition.

Note that the type signature of sorted predicate does not include the name of a
parameter (see 1 in the definition of length): it is unused and therefore optional.

Example 1 (continued): lists and abstract orderings

In the previous section we have seen how a theory can reuse the declarations of another
theory, coming either from the same input text or from the library. Another way to
referring to a theory is by “cloning”. A clone declaration constructs a local copy of the
cloned theory, possibly instantiating some of its abstract (i.e. declared but not defined)
symbols.
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theory Order
type t
predicate (=) t t

axiom Le_refl : forall x : t. x <=x

axiom Le_asym : forall xy : t. x <=y >y <=x ->x =y

axiom Le_tramns: forall x y z : t. x <=y ->y <=2 ->x <=2
end

theory SortedGen
use import List
clone import Order as O

inductive sorted (1 : list t) =

| Sorted_Nil :
sorted Nil

| Sorted_One :
forall x:t. sorted (Cons x Nil)

| Sorted_Two :
forall xy : t, 1 : list t.
x <=y -> sorted (Cons y 1) -> sorted (Cons x (Cons y 1))

end

theory SortedIntlist

use import int.Int

clone SortedGen with type 0.t = int, predicate 0.(<=) = (<=)
end

Figure 2.2: Example of Why3 text (continued).

Consider the continued example in Figure 2.2. We write an abstract theory of partial
orders, declaring an abstract type t and an abstract binary predicate <=. Notice that an
infix operation must be enclosed in parentheses when used outside a term. We also specify
three axioms of a partial order.

There is little value in use’ing such a theory: this would constrain us to stay with the
type t. However, we can construct an instance of theory Order for any suitable type and
predicate. Moreover, we can build some further abstract theories using order, and then
instantiate those theories.

Consider theory SortedGen. In the beginning, we use the earlier theory List. Then
we make a simple clone theory Order. This is pretty much equivalent to copy-pasting
every declaration from Order to SortedGen; the only difference is that Why3 traces the
history of cloning and transformations and drivers often make use of it (see Section 8.10).

Notice an important difference between use and clone. If we use a theory, say List,
twice (directly or indirectly: e.g. by making use of both Length and Sorted), there is
no duplication: there is still only one type of lists and a unique pair of constructors. On
the contrary, when we clone a theory, we create a local copy of every cloned declaration,
and the newly created symbols, despite having the same names, are different from their
originals.
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Returning to the example, we finish theory SortedGen with a familiar definition of
predicate sorted; this time we use the abstract order on the values of type t.

Now, we can instantiate theory SortedGen to any ordered type, without having to
retype the definition of sorted. For example, theory SortedIntList makes clone of
SortedGen (i.e. copies its declarations) substituting type int for type 0.t of SortedGen
and the default order on integers for predicate 0. (<=). Why3 will control that the result
of cloning is well-typed.

Several remarks ought to be made here. First of all, why should we clone theory Order
in SortedGen if we make no instantiation? Couldn’t we write use import Order as O
instead? The answer is no, we could not. When cloning a theory, we only can instantiate
the symbols declared locally in this theory, not the symbols imported with use. Therefore,
we create a local copy of Order in SortedGen to be able to instantiate t and (<=) later.

Secondly, when we instantiate an abstract symbol, its declaration is not copied from
the theory being cloned. Thus, we will not create a second declaration of type int in
SortedIntList.

The mechanism of cloning bears some resemblance to modules and functors of ML-
like languages. Unlike those languages, Why3 makes no distinction between modules and
module signatures, modules and functors. Any Why3 theory can be use’d directly or
instantiated in any of its abstract symbols.

The command-line tool why3 (described in Section 1.3), allows us to see the effect of
cloning. If the input file containing our example is called lists.why, we can launch the
following command:

> why3 lists.why -T SortedIntList
to see the resulting theory SortedIntList:

theory SortedIntlist
(* use BuiltIn *)
(* use Int *)
(* use List *)

axiom Le_refl : forall x:int. x <= x

axiom Le_asym : forall x:int, y:int. x <=y >y <=x ->x =y

axiom Le_trans : forall x:int, y:int, z:int. x <=y -> y <= z
-> x <=2z

(* clone Order with type t = int, predicate (=) = (<=),
prop Le_transl = Le_trans, prop Le_asyml = Le_asym,
prop Le_refll = Le_refl *)

inductive sorted (list int) =
| Sorted_Nil : sorted (Nil:list int)
| Sorted_One : forall x:int. sorted (Cons x (Nil:list int))
| Sorted_Two : forall x:int, y:int, 1l:list int. x <= y ->
sorted (Cons y 1) -> sorted (Cons x (Cons y 1))

(* clone SortedGen with type tl = int, predicate sortedl = sorted,
predicate (<=) = (<=), prop Sorted_Twol = Sorted_Two,
prop Sorted_0Onel = Sorted_One, prop Sorted_Nill = Sorted_Nil,
prop Le_trans2 = Le_trans, prop Le_asym2 = Le_asym,
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prop Le_refl2 = Le_refl *)
end

In conclusion, let us briefly explain the concept of namespaces in Why3. Both use and
clone instructions can be used in three forms (the examples below are given for use, the
semantics for clone is the same):

e use List as L — every symbol s of theory List is accessible under the name L. s.
The as L part is optional, if it is omitted, the name of the symbol is List.s.

e use import List as L — every symbol s from List is accessible under the name
L.s. It is also accessible simply as s, but only up to the end of the current namespace,
e.g. the current theory. If the current theory, that is the one making use, is later
used under the name T, the name of the symbol would be T.L.s. (This is why we
could refer directly to the symbols of Order in theory SortedGen, but had to qualify
them with 0. in SortedIntList.) As in the previous case, as L part is optional.

e use export List — every symbol s from List is accessible simply as s. If the
current theory is later used under the name T, the name of the symbol would be T.s.

Why3 allows to open new namespaces explicitly in the text. In particular, the instruc-
tion “clone import Order as 0” can be equivalently written as:

namespace import O
clone export Order
end

However, since Why3 favours short theories over long and complex ones, this feature is
rarely used.

Example 2: Einstein’s problem

We now consider another, slightly more complex example: how to use Why3 to solve a
little puzzle known as “Einstein’s logic problem”!. The problem is stated as follows. Five
persons, of five different nationalities, live in five houses in a row, all painted with different
colors. These five persones own different pets, drink different beverages and smoke different
brands of cigars. We are given the following information:

e The Englishman lives in a red house;

e The Swede has dogs;

The Dane drinks tea;

The green house is on the left of the white one;

The green house’s owner drinks coffee;

The person who smokes Pall Mall has birds;

The yellow house’s owner smokes Dunhill;

e In the house in the center lives someone who drinks milk;

!This Why3 example was contributed by Stéphane Lescuyer.
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e The Norwegian lives in the first house;

e The man who smokes Blends lives next to the one who has cats;

e The man who owns a horse lives next to the one who smokes Dunhills;
e The man who smokes Blue Masters drinks beer;

e The German smokes Prince;

e The Norwegian lives next to the blue house;

e The man who smokes Blends has a neighbour who drinks water.

The question is: what is the nationality of the fish’s owner?

We start by introducing a general-purpose theory defining the notion of bijection, as
two abstract types together with two functions from one to the other and two axioms
stating that these functions are inverse of each other.

theory Bijection
type t
type u

function of t : u
function tou : t

axiom To_of : forall x : t. to (of x)
axiom Of _to : forall y : u. of (to y)
end

1]
o]

]
]

We now start a new theory, Einstein, which will contain all the individuals of the
problem.

theory Einstein "Einstein’s problem"

First we introduce enumeration types for houses, colors, persons, drinks, cigars and pets.

type house Hi | H2 | H3 | H4 | H5
type color Blue | Green | Red | White | Yellow
type person = Dane | Englishman | German | Norwegian | Swede

type drink = Beer | Coffee | Milk | Tea | Water
type cigar = Blend | BlueMaster | Dunhill | PallMall | Prince
type pet = Birds | Cats | Dogs | Fish | Horse

We now express that each house is associated bijectively to a color, by cloning the
Bijection theory appropriately.

clone Bijection as Color with type t = house, type u = color

It introduces two functions, namely Color.of and Color.to, from houses to colors and
colors to houses, respectively, and the two axioms relating them. Similarly, we express
that each house is associated bijectively to a person

clone Bijection as Owner with type t = house, type u = person

and that drinks, cigars and pets are all associated bijectively to persons:
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clone Bijection as Drink with type t = person, type u = drink
clone Bijection as Cigar with type t = person, type u = cigar
clone Bijection as Pet with type t = person, type u = pet

Next we need a way to state that a person lives next to another. We first define a predicate
leftof over two houses.

predicate leftof (hl h2 : house) =
match hl, h2 with

| H1, H2

| H2, H3

| H3, H4

| H4, H5 -> true
| _ -> false
end

Note how we advantageously used pattern matching, with an or-pattern for the four pos-
itive cases and a universal pattern for the remaining 21 cases. It is then immediate to
define a neighbour predicate over two houses, which completes theory Einstein.

predicate rightof (hl h2 : house) =
leftof h2 hil
predicate neighbour (hl h2 : house) =
leftof h1l h2 \/ rightof hl h2
end

The next theory contains the 15 hypotheses. It starts by importing theory Einstein.

theory EinsteinHints "Hints"
use import Einstein

Then each hypothesis is stated in terms of to and of functions. For instance, the hypothesis
“The Englishman lives in a red house” is declared as the following axiom.

axiom Hintl: Color.of (Owner.to Englishman) = Red

And so on for all other hypotheses, up to “The man who smokes Blends has a neighbour
who drinks water”, which completes this theory.

axiom Hint15:
neighbour (Owner.to (Cigar.to Blend)) (Owner.to (Drink.to Water))
end

Finally, we declare the goal in the fourth theory:

theory Problem "Goal of Einstein’s problem"
use import Einstein
use import EinsteinHints

goal G: Pet.to Fish = German
end

and we are ready to use Why3 to discharge this goal with any prover of our choice.






Chapter 3

The Why3ML Programming
Language

This chapter describes the Why3ML programming language. A Why3ML input text con-
tains a list of theories (see chapter 2) and/or modules. Modules extend theories with
programs. Programs can use all types, symbols, and constructs from the logic. They also
provide extra features:

e In a record type declaration, some fields can be declared mutable.

e There are programming constructs with no counterpart in the logic:

mutable field assignment;

sequence;

loops;

exceptions;

local and anonymous functions;
— annotations: pre- and postconditions, assertions, loop invariants.

e A program function can be non-terminating or can be proved to be terminating using
a variant (a term together with a well-founded order relation).

e An abstract program type t can be introduced with a logical model 7: inside pro-
grams, t is abstract, and inside annotations, ¢ is an alias for 7.

Programs are contained in files with suffix .mlw. They are handled by the tool why3ml,
which has a command line similar to why3. For instance

% why3ml myfile.mlw

will display the verification conditions extracted from modules in file myfile.mlw, as a set
of corresponding theories, and

% why3ml -P alt-ergo myfile.mlw

will run the SMT solver Alt-Ergo on these verification conditions. Program files are also
handled by the GUI tool why3ide. See Chapter 8 for more details regarding command
lines.

As an introduction to Why3ML, we use the five problems from the VSTTE 2010 ver-
ification competition [15]. The source code for all these examples is contained in Why3’s
distribution, in sub-directory examples/programs/.

25
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3.1 Problem 1: Sum and Maximum

The first problem is stated as follows:

Given an N-element array of natural numbers, write a program to compute
the sum and the maximum of the elements in the array.

We assume N > 0 and a[i] > 0 for 0 < ¢ < N, as precondition, and we have to prove the
following postcondition:
sum < N X mazx.

In a file max_sum.mlw, we start a new module:
module MaxAndSum

We are obviously needing arithmetic, so we import the corresponding theory, exactly as
we would do within a theory definition:

use import int.Int

We are also going to use references and arrays from Why3ML’s standard library, so we
import the corresponding modules, with a similar declaration:

use import module ref.Ref
use import module array.Array

The additional keyword module means that we are looking for .mlw files from the standard
library (namely ref.mlw and array.mlw here), instead of .why files. Modules Ref and
Array respectively provide a type ref ’a for references and a type array ’a for arrays
(see Chapter 7), together with useful operations and traditional syntax.

We are now in position to define a program function max_sum. A function definition is
introduced with the keyword let. In our case, it introduces a function with two arguments,
an array a and its size n:

let max_sum (a: array int) (n: int) = ...

(There is a function length to get the size of an array but we add this extra parameter n
to stay close to the original problem statement.) The function body is a Hoare triple, that
is a precondition, a program expression, and a postcondition.

let max_sum (a: array int) (n: int) =
{ 0 <= n = length a /\ forall i:int. 0 <= i < n -> a[i] >= 0 }
. expression ...
{ let (sum, max) = result in sum <= n * max }

The precondition expresses that n is non-negative and is equal to the length of a (this
will be needed for verification conditions related to array bound checking), and that all
elements of a are non-negative. The postcondition assumes that the value returned by the
function, denoted result, is a pair of integers, and decomposes it as the pair (sum, max)
to express the required property.

We are now left with the function body itself, that is a code computing the sum and
the maximum of all elements in a. With no surpise, it is as simple as introducing two local
references

ref O in
ref 0 in

let sum
let max
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module MaxAndSum

use import int.Int
use import module ref.Ref
use import module array.Array

let max_sum (a: array int) (n: int) =
{ 0 <= n = length a /\ forall i:int. 0 <= i < n -> a[i] >= 0 }
let sum = ref O in
let max = ref O in
for i =0 ton -1 do
invariant { !'sum <= i * !max }

if 'max < af[i] then max := a[il;
sum := !'sum + al[i]
done;

('sum, !'max)
{ let (sum, max) = result in sum <= n * max }

end

Figure 3.1: Solution for VSTTE’10 competition problem 1.

scanning the array with a for loop, updating max and sum

for i =0 ton -1 do

if 'max < af[i] then max := af[il;
sum := !'sum + al[i]
done;

and finally returning the pair of the values contained in sum and max:
('sum, !'max)

This completes the code for function max_sum. As such, it cannot be proved correct, since
the loop is still lacking a loop invariant. In this case, the loop invariant is as simple as
'sum <= i * !max, since the postcondition only requires to prove sum <= n * max. The
loop invariant is introduced with the keyword invariant, immediately after the keyword
do.

for i =0 ton -1 do
invariant { !sum <= i * !max }

done

There is no need to introduce a variant, as the termination of a for loop is automatically
guaranteed. This completes module MaxAndSum. Figure 3.1 shows the whole code. We can
now proceed to its verification. Running why3ml, or better why3ide, on file max_sum.mlw
will show a single verification condition with name WP_parameter_max_sum. Discharging
this verification condition with an automated theorem prover will not succeed, most likely,
as it involves non-linear arithmetic. Repeated applications of goal splitting and calls to
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SMT solvers (within why3ide) will typically leave a single, unsolved goal, which reduces
to proving the following sequent:

s <ix max, max < ali] - s+ali] < (i+1) x ali].

This is easily discharged using an interactive proof assistant such as Coq, and thus com-
pletes the verification.

3.2 Problem 2: Inverting an Injection
The second problem is stated as follows:

Invert an injective array A on N elements in the subrange from 0 to N — 1,
i.e., the output array B must be such that B[A[i]] = for 0 <i < N.

We may assume that A is surjective and we have to prove that the resulting array is also
injective. The code is immediate, since it is as simple as

for 1 = 0 ton - 1 do bla[i]] <- i done

so it is more a matter of specification and of getting the proof done with as much au-
tomation as possible. In a new file, we start a new module and we import arithmetic and
arrays:

module InvertingAnInjection
use import int.Int
use import module array.Array

It is convenient to introduce predicate definitions for the properties of being injective and
surjective. These are purely logical declarations:

predicate injective (a: array int) (n: int) =
forall i j: int. 0 <= i <n -> 0<=3j <n ->1i<> j->ali] <> alj]

predicate surjective (a: array int) (n: int) =
forall i: int. 0 <= i < n -> exists j: int. (0 <= j < n /\ a[j]l = 1)

It is also convenient to introduce the predicate “being in the subrange from 0 to n — 1

predicate range (a: array int) (n: int) =
forall i: int. 0 <= i < n -> 0 <= al[i] < n

Using these predicates, we can formulate the assumption that any injective array of size n
within the range 0..n — 1 is also surjective:

lemma injective_surjective:
forall a: array int, n: int.
injective a n -> range a n -> surjective a n

We declare it as a lemma rather than as an axiom, since it is actually provable. It requires
induction and can be proved using the Coq proof assistant for instance. Finally we can give
the code a specification, with a loop invariant which simply expresses the values assigned
to array b so far:
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module InvertingAnInjection

use import int.Int
use import module array.Array

predicate injective (a: array int) (n: int) =
forall i j: int. 0 <= i <n -> 0<=3j <n ->1i<> j->ali] <> alj]

predicate surjective (a: array int) (n: int) =
forall i: int. 0 <= i < n -> exists j: int. (0 <= j < n /\ a[j]l = 1)

predicate range (a: array int) (n: int) =
forall i: int. 0 <= i < n -> 0 <= al[i] < n

lemma injective_surjective:
forall a: array int, n: int.
injective a n -> range a n -> surjective a n

let inverting (a: array int) (b: array int) (n: int) =
{ 0 <= n = length a = length b /\ injective a n /\ range a n }
for i =0 ton - 1do
invariant { forall j: int. 0 <= j < i -> blal[jl]l =3 }
blalil] <- 1
done
{ injective b n }

end

Figure 3.2: Solution for VSTTE’10 competition problem 2.

let inverting (a: array int) (b: array int) (n: int) =
{ 0 <= n = length a = length b /\ injective a n /\ range a n }
for i =0 ton - 1do
invariant { forall j: int. 0 <= j < i -> bla[jl] = j %}
blalil] <- i
done
{ injective b n }

Here we chose to have array b as argument; returning a freshly allocated array would be
equally simple. The whole module is given Figure 3.2. The verification conditions for
function inverting are easily discharged automatically, thanks to the lemma.

3.3 Problem 3: Searching a Linked List

The third problem is stated as follows:

Given a linked list representation of a list of integers, find the index of the first
element that is equal to 0.

More precisely, the specification says
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You have to show that the program returns an index ¢ equal to the length of
the list if there is no such element. Otherwise, the i-th element of the list must
be equal to 0, and all the preceding elements must be non-zero.

Since the list is not mutated, we can use the algebraic data type of polymorphic lists from
Why3’s standard library, defined in theory list.List. It comes with other handy theories:
list.Length, which provides a function length, and 1ist.Nth, which provides a function
nth for the n-th element of a list. The latter returns an option type, depending on whether
the index is meaningful or not.

module SearchingAlinkedList
use import int.Int
use export list.List
use export list.Length
use export list.Nth

It is helpful to introduce two predicates: a first one for a successful search,

predicate zero_at (1: list int) (i: int) =
nth i 1 = Some O /\ forall j:int. 0 <= j < i -> nth j 1 <> Some 0

and another for a non-successful search,

predicate no_zero (1: list int) =
forall j:int. 0 <= j < length 1 -> nth j 1 <> Some 0

We are now in position to give the code for the search function. We write it as a recursive
function search that scans a list for the first zero value:

let rec search (i: int) (1: list int) = match 1 with

| Nil -> i
| Cons x r -> if x = 0 then i else search (i+l1) r
end

Passing an index i as first argument allows to perform a tail call. A simpler code (yet
less efficient) would return 0 in the first branch and 1 + search ... in the second one,
avoiding the extra argument 1i.

We first prove the termination of this recursive function. It amounts to give it a
variant, that is an term integer term which stays non-negative and strictly decreases at
each recursive call. Here it is as simple as the length of 1:

let rec search (i: int) (1: list int) variant { length 1 } = ...

(Tt is worth pointing out that variants are not limited to natural numbers. Any other type
equipped with a well-founded order relation can be used instead.) There is no precondition
for function search. The postcondition expresses that either a zero value is found, and
consequently the value returned is bounded accordingly,

i <= result < i + length 1 /\ zero_at 1 (result - i)
or no zero value was found, and thus the returned value is exactly i plus the length of 1:

result = i + length 1 /\ no_zero 1
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module SearchingAlLinkedList

use import int.Int
use export list.List
use export list.Length
use export list.Nth

predicate zero_at (1: list int) (i: int) =
nth i 1 = Some O /\ forall j:int. 0 <= j < i -> nth j 1 <> Some 0

predicate no_zero (1: list int) =
forall j:int. 0 <= j < length 1 -> nth j 1 <> Some 0

let rec search (i: int) (1: list int) variant { length 1 } =

{r

match 1 with

| Nil -> i

| Cons x r -> if x = 0 then i else search (i+1) r

end

{ (i <= result < i + length 1 /\ zero_at 1 (result - i))
\/

(result = i + length 1 /\ no_zero 1) }

let search_list (1: list int) =

{1}

search 0 1

{ (0 <= result < length 1 /\ zero_at 1 result)
\/

(result = length 1 /\ no_zero 1) }

end

Figure 3.3: Solution for VSTTE’10 competition problem 3.

Solving the problem is simply a matter of calling search with 0 as first argument. The
code is given Figure 3.3. The verification conditions are all discharged automatically.

Alternatively, we can implement the search with a while loop. To do this, we need to
import references from the standard library, together with theory 1ist.HdT1 which defines
function hd and t1 over lists.

use import module ref.Ref
use import list.HdT1

Being partial functions, hd and t1 return options. For the purpose of our code, though, it
is simpler to have functions which do not return options, but have preconditions instead.
Such a function head is defined as follows:

let head (1: list ’a) =
{1<> Nil }
match 1 with Nil -> absurd | Cons h _ -> h end
{ hd 1 = Some result }
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The program construct absurd denotes an unreachable piece of code. It generates the
verification condition false, which is here provable using the precondition (the list cannot
be Nil). Function tail is defined similarly:

let tail (1 : list ’a) =
{1<> Nil }
match 1 with Nil -> absurd | Cons _ t -> t end
{ tl 1 = Some result }

Using head and tail, it is straightforward to implement the search as a while loop. It
uses a local reference i to store the index and another local reference s to store the list
being scanned. As long as s is not empty and its head is not zero, it increments i and
advances in s using function tail.

let search_loop 1 =
{37
let i = ref 0 in
let s = ref 1 in
while !s <> Nil && head !s <> 0 do

invariant { ... }
variant { length !s }
i:=11+1;
s := tail !s
done;
'i
{ ... same postcondition as search_list ... }

The postcondition is exactly the same as for function search_list. The termination of
the while loop is ensured using a variant, exactly as for a recursive function. Such a
variant must strictly decrease at each execution of the loop body. The reader is invited to
figure out the loop invariant.

3.4 Problem 4: N-Queens

The fourth problem is probably the most challenging one. We have to verify the implemen-
tation of a program which solves the N-queens puzzle: place N queens on an N x N chess
board so that no queen can capture another one with a legal move. The program should
return a placement if there is a solution and indicates that there is no solution otherwise.
A placement is a N-element array which assigns the queen on row 4 to its column. Thus
we start our module by importing arithmetic and arrays:

module NQueens
use import int.Int
use import module array.Array

The code is a simple backtracking algorithm, which tries to put a queen on each row of the
chess board, one by one (there is basically no better way to solve the N-queens puzzle).
A building block is a function which checks whether the queen on a given row may attack
another queen on a previous row. To verify this function, we first define a more elementary
predicate, which expresses that queens on row pos and q do no attack each other:
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predicate consistent_row (board: array int) (pos: int) (q: int) =
board[q] <> board[pos] /\
board[q] - board[pos] <> pos - q /\
board[pos] - board[q]l <> pos - g

Then it is possible to define the consistency of row pos with respect to all previous rows:

predicate is_consistent (board: array int) (pos: int) =
forall q:int. 0 <= q < pos -> consistent_row board pos q

Implementing a function which decides this predicate is another matter. In order for it to
be efficient, we want to return False as soon as a queen attacks the queen on row pos.
We use an exception for this purpose and it carries the row of the attacking queen:

exception Inconsistent int

The check is implemented by a function check_is_consistent, which takes the board and
the row pos as arguments, and scans rows from 0 to pos-1 looking for an attacking queen.
As soon as one is found, the exception is raised. It is caught immediately outside the loop
and False is returned. Whenever the end of the loop is reached, True is returned.

let check_is_consistent (board: array int) (pos: int) =
{ 0 <= pos < length board }
try
for g = 0 to pos - 1 do
invariant { forall j:int. 0 <= j < q -> consistent_row board pos j %

let bg = board[q] in
let bpos = board[pos] in
if bq = bpos then raise (Inconsistent q);

if bq - bpos = pos - q then raise (Inconsistent q);
if bpos - bq = pos - q then raise (Inconsistent q)
done;
True
with Inconsistent q ->
assert { not (consistent_row board pos q) I};
False
end
{ result=True <-> is_consistent board pos }

The assertion in the exception handler is a cut for SMT solvers. This first part of the
solution is given Figure 3.4.

We now proceed with the verification of the backtracking algorithm. The specification
requires us to define the notion of solution, which is straightforward using the predicate
is_consistent above. However, since the algorithm will try to complete a given partial
solution, it is more convenient to define the notion of partial solution, up to a given row.
It is even more convenient to split it in two predicates, one related to legal column values
and another to consistency of rows:

predicate is_board (board: array int) (pos: int) =
forall qg:int. 0 <= g < pos -> 0 <= board[q] < length board

predicate solution (board: array int) (pos: int) =
is_board board pos /\
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module NQueens
use import int.Int
use import module array.Array

predicate consistent_row (board: array int) (pos: int) (q: int) =
board[q] <> board[pos] /\
board[q] - board[pos] <> pos - q /\
board[pos] - board[q]l <> pos - g

predicate is_consistent (board: array int) (pos: int) =
forall q:int. O <= g < pos -> consistent_row board pos q

exception Inconsistent int

let check_is_consistent (board: array int) (pos: int) =
{ 0 <= pos < length board }
try
for g = 0 to pos - 1 do
invariant { forall j:int. 0 <= j < q -> consistent_row board pos j 7

let bg = board[q] 1in
let bpos = board[pos] in
if bq = bpos then raise (Inconsistent q);

if bq - bpos = pos - q then raise (Inconsistent q);
if bpos - bq = pos - q then raise (Inconsistent q)
done;
True
with Inconsistent q ->
assert { not (consistent_row board pos q) I};
False
end
{ result=True <-> is_consistent board pos }

Figure 3.4: Solution for VSTTE’10 competition problem 4 (1/2).

forall q:int. O <= g < pos -> is_consistent board g

The algorithm will not mutate the partial solution it is given and, in case of a search failure,
will claim that there is no solution extending this prefix. For this reason, we introduce a
predicate comparing two chess boards for equality up to a given row:

predicate eq_board (bl b2: array int) (pos: int) =
forall g:int. 0 <= q < pos -> bl[q]l = b2[q]

The search itself makes use of an exception to signal a successful search:
exception Solution

The backtracking code is a recursive function bt_queens which takes the chess board, its
size, and the starting row for the search. The termination is ensured by the obvious variant
n-pos.

let rec bt_queens (board: array int) (n: int) (pos: int) variant {n-pos} =
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The precondition relates board, pos, and n and requires board to be a solution up to pos:

{ length board = n /\ 0 <= pos <= n /\ solution board pos }
’Init:

We place a code mark *Init immediately after the precondition to be able to refer to the
value of board in the pre-state. Whenever we reach the end of the chess board, we have
found a solution and we signal it using exception Solution:

if pos = n then raise Solution;
Otherwise we scan all possible positions for the queen on row pos with a for loop:
for i = 0 ton -1 do

The loop invariant states that we have not modified the solution prefix so far, and that we
have not found any solution that would extend this prefix with a queen on row pos at a
column below i:

invariant {
eq_board board (at board ’Init) pos /\
forall b:array int. length b = n -> is_board b n ->
eq_board board b pos -> 0 <= b[pos] < i -> not (solution b n) }

Then we assign column i to the queen on row pos and we check for a possible attack with
check_is_consistent. If not, we call bt_queens recursively on the next row.

board [pos] <- i;
if check_is_consistent board pos then bt_queens board n (pos + 1)
done

This completes the loop and function bt_queens as well. The postcondition is twofold:
either the function exits normally and then there is no solution extending the prefix in
board, which has not been modified; or the function raises Solution and we have a solution
in board.

{ eq_board board (old board) pos /\
forall b:array int. length b = n -> is_board b n ->
eq_board board b pos -> not (solution b n) }
| Solution ->
{ solution board n }

Solving the puzzle is a simple call to bt_queens, starting the search on row 0. The
postcondition is also twofold, as for bt_queens, yet slightly simpler.

let queens (board: array int) (n: int) =
{ 0 <= length board = n 7}
bt_queens board n O
{ forall b:array int. length b = n -> is_board b n -> not (solution b n) }
| Solution -> { solution board n }

This second part of the solution is given Figure 3.5. With the help of a few auxiliary
lemmas — not given here but available from Why3’s sources — the verification conditions
are all discharged automatically, including the verification of the lemmas themselves.
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predicate is_board (board: array int) (pos: int) =
forall qg:int. O <= q < pos -> 0 <= board[q] < length board

predicate solution (board: array int) (pos: int) =
is_board board pos /\
forall gq:int. 0 <= g < pos -> is_consistent board g

predicate eq_board (bl b2: array int) (pos: int) =
forall q:int. 0 <= q < pos -> bi[q] = b2[q]

exception Solution

let rec bt_queens (board: array int) (n: int) (pos: int) variant { n - pos } =
{ length board = n /\ 0 <= pos <= n /\ solution board pos }
’Init:
if pos = n then raise Solution;
for 1 =0 ton -1do
invariant {
eq_board board (at board ’Init) pos /\
forall b:array int. length b = n -> is_board b n ->
eq_board board b pos -> 0 <= b[pos] < i -> not (solution b n) }
board [pos] <- i;
if check_is_consistent board pos then bt_queens board n (pos + 1)
done
{ (* no solution *)
eq_board board (old board) pos /\
forall b:array int. length b = n -> is_board b n ->
eq_board board b pos -> not (solution b n) }
| Solution ->
{ (x a solution *)
solution board n }

let queens (board: array int) (n: int) =
{ 0 <= length board = n 7
bt_queens board n O
{ forall b:array int. length b = n -> is_board b n -> not (solution b n) }
| Solution -> { solution board n }
end

Figure 3.5: Solution for VSTTE’10 competition problem 4 (2/2).
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3.5 Problem 5: Amortized Queue

The last problem consists in verifying the implementation of a well-known purely applica-
tive data structure for queues. A queue is composed of two lists, front and rear. We push
elements at the head of list rear and pop them off the head of list front. We maintain
that the length of front is always greater or equal to the length of rear. (See for instance
Okasaki’s Purely Functional Data Structures [12] for more details.)

We have to implement operations empty, head, tail, and enqueue over this data type,
to show that the invariant over lengths is maintained, and finally

to show that a client invoking these operations observes an abstract queue
given by a sequence.

In a new module, we import arithmetic and theory 1ist.ListRich, a combo theory which
imports all list operations we will require: length, reversal, and concatenation.

module AmortizedQueue
use import int.Int
use export list.ListRich

The queue data type is naturally introduced as a polymorphic record type. The two list
lengths are explicitly stored, for better efficiency.

type queue ’a = {| front: list ’a; lenf: int;
rear : list ’a; lenr: int; |}

We start with the definition of the data type invariant, as a predicate inv. It makes use
of the ability to chain several equalities and inequalities.

predicate inv (q: queue ’a) =
length g.front = qg.lenf >= length q.rear = q.lenr

For the purpose of the specification, it is convenient to introduce a function sequence
which builds the sequence of elements of a queue, that is the front list concatenated to
reversed rear list.

function sequence (q: queue ’a) : list ’a =
q.front ++ reverse q.rear

It is worth pointing out that this function will only be used in specifications. We start
with the easiest operation: building the empty queue.

let empty () =
{}
{l front = Nil; lenf = O; rear = Nil; lenr = O |} : queue ’a
{ inv result /\ sequence result = Nil }

The postcondition is twofold: the returned queue satisfies its invariant and represents the
empty sequence. Note the cast to type queue ’a. It is required, for the type checker not
to complain about an undefined type variable.

The next operation is head, which returns the first element from a given queue q. It
naturally requires the queue to be non empty, which is conveniently expressed as sequence
q not being Nil.
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let head (q: queue ’a) =
{ inv q /\ sequence q <> Nil }
match q.front with
| Nil -> absurd
| Cons x _ -> x
end
{ hd (sequence q) = Some result }

Note the presence of the invariant in the precondition, which is required to prove the
absurdity of the first branch (if q.front is Nil, then so should be sequence q).

The next operation is tail, which removes the first element from a given queue. This
is more subtle than head, since we may have to re-structure the queue to maintain the
invariant. Since we will have to perform a similar operation when implementation operation
enqueue, it is a good idea to introduce a smart constructor create which builds a queue
from two lists, while ensuring the invariant. The list lengths are also passed as arguments,
to avoid unnecessary computations.

let create (f: list ’a) (1f: int) (r: list ’a) (lr: int) =
{ 1f = length £ /\ 1lr = length r }
if 1f >= 1lr then
{| front = f; lenf = 1f; rear = r; lenr = 1lr |}
else
let £ = f ++ reverse r in
{] front = f; lenf = 1f + 1lr; rear = Nil; lenr = 0 |}
{ inv result /\ sequence result = f ++ reverse r }

If the invariant already holds, it is simply a matter of building the record. Otherwise, we
empty the rear list and build a new front list as the concatenation of list £ and the reversal
of list r. The principle of this implementation is that the cost of this reversal will be
amortized over all queue operations. Implementing function tail is now straightforward
and follows the structure of function head.

let tail (q: queue ’a) =
{ inv q /\ sequence q <> Nil }
match q.front with
| Nil -> absurd
| Cons _ r -> create r (q.lenf - 1) g.rear g.lenr
end
{ inv result /\ tl (sequence q) = Some (sequence result) }

The last operation is enqueue, which pushes a new element in a given queue. Reusing the
smart constructor create makes it a one line code.

let enqueue (x: ’a) (q: queue ’a) =
{ inv q }
create q.front g.lenf (Cons x g.rear) (q.lenr + 1)
{ inv result /\ sequence result = sequence q ++ Cons x Nil }

The code is given Figure 3.6. The verification conditions are all discharged automatically.
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module AmortizedQueue
use import int.Int
use export list.ListRich

type queue ’a = {| front: list ’a; lenf: int;
rear : list ’a; lenr: int; |}

predicate inv (q: queue ’a) =
length g.front = qg.lenf >= length g.rear = q.lenr

function sequence (q: queue ’a) : list ’a =
q.front ++ reverse q.rear

let empty () =
{}
{| front = Nil; lenf = 0; rear = Nil; lenr = O |} : queue ’a
{ inv result /\ sequence result = Nil }

let head (q: queue ’a) =
{ inv q /\ sequence q <> Nil }
match q.front with
| Nil -> absurd
| Cons x _ -> x
end
{ hd (sequence gq) = Some result }

let create (f: list ’a) (1f: int) (r: list ’a) (lr: int) =
{ 1f = length f /\ 1r = length r }
if 1f >= 1r then
{| front = f; lenf = 1f; rear = r; lenr = 1lr |}
else
let £ = f ++ reverse r in
{] front = f; lenf = 1f + 1lr; rear = Nil; lenr = 0 |}
{ inv result /\ sequence result = f ++ reverse r }

let tail (q: queue ’a) =
{ inv q /\ sequence g <> Nil }
match q.front with
| Nil -> absurd
| Cons _ r -> create r (q.lenf - 1) g.rear q.lenr
end
{ inv result /\ tl (sequence q) = Some (sequence result) }

let enqueue (x: ’a) (q: queue ’a)
{ inv q }
create q.front g.lenf (Cons x g.rear) (q.lenr + 1)
{ inv result /\ sequence result = sequence q ++ Cons x Nil }
end
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Figure 3.6: Solution for VSTTE’10 competition problem 5.






Chapter 4

The Why3 API

This chapter is a tutorial for the users who want to link their own OCaml code with the
Why3 library. We progressively introduce the way one can use the library to build terms,
formulas, theories, proof tasks, call external provers on tasks, and apply transformations
on tasks. The complete documentation for API calls is given at URL http://why3.1ri.
fr/api/.

We assume the reader has a fair knowledge of the OCaml language. Notice that the
Why3 library must be installed, see Section 8.1. The OCaml code given below is available
in the source distribution as examples/use_api.ml.

4.1 Building Propositional Formulas

The first step is to know how to build propositional formulas. The module Term gives a
few functions for building these. Here is a piece of OCaml code for building the formula
true V false.

(* opening the Why3 library *)
open Why3

(* a ground propositional goal: true or false *)

let fmla_true : Term.term = Term.t_true

let fmla_false : Term.term = Term.t_false

let fmlal : Term.term = Term.t_or fmla_true fmla_false

The library uses the common type term both for terms (i.e. expressions that produce a
value of some particular type) and formulas (i.e. boolean-valued expressions).
Such a formula can be printed using the module Pretty providing pretty-printers.

(* printing it *)
open Format
let () = printf "@[formula 1 is:@ %a@]@." Pretty.print_term fmlal

Assuming the lines above are written in a file £.ml1, it can be compiled using

ocamlc str.cma unix.cma nums.cma dynlink.cma \
-1 +ocamlgraph -I +why3 graph.cma why.cma f.ml -o f

Running the generated executable f results in the following output.

formula 1 is: true \/ false
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Let’s now build a formula with propositional variables: A A B — A. Propositional
variables must be declared first before using them in formulas. This is done as follows.

let prop_var_A : Term.lsymbol =
Term.create_psymbol (Ident.id_fresh "A") []

let prop_var_B : Term.lsymbol =
Term.create_psymbol (Ident.id_fresh "B") []

The type lsymbol is the type of function and predicate symbols (which we call logic
symbols for brevity). Then the atoms A and B must be built by the general function
for applying a predicate symbol to a list of terms. Here we just need the empty list of
arguments.

let atom_A : Term.term = Term.ps_app prop_var_A []
let atom_B : Term.term = Term.ps_app prop_var_B []
let fmla2 : Term.term =
Term.t_implies (Term.t_and atom_A atom_B) atom_A
let () = printf "@[formula 2 is:@ %a@]@." Pretty.print_term fmla2

As expected, the output is as follows.
formula 2 is: A /\ B -> A

Notice that the concrete syntax of Why3 forbids function and predicate names to start
with a capital letter (except for the algebraic type constructors which must start with
one). This constraint is not enforced when building those directly using library calls.

4.2 Building Tasks

Let’s see how we can call a prover to prove a formula. As said in previous chapters, a
prover must be given a task, so we need to build tasks from our formulas. Task can be
build incrementally from an empty task by adding declaration to it, using the functions
add_x_decl of module Task. For the formula true V false above, this is done as follows.

let taskl : Task.task = None (* empty task *)
let goal_idl : Decl.prsymbol =
Decl.create_prsymbol (Ident.id_fresh "goall")
let taskl : Task.task =
Task.add_prop_decl taskl Decl.Pgoal goal_idl fmlal

To make the formula a goal, we must give a name to it, here "goall". A goal name has
type prsymbol, for identifiers denoting propositions in a theory or a task. Notice again
that the concrete syntax of Why3 requires these symbols to be capitalized, but it is not
mandatory when using the library. The second argument of add_prop_decl is the kind of
the proposition: Paxiom, Plemma or Pgoal (notice, however, that lemmas are not allowed
in tasks and can only be used in theories).

Once a task is built, it can be printed.

(* printing the task *)
let () = printf "@[task 1 is:@\n%a@]@." Pretty.print_task taskl

The task for our second formula is a bit more complex to build, because the variables
A and B must be added as logic declarations in the task.
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(* task for formula 2 *)

let task2 = None

let task2 = Task.add_logic_decl task2 [prop_var_A, Nonel

let task2 = Task.add_logic_decl task2 [prop_var_B, None]

let goal_id2 = Decl.create_prsymbol (Ident.id_fresh "goal2")
let task2 = Task.add_prop_decl task2 Decl.Pgoal goal_id2 fmla2
let () = printf "@[task 2 is:@\n%a@]@." Pretty.print_task task2

The argument None is the declarations of logic symbols means that they do not have any
definition.
Execution of our OCaml program now outputs:

task 1 is:
theory Task

goal Goall : true \/ false
end

task 2 is:
theory Task
predicate A

predicate B

goal Goal2 : A /\ B -> A
end

4.3 Calling External Provers

To call an external prover, we need to access the Why configuration file why3.conf, as
it was built using the why3config command line tool or the Detect Provers menu of the
graphical IDE. The following API calls allow to access the content of this configuration
file.

(* reads the config file *)

let config : Whyconf.config = Whyconf.read_config None

(* the [main] section of the config file *)

let main : Whyconf.main = Whyconf.get_main config

(* all the provers detected, from the config file *)

let provers : Whyconf.config_prover Util.Mstr.t =
Whyconf.get_provers config

The type ’a Util.Mstr.t is a map indexed by strings. This map can provide the set of
existing provers. In the following, we directly attempt to access the prover Alt-Ergo, which
is known to be identified with id "alt-ergo".

(* the [prover alt-ergo] section of the config file *)
let alt_ergo : Whyconf.config_prover =
try
Util.Mstr.find "alt-ergo" provers
with Not_found ->
eprintf "Prover alt-ergo not installed or not configured@.";
exit 0
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The next step is to obtain the driver associated to this prover. A driver typically
depends on the standard theories so these should be loaded first.

(* builds the environment from the [loadpath] *)
let env : Env.env =
Env.create_env_of_loadpath (Whyconf.loadpath main)
(* loading the Alt-Ergo driver )
let alt_ergo_driver : Driver.driver =
try
Driver.load_driver env alt_ergo.Whyconf.driver
with e ->
eprintf "Failed to load driver for alt-ergo: %a@."
Exn_printer.exn_printer e;
exit 1

We are now ready to call the prover on the tasks. This is done by a function call that
launches the external executable and waits for its termination. Here is a simple way to
proceed:

(* calls Alt-Ergo *)
let resultl : Call_provers.prover_result =
Call_provers.wait_on_call
(Driver.prove_task ~command:alt_ergo.Whyconf.command
alt_ergo_driver taskl ()) O
(* prints Alt-Ergo answer *)
let () = printf "@[On task 1, alt-ergo answers %a@]@."
Call_provers.print_prover_result resultl

This way to call a prover is in general too naive, since it may never return if the prover runs
without time limit. The function prove_task has two optional parameters: timelimit
is the maximum allowed running time in seconds, and memlimit is the maximum allowed
memory in megabytes. The type prover_result is a record with three fields:

e pr_answer: the prover answer, explained below;

e pr_output: the output of the prover, i.e. both standard output and the standard
error of the process (a redirection in why3.conf is required);

e pr_time : the time taken by the prover, in seconds.
A pr_answer is a sum of several kind of answers:
e Valid: the task is valid according to the prover.
e Invalid: the task is invalid.
e Timeout: the prover exceeds the time or memory limit.

e Unknown msg: the prover can’t determine if the task is valid; the string parameter
msg indicates some extra information.

e Failure msg: the prover reports a failure, i.e. it was unable to read correctly its
input task.
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e HighFailure: an error occurred while trying to call the prover, or the prover answer
was not understood (i.e. none of the given regular expressions in the driver file
matches the output of the prover).

Here is thus another way of calling the Alt-Ergo prover, on our second task.

let result2 : Call_provers.prover_result =
Call_provers.wait_on_call
(Driver.prove_task ~command:alt_ergo.Whyconf.command
“timelimit:10
alt_ergo_driver task2 () (O

let () =
printf "@[On task 2, alt-ergo answers %a in %5.2f seconds@."
Call_provers.print_prover_answer
resultl.Call_provers.pr_answer
resultl.Call_provers.pr_time

The output of our program is now as follows.

On task 1, alt-ergo answers Valid (0.01s)
On task 2, alt-ergo answers Valid in 0.01 seconds

4.4 Building Terms

An important feature of the functions for building terms and formulas is that they statically
guarantee that only well-typed terms can be constructed.

Here is the way we build the formula 2 + 2 = 4. The main difficulty is to access the
internal identifier for addition: it must be retrieved from the standard theory Int of the
file int.why (see Chap 6).

let two : Term.term = Term.t_const (Term.ConstInt "2")
let four : Term.term = Term.t_const (Term.ConstInt "4")
let int_theory : Theory.theory =
Env.find_theory env ["int"] "Int"
let plus_symbol : Term.lsymbol =
Theory.ns_find_ls int_theory.Theory.th_export ["infix +"]
let two_plus_two : Term.term =
Term.t_app_infer plus_symbol [two;two]
let fmla3 : Term.term = Term.t_equ two_plus_two four

An important point to notice as that when building the application of + to the arguments,
it is checked that the types are correct. Indeed the constructor t_app_infer infers the
type of the resulting term. One could also provide the expected type as follows.

let two_plus_two : Term.term =
Term.fs_app plus_symbol [two;two] Ty.ty_int

When building a task with this formula, we need to declare that we use theory Int:

let task3 = None

let task3 = Task.use_export task3 int_theory

let goal_id3 = Decl.create_prsymbol (Ident.id_fresh "goal3")
let task3 = Task.add_prop_decl task3 Decl.Pgoal goal_id3 fmla3



46 CHAPTER 4. THE WHY3 API

4.5 Building Quantified Formulas

To illustrate how to build quantified formulas, let us consider the formula Vz : int.x*xxz > 0.
The first step is to obtain the symbols from Int.

let zero : Term.term = Term.t_const (Term.ConstInt "O")
let mult_symbol : Term.lsymbol =

Theory.ns_find_ls int_theory.Theory.th_export ["infix *"]
let ge_symbol : Term.lsymbol =

Theory.ns_find_ls int_theory.Theory.th_export ["infix >="]

The next step is to introduce the variable x with the type int.

let var_x : Term.vsymbol =
Term.create_vsymbol (Ident.id_fresh "x") Ty.ty_int

The formula = * > 0 is obtained as in the previous example.

let x : Term.term = Term.t_var var_x
let x_times_x : Term.term = Term.t_app_infer mult_symbol [x;x]
let fmla4_aux : Term.term = Term.ps_app ge_symbol [x_times_x;zero]

To quantify on x, we use the appropriate smart constructor as follows.

let fmlad : Term.term = Term.t_forall_close [var_x] [] fmlad_aux

4.6 Building Theories

[TO BE COMPLETED]

4.7 Applying transformations

[TO BE COMPLETED]

4.8 Writing new functions on term

[TO BE COMPLETED)]
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Chapter 5

Language Reference

This chapter gives the grammar and semantics for Why3 and Why3ML input files.

5.1 Lexical conventions

Lexical conventions are common to Why3 and Why3ML.

Comments. Comments are enclosed by (* and *) and can be nested.

Strings. Strings are enclosed in double quotes ("). Double quotes can be inserted in
strings using the backslash character (\). In the following, strings are referred to with the
non-terminal string.

Identifiers. The syntax distinguishes lowercase and uppercase identifiers and, similarly,
lowercase and uppercase qualified identifiers.

lalpha = a -z | _

ualpha A -2

alpha lalpha | wualpha

lident lalpha (alpha | digit | *)*
uident ualpha (alpha | digit | ?)*
ident lident | uident

Iqualid lident | uqualid lident
uqualid uident | uqualid uident

Constants. The syntax for constants is given in Figure 5.1. Integer and real constants
have arbitrary precision. Integer constants may be given in base 16, 10, 8 or 2. Real
constants may be given in base 16 or 10.

Operators. Prefix and infix operators are built from characters organized in four cate-
gories (op-char-1 to op-char-4).
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digit == 0 - 9
hex-digit = digit | a - £ | A - F
oct-digit = 0 -7
bin-digit = 0] 1
integer = digit (digit | _)* decimal
|  (0x | 0X) hex-digit (hex-digit | _)* hexadecimal
| (0o | 00) oct-digit (oct-digit | _)*  octal
| (Ob | OB) bin-digit (bin-digit | _)*  binary
real = digitt exponent decimal
| digitt . digit* exponent’
| digit* . digitt™ exponent’
| (0x | 0X) hex-real h-exponent hexadecimal
hex-real = hex-digit™
| hex-digitt . hex-digit*
| hex-digit* . hex-digit*
exponent = (e | E) (-] +)7 digitt
h-exponent = (p | P) (-] +7 digitt
Figure 5.1: Syntax for constants.
op-char-1 = =] <| > -
op-char-2 = + | -
op-char-3 = x | /| %
op-char-4 = v & | e | | | ] #
op-char = op-char-1 | op-char-2 | op-char-3 | op-char-4
infix-op-1 == op-char* op-char-1 op-char*
infix-op = op-char™
prefix-op 1= op-char™
bang-op = ! op-char-4* | 7 op-char-4*

Infix operators are classified into 4 categories, according to the characters they are built
from:

e level 4: operators containing only characters from op-char-4;
e level 3: those containing characters from op-char-3 or op-char-4;
e level 2: those containing characters from op-char-2, op-char-3 or op-char-4;

e level 1: all other operators (non-terminal infiz-op-1).

Labels. Identifiers, terms, formulas, program expressions can all be labeled, either with
a string, or with a location tag.
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label = string
| # filename digit™ digitt digitt™ #

filename = string

A location tag consists of a file name, a line number, and starting and ending characters.

5.2 Why3 Language

Terms. The syntax for terms is given in Figure 5.2. The various constructs have the
following priorities and associativities, from lowest to greatest priority:

construct associativity
if then else / let in -
label -
cast -
infix-op level 1 left
infix-op level 2 left
infix-op level 3 left
infix-op level 4 left
prefix-op -
function application left
brackets / ternary brackets | —
bang-op -

Note the curryfied syntax for function application, though partial application is not
allowed (rejected at typing).

Type Expressions. The syntax for type expressions is the following:

type = lqualid  type* type symbol
| 7 lident type variable
| O empty tuple type
| C type (, type)™ )  tuple type
| type ) parentheses

Built-in types are int, real, and tuple types. Note that the syntax for type expressions
notably differs from the usual ML syntax (e.g. the type of polymorphic lists is written
list ’a, not ’a list).

Formulas. The syntax for formulas is given Figure 5.3. The various constructs have the
following priorities and associativities, from lowest to greatest priority:
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term

term-case

pattern

field-value

integer

real

lqualid

prefix-op  term

bang-op term

term infix-op term
term [ term ]

term [ term <- term ]
Iqualid term™

if formula then term
else term

let pattern = term
match term (, term)*
(I term-case)™ end
( term (, term)*t )
{| field-value™ |}
term lqualid

{l term with field-value™ |}

in term
with

term type

label term

> uident

( term )

pattern -> term
pattern | pattern
pattern , pattern
lident

uident pattern®

( pattern )

pattern as lident

lqualid = term ;

integer constant
real constant
symbol

brackets
ternary brackets
function application

conditional
local binding

pattern matching
tuple

record

field access

field update

cast

label

code mark
parentheses

or pattern
tuple
catch-all
variable
constructor
parentheses
binding

Figure 5.2: Syntax for terms.
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formula = true | false
| formula -> formula implication
|  formula <-> formula equivalence
| formula /\ formula conjunction
| formula && formula asymmetric conjunction
|  formula \/ formula disjunction
|  formula || formula asymmetric disjunction
| not formula negation
| Iqualid symbol
|  prefix-op term
| term infix-op term
| Iqualid term™ predicate application
| if formula then formula
else formula conditional
| let pattern = term in formula local binding
| match term (, term)T with
(I formula-case)™ end pattern matching
|  quantifier binders (, binders )*
triggers’ formula quantifier
| label formula label
| ( formula ) parentheses
quantifier = forall | exists
binders = lident™ type
triggers = [ trigger (| trigger)* 1]
trigger = tr-term (, tr-term)*
tr-term = term | formula
formula-case = pattern -> formula
Figure 5.3: Syntax for formulas.
‘ construct associativity
if then else / let in | —
label -
=> ) <=> right
\/ /1l right
/\ | && right
not -
infix level 1 left
infix level 2 left
infix level 3 left
infix level 4 left
prefix -

Note that infix symbols of level 1 include equality (=) and disequality (<>).
Notice that there are two symbols for the conjunction: and and &&, and similarly for
disjunction. There are logically equivalent, but may be treated slightly differently by some
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transformation, e.g. the split transformation transforms A and B into subgoals A and
B, whereas it transforms A && B into subgoals A and A — B.

Theories. The syntax for theories is given Figure 5.4.

Files. A Why3 input file is a (possibly empty) list of theories.

file = theory™*
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theory
decl

type-decl
type-defn

type-case
record-field
logic-decl

function-decl

predicate-decl

type-param

inductive-decl

ind-case
imp-exp
uident-opt
subst

subst-elt

tqualid

theory uident label® decl* end

type type-decl (with type-decl)*

function function-decl (with logic-decl)*
predicate predicate-decl (with logic-decl)*
inductive inductive-decl (with inductive-decl)*

axiom ident : formula
lemma ident : formula
goal ident : formula

use imp-exp tqualid (as uident-opt)’
clone imp-exp tqualid (as uident-opt)
namespace import’ uident-opt decl* end

? subst’

lident label* (? lident label*)* type-defn
abstract type

= type alias type
= |” type-case (| type-case)* algebraic type
= {| record-field (; record-field)* |3} record type

uident label* type-param®
lident label* : type

function-decl
predicate-decl

lident label* type-param®™ : type
lident label® type-param® : type = term

lident label* type-param*
lident label* type-param® = formula

> lident
lqualid
( lidentt : type )
( type (, type)* )
O
lident label* type-param®™ =
|7 ind-case (| ind-case)*

ident label* : formula
(import | export)’
uident |

with (, subst-elt)™

type Iqualid = Iqualid
function Iqualid = Iqualid
predicate Iqualid = Iqualid
namespace (uqualid | .) = (uqualid | .)
lemma uqualid
goal uqualid

uident | ident (. ident)* . uident

Figure 5.4: Syntax for theories.
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type-v

type-v-binder
type-v-param

type-c

effect
reads
writes
raises
pre

post
post-exn

annotation

= type | ( typev )

| type-v -> type-c

|  type-v-binder -> type-c
= lident label* type-v

= ( type-v-binder )

n= type-v
| pre type-v effect post
= reads’ writes’ raises’

= reads tr-term™’

= writes tr-term™

= raises uqualid™

RES annotation

= annotation post-exn®

-> annotation

uqualid
= {3

{ formula 7}

parentheses

Figure 5.5: Syntax for program types.

5.3 Why3ML Language

Types.
Expressions.

Modules.

cepted in a theory is also accepted in a module.

The syntax for program types is given in figure 5.5.
The syntax for program expressions is given in figure 5.6.

The syntax for modules is given in figure 5.7. Any declaration which is ac-

Additionally, modules can introduce

record types with mutable fields and declarations which are specific to programs (global

variables; functions, exceptions).

Files.

A Why3ML input file is a (possibly empty) list of theories and modules.

file

= (theory |

module)*

A theory defined in a Why3ML file can only be used within that file. If a theory is supposed
to be reused from other files, be they Why3 or Why3ML files, it should be defined in a Why3

file.
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expr-case
field-value
triple

assert
to-downto
loop-annot
loop-inv

variant

integer

real

lqualid

prefix-op  expr

expr Iinfix-op expr

expr [ expr 1]

expr [ expr ] <- expr

expr [ expr infix-op-1 expr 1]
expr exprt

fun type-v-paramt -> triple

let rec recfun (with recfun)*

if expr then expr (else expr)’
expr ; expr

loop loop-annot end

while expr do loop-annot expr done
for lident = expr to-downto expr
do loop-inv expr done

assert annotation

absurd

raise uqualid
raise ( uqualid expr )
try expr with (| handler)t end

any type-c
let pattern = expr in expr
match expr (, expr)* with

(I expr-case)™ end

( expr (, expr)™ )

{| field-value™ |2}

exopr Iqualid

expr Iqualid <- expr

{| expr with field-valuet |}
expr type
label expr
> uident

( expr )

expr

pattern -> expr
lqualid = expr ;

expr

pre expr post

assert | assume | check

to | downto
. ? . ?

loop-inv®  variant’

invariant annotation

variant { term } (with Iqualid)’

integer constant
real constant
symbol

brackets

brackets assignment
ternary brackets
function application
lambda abstraction
recursive functions
conditional
sequence

infinite loop

while loop

for loop

assertion
exception raising
exception catching

local binding
pattern matching

tuple

record

field access
field assignment
field update
cast

label

code mark
parentheses

Hoare triple

Figure 5.6: Syntax for program expressions.
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module = module uident label* mdecl* end
mdecl = decl theory declaration
type mtype-decl (with mtype-decl)* mutable types

|

| let lident label* pgm-defn

| let rec recfun (with recfun)*

| val lident label* pgm-decl

| exception lident label* type’

|  use imp-exp module tqualid (as uident-opt)’
| namespace import’ uident-opt mdecl* end

mtype-decl = lident label* (° lident label*)* mtype-defn
mtype-defn = abstract type
| = type alias type
| =17 type-case (| type-case)* algebraic type
| = {| mrecord-field (; mrecord-field)* |} record type
mrecord-field ::= mutable’ lident label* : type
pgm-decl = : type-v
|  type-v-param™ : type-c
pegm-defn = type-v-param™  (: type)’ = triple
+

| = fun type-v-param™ -> triple

Figure 5.7: Syntax for modules.



Chapter 6

Standard Library: Why3 Theories

We provide here a short description of logic symbols defined in the standard library. Only
the most general-purpose ones are described. For more details, one should directly read
the corresponding file, or alternatively, use the why3 with option -T and a qualified theory
name, for example:

> why3 -T bool.Ite
theory Ite
(* use BuiltIn *)

(* use Bool *)

function ite (b:bool) (x:’a) (y:’a) : ’a =
match b with
| True -> x
| False -> y
end
end

In the following, for each library, we describe the (main) symbols defined in it.

6.1 Library bool

Bool boolean data type bool with constructors True and False; operations andb, orb,
xorb, notb.

Ite polymorphic if-then-else operator written as ite.

6.2 Library int
Int basic operations +, - and *; comparison operators <, >, >= and <=.
Abs absolute value written as abs.

EuclideanDivision division and modulo, where division rounds down, written as div
and mod.

ComputerDivision division and modulo, where division rounds to zero, also written as
div and mod.
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MinMax min and max operators.

6.3 Library real

Real basic operations +, -, * and /; comparison operators.

Reallnfix basic operations with alternative syntax +., -., *., /., <., >., <=. and >=.,
to allow simultaneous use of integer and real operators.

Abs absolute value written as abs.
MinMax min and max operators.
FromlInt operator from_int to convert an integer to a real.

Truncate conversion operators from real to integers: truncate rounds to 0, floor rounds
down and ceil rounds up.

Square operators sqr and sqrt for square and square root.
ExpLog functions exp, log, log2, and 1loglO0.

Power function pow with two real parameters.

Trigonometry functions cos, sin, tan, and atan. Constant pi.
Hyperbolic functions cosh, sinh, tanh, acosh, asinh, atanh.

Polar functions hypot and atan2.

6.4 Library floating_point
This library provides a theory of IEEE-754 floating-point numbers. It is inspired by [1].

Rounding type mode with 5 constants NearestTiesToEven, ToZero, Up, Down and
NearTiesToAway.

SpecialValues handling of infinities and NaN.

GenFloat generic floats parameterized by the maximal representable number. Functions
round, value, exact, model, predicate no_overflow.

Single instance of GenFloat for 32-bits single precision numbers.

Double instance of GenFloat for 64-bits double precision numbers.

6.5 Library array

Array polymorphic arrays, a.k.a maps. Type t parameterized by both the type of indices
and the type of data. Functions get and set to access and update arrays. Function
create_const to produce an array initialized by a given constant.

ArrayLength arrays indexed by integers and holding their length. Function length.

ArrayRich additional functions on arrays indexed by integers. Functions sub and app to
extract a sub-array and append arrays.
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6.6 Library option

Option data type option ’a with constructors None and Some.

6.7 Library list

List data type 1ist ’a with constructors Nil and Cons.
Length function length

Mem function mem for testing for list membership.
Nth function nth for extract the n-th element.
HdTI functions hd and t1.

Append function append, concatenation of lists.
Reverse function reverse for list reversal.
Sorted predicate sorted for lists of integers.
NumOcc number of occurrences in a list.
Permut list permutations.

Induction structural induction on lists.

Map list map operator.
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Chapter 7

Standard Library: Why3ML
Modules

7.1 Library ref

Ref references i.e. mutable variables: type ref ’a and functions ref for creation, (1) for
access, and (:=) for mutation

Refint references with additional functions incr and decr over integer references

7.2 Library array

Array polymorphic arrays (type array ’a, infix syntax a[i| for access and afi] < e for
update, functions length, make, append, sub, copy, £ill, and blit)

ArraySorted an array of integers is sorted (array_sorted_sub and array_sorted)
ArrayEq two arrays are identical (array_eq_sub and array_eq)

ArrayPermut two arrays are permutation of each other (permut_sub and permut)

7.3 Library queue

Queue polymorphic mutable queues (type t ’a and functions create, push, pop, top,
clear, copy, is_empty, length)

7.4 Library stack

Stack polymorphic mutable stacks (type t ’a and functions create, push, pop, top,
clear, copy, is_empty, length)

7.5 Library hashtbl

Hashtbl hash tables with monomorphic keys (type key) and polymorphic values (type t
’a of hash tables, syntax h[k] for access, functions create, clear, add, mem, find,
find_all, copy, remove, and replace)
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7.6 Library string
Char

String



Chapter 8

Reference manuals for the Why3
tools

8.1 Compilation, Installation

Compilation of Why3 must start with a configuration phase which is run as
./configure

This analyzes your current configuration and checks if requirements hold. Compilation
requires:

e The Objective Caml compiler, version 3.10 or higher. It is available as a binary
package for most Unix distributions. For Debian-based Linux distributions, you can
install the packages

ocaml ocaml-native-compilers

It is also installable from sources, downloadable from the site http://caml.inria.
fr/ocaml/

For some tools, additional OCaml libraries are needed:

e For the IDE: the Lablgtk? library for OCaml bindings of the gtk2 graphical library.
For Debian-based Linux distributions, you can install the packages

liblablgtk2-ocaml-dev liblablgtksourceview2-ocaml-dev

It is also installable from sources, available from the site http://wwwfun.kurims.
kyoto-u.ac.jp/soft/olabl/lablgtk.html

e For why3bench: The OCaml bindings of the sqlite3 library. For Debian-based Linux
distributions, you can install the package

libsqglite3-ocaml-dev

It is also installable from sources, available from the site http://ocaml.info/home/
ocaml_sources.html#focaml-sqlite3

When configuration is finished, you can compile Why3.

make
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Local use, without installation

It is not mandatory to install Why3 into system directories. Why3 can be configured and
compiled for local use as follows:

./configure --enable-local
make

The Why3 executables are then available in the subdirectory bin/.

Installation of the Why3 library
By default, the Why3 library is not installed. It can be installed using

make byte opt
make install_lib

8.2 Installation of external provers

Why3 can use a wide range of external theorem provers. These need to be installed sep-
arately, and then Why3 needs to be configured to use them. There is no need to install
these provers before compiling and installing Why.

For installation of external provers, please look at the Why provers tips page http:
//why.lri.fr/provers.en.html.

For configuring Why3 to use the provers, follow instructions given in Section 8.3.

8.3 The why3config command-line tool

Why3 must be configured to access external provers. Typically, this is done by running
either the command line tool

why3config
or using the menu
File/Detect provers

of the IDE. This must be redone each time a new prover is installed.

The provers which Why3 attempts to detect are described in the readable
configuration file provers-detection-data.conf of the Why3 data directory (e.g.
/usr/local/share/why3). Advanced users may try to modify this file to add support
for detection of other provers. (In that case, please consider submitting a new prover
configuration on the bug tracking system).

The result of provers detection is stored in the user’s configuration file (~/.why3.conf
or, in the case of local installation, why3.conf in Why3 sources top directory). This file
is also human-readable, and advanced users may modify it in order to experiment with
different ways of calling provers, e.g. different versions of the same prover, or with different
options.

The provers which are typically looked for are

e Alt-Ergo |1, 6]: http://alt-ergo.lri.fr
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e CVC3 [2]: http://cs.nyu.edu/acsys/cve3/

e Coq [3]: http://coq.inria.fr

e Eprover [11]: http://www4.informatik.tu-muenchen.de/ schulz/WORK/eprover.
html
e Gappa [L1]: http://gappa.gforge.inria.fr/

e Simplify [8]: http://secure.ucd.ie/products/opensource/Simplify/
e Spass: http://www.spass-prover.org/

e Vampire: http://www.voronkov.com/vampire.cgi

o VeriT: http://www.verit-solver.org/

e Yices [9]: http://yices.csl.sri.com/, only versions 1.xx since versions 2.xx do
not support quantifiers

e 73 |7]: http://research.microsoft.com/en-us/um/redmond/projects/z3/

why3config also detects the plugins installed in the Why3 plugins directory (e.g.
/usr/local/lib/why3/plugins). A plugin must register itself as a parser, a transfor-
mation or a printer, as explained in the corresponding section.

If the user’s configuration file is already present, why3config will only reset unset
variables to default value, but will not try to detect provers. The option -detect-provers
should be used to force Why3 to detect again the available provers and to replace them in
the configuration file. The option -detect-plugins will do the same for plugins.

8.4 The why3 command-line tool

Why3 is primarily used to call provers on goals contained in an input file. By default,
such a file must be written in Why3 language and have the extension .why. However, a
dynamically loaded plugin can register a parser for some other format of logical problems,
e.g. TPTP or SMTIib.

The why3 tool executes the following steps:

1. Parse the command line and report errors if needed.
2. Read the configuration file using the priority defined in Section 8.9.

3. Load the plugins mentioned in the configuration. It will not stop if some plugin fails
to load.

4. Parse and typecheck the given files using the correct parser in order to obtain a set
of Why3 theories for each file. It uses the filename extension or the -format option
to choose among the available parsers. The -list-format option gives the list of
registered parsers.

5. Extract the selected goals inside each of the selected theories into tasks. The goals
and theories are selected using the options -G/-goal and -T/-theory. The op-
tion -T/-theory applies to the last file appearing on the command line, the option
-G/-goal applies to the last theory appearing on the command line. If no theories
are selected in a file, then every theory is considered as selected. If no goals are
selected in a theory, then every goal is considered as selected.
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6. Apply the transformation requested with -a/-apply-transform in their order of ap-
pearance on the command line. -list-transforms list the known transformations,
plugins can add more of them.

7. Apply the driver selected with the -D/-driver option, or the driver of the prover
selected with -P/-prover option. -list-provers lists the known provers, i.e. the
ones which appear in the configuration file.

8. If the option -P/-prover is given, call the selected prover on each generated task
and print the results. If the option -D/-driver is given, print each generated task
using the format specified in the selected driver.

The provers can answer the following output:
Valid the goal is proved in the given context,
Unknown the prover stop by itself to search,
Timeout the prover doesn’t have enough time,
Failure an error occured,

Invalid the prover know the goal can’t be proved

The option -bisect change the behaviors of why3. With this option, -P/-prover
and -o/-output must be given and a valid goal must be selected. The last step executed
by why3 is replaced by computing a minimal set (in the great majority of the case) of
declarations which still prove the goal. Currently it doesn’t use any information provided
by the prover, it call the prover multiple time with reduced context. The minimal set of
declarations is then written in the prover syntax into a file located in the directory given
to the -o/-output option.

8.5 The why3ide GUI

The basic usage of the GUI is described by the tutorial of Section 1.2. We describe here the
command-line options and the actions of the various menus and buttons of the interface.
Command-line options

-I d: adds d in the load path, to search for theories.

Left toolbar actions

Context The context in which the other tools below will apply. If “only unproved goals”
is selected, no action will ever be applied to an already proved goal. If “all goals”,
then actions are performed even if the goal is already proved. The second choice
allows to compare provers on the same goal.

Provers To each detected prover corresponds to a button in this prover framed box.
Clicking on this button starts the prover on the selected goal(s).

Split This splits the current goal into subgoals if it is a conjunction of two or more goals.

Inline If the goal is headed by a defined predicate symbol, expands it with this definition.



8.5. THE WHY3IDE GUI 69

Edit Start an editor on the selected task.
For automatic provers, this allows to see the file sent to the prover.

For interactive provers, this also allows to add or modify the corresponding proof
script. The modifications are saved, and can be retrieved later even if the goal was
modified.

Replay Replay all obsolete proofs

If “only unproved goals” is selected, only formerly successful proofs are rerun. If “all
goals”, then all obsolete proofs are rerun, successful or not.

Remove Removes a proof attempt or a transformation.

Clean Removes any unsuccessful proof attempt for which there is another successful proof
attempt for the same goal

Menus

Menu File
Add File adds a file in the GUI

Preferences opens a window for modifying preferred configuration parameters, see details
below

Reload reloads the input files from disk, and update the session state accordingly

Save session Save current session state on disk. The policy to decide when to save the
session is configurable, as described in the preferences below.

Quit exits the GUI

Menu View
Expand All expands all the rows of the tree view

Collapse proved goals closes all the rows of the tree view which are proved.

Menu Tools A copy of the tools already available in the left toolbar, plus:

Mark as obsolete marks all the proof as obsolete. This allows to replay every proofs.

Menu Help A very short online help, and some information about this software.

Preferences

The preferences window allows you customize

e the default editor to use when the Edit button is pressed. This might be overidden
for a specific prover (the only way to do that for the moment is to manually edit the
config file)

e the time limit given to provers, in seconds

e the maximal number of simultaneous provers allowed to run in parallel.
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e The policy for saving session:

always save on exit (default): the current state of the proof session is saving on
exit

never save on exit: the current state of the session is never save automatically,
you must use menu File/Save session to save when wanted

ask whether to save: on exit, a popup window ask whether you want to save or
not.

Structure of the database file

The session state is stored in an XML file named <dir>/why3session.xml, where <dir>
is the directory of the project.
The XML file follows the DTD given in share/why3session.dtd and reproduced be-

low.

<!ELEMENT
<!ATTLIST

<!ELEMENT
<MATTLIST
<!ATTLIST
<IATTLIST

<{ELEMENT
<VATTLIST
<!ATTLIST
<VATTLIST

<!ELEMENT
<!ATTLIST
<IATTLIST
<!ATTLIST
<!ATTLIST
<VATTLIST

<!ELEMENT
<!ATTLIST
<VATTLIST
<!1ATTLIST
<MATTLIST

<!ELEMENT
<!ATTLIST
<IATTLIST

<{ELEMENT

<{ELEMENT
<MATTLIST

why3session (file*)>
why3session name CDATA #REQUIRED>

file (theoryx)>

file name CDATA #REQUIRED>
file verified CDATA #REQUIRED>
file expanded CDATA #IMPLIED>

theory (goalx)>

theory name CDATA #REQUIRED>
theory verified CDATA #REQUIRED>
theory expanded CDATA #IMPLIED>

goal (proof#*, transfx)>

goal name CDATA #REQUIRED>
goal expl CDATA #IMPLIED>
goal proved CDATA #REQUIRED>
goal sum CDATA #REQUIRED>
goal expanded CDATA #IMPLIED>

proof (result|undone)>

proof prover CDATA #REQUIRED>
proof timelimit CDATA #REQUIRED>
proof edited CDATA #IMPLIED>
proof obsolete CDATA #IMPLIED>

result EMPTY>
result status (valid|invalid|unknown|timeout|failure) #REQUIRED>
result time CDATA #IMPLIED>

undone EMPTY>

transf (goal*)>
transf name CDATA #REQUIRED>



8.6. THE WHY3ML TOOL 71

<!ATTLIST transf proved CDATA #REQUIRED>
<VATTLIST transf expanded CDATA #IMPLIED>

8.6 The why3ml tool

why3ml is an additional layer on Why3 library for generating verification conditions from
Why3ML programs. The command-line of why3ml is identical to that of why3, but also
accepts files with extension .mlw as input files containing Why3ML modules (see chapter 3
and section 5.3). Modules are turned into theories containing verification conditions as
goals, and then why3ml behaves exactly as why3 for the remaining of the process. Note
that files with extension .mlw can also be loaded in why3ide.

For those who want to experiment with Why3ML, many examples are provided in
examples/programs.

8.7 The why3bench tool

The why3bench tool adds a scheduler on top of the Why3 library. why3bench is designed
to compare various components of automatic proofs: automatic provers, transformations,
definitions of a theory. For that goal it tries to prove predefined goals using each component
to compare. why3bench allows to output the comparison in various formats:

e csv: the simpler and more informative format, the results are represented in an array,
the rows corresponds to the compared components, the columns correspond to the
result (Valid,Unknown, Timout,Failure,Invalid) and the CPU time taken in seconds.

e average: summarizes the number of the five different answers for each component.
It also gives the average time taken.

e timeline: for each component it gives the number of valid goals along the time (10
slices between 0 and the longest time a component takes to prove a goal)

The compared components can be defined in an re-file, examples/programs/
prgbench.rc is such an example. More generally a bench configuration file:

[probs "myprobs"]

file = "examples/monbut.why" #relatives to the rc file
file = "examples/monprogram.mlw"
theory = "monprogram.T"

goal = "monbut.T.G"

transform = "split_goal'" #applied in this order
transform
transform

[tools "mytools"]
prover = cvc3
prover = altergo
#or only omne
driver = "...

command = "..."
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loadpath
loadpath

"..." #added to the one in why3.conf

timelimit = 30
memlimit = 300

use = "toto.T" #use the theory toto (allow to add metas)
transform = "simplify_array" #only 1 to 1 transformation

[bench "mybench"]

tools = "mytools"

tools = ...

probs = "myprobs"

probs = ...

timeline = "prgbench.time"
average = "prgbench.avg"
csv = "prgbench.csv"

Such a file can define three families tools,probs,bench. The sections tools define a
set of components to compare, the sections probs define a set of goals on which to compare
some components and the sections bench define which components to compare using which
goals. It refers by name to the sections tools and probs defined in the same file. The
order of the definitions is irrelevant. Notice that loadpath in a family tools can be used
to compare different axiomatizations.

One can run all the bench given in one bench configuration file with why3bench :

why3bench -B path_to_my_bench.rc

8.8 The why3replayer tool

The purpose of the why3replayer tool is to execute the proofs stored in a Why3 session

file, as the one produced by the IDE. Its main goal is to play non-regression tests, e.g. you

can find in examples/regtests.sh a script that runs regression tests on all the examples.
The tool is inkoved in a terminal or a script using

why3replayer [options] <project directory>

The session file why3session.xml stored in the given directory is loaded and all the proofs
it contains are rerun. Then, any difference between the information stored in the session
file and the new run are shown.

Nothing is shown when there is no change in the results, independently of the fact the
considered goal is proved or not. When all the proof runs are done, a summary of what
is proved or not is displayed using a tree-shape pretty print, similar to the IDE tree view
after doing “Collapse proved goals”, that is when a goal, a theory or a file is fully proved
the subtree is not shown.

Exit code and options

e The exit code is 0 if no difference was detected, 1 if there was. Other exit codes
mean some failure in running the replay.
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e option -s: suppresses the output of the final tree view

e option -I <path>: suppresses the output of the final tree view

8.9 The why3.conf configuration file

One can use a custom configuration file. why3config and other why3 tools use priorities
for which user’s configuration file to consider:

e the file specified by the -C or --config options,
e the file specified by the environment variable WHY3CONFIG if set.

e the file $HOME/.why3.conf ($USERPROFILE/.why3.conf under Windows) or, in the
case of local installation, why3.conf in Why3 sources top directory.

If none of these files exists, a built-in default configuration is used.
The configuration file is a human-readable text file, which consists of association pairs
arranged in sections. Here follows an example of configuration file.

[main ]

loadpath = "/usr/local/share/why3/theories"
magic = 2

memlimit = 0

running_provers_max = 2

timelimit = 10

[ide ]

default_editor = "emacs"
task_height = 384
tree_width = 438

verbose = 0
window_height = 779
window_width = 638

[prover coql

command = "coqc %f"

driver = "/usr/local/share/why3/drivers/coq.drv"
editor = "coqide"

name = "Coq"

version = "8.2pl2"

[prover alt-ergol]
command = "why3-cpulimit %t %m alt-ergo %f"

driver = "/usr/local/share/why3/drivers/alt_ergo.drv"
editor = ""

name = "Alt-Ergo"

version = "0.91"

A section begins with a header inside square brackets and ends at the beginning of
the next section. The header of a section can be only one identifier, main and ide in the
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example, or it can be composed by a family name and one family argument, prover is one
family name, coq and alt-ergo are the family argument.

Inside a section, one key can be associated with an integer (.eg -555), a boolean (true,
false) or a string (e.g. "emacs"). One key can appear only once except if its a multi-value
key. The order of apparition of the keys inside a section matter only for the multi-value
key.

8.10 Drivers of External Provers

The drivers of external provers are readable files, in directory drivers. Experimented
users can modify them to change the way the external provers are called, in particular

which transformations are applied to goals.
[TO BE COMPLETED LATER]

8.11 Transformations

Here is a quick documentation of provided transformations. We give first the non-splitting
ones, e.g. those which produce one goal as result, and others which produces any number
of goals.

Notice that the set of available transformations in your own installation is given by

why3 --list-transforms

Non-splitting transformations

eliminate algebraic Replaces algebraic data types by first-order definitions [13]

eliminate builtin Suppress definitions of symbols which are declared as builtin in the
driver, i.e. with a “syntax” rule.

eliminate definition func Replaces all function definitions with axioms.
eliminate definition pred Replaces all predicate definitions with axioms.
eliminate definition Apply both transformations above.
eliminate mutual recursion Replaces mutually recursive definitions with axioms.
eliminate recursion Replaces all recursive definitions with axioms.

eliminate if term replaces terms of the form if formula then t2 else t3 by lifting
them at the level of formulas. This may introduce if then else in formulas.

eliminate if fmla replaces formulas of the form if f1 then f2 else £3 by an equiv-
alent formula using implications and other connectives.

eliminate if Apply both transformations above.

eliminate inductive replaces inductive predicates by (incomplete) axiomatic defini-
tions, i.e. construction axioms and an inversion axiom.

eliminate let fmla Eliminates let by substitution, at the predicate level.

eliminate let term Eliminates let by substitution, at the term level.
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eliminate let Apply both transformations above.

encoding smt Encode polymorphic types into monomorphic type [4].
encoding tptp Encode theories into unsorted logic.

inline _all expands all non-recursive definitions.

inline goal Expands all outermost symbols of the goal that have a non-recursive defini-
tion.

inline trivial removes definitions of the form

function f x_1 .. x_n = (g e_l .. e_k)
predicate p x_1 .. x_.n = (q e_1 .. e_k)

=]
|

when each e; is either a ground term or one of the x;, and each z; .. x, occur at
most once in the e;

introduce premises moves antecedents of implications and universal quantifications of
the goal into the premises of the task.

simplify array Automatically rewrites the task using the lemma Select_eq of theory
array.Array.

simplify formula reduces trivial equalities ¢ = ¢ to true and then simplifies proposi-
tional structure: removes true, false, “f and {” to “f”, etc.

simplify recursive definition reduces mutually recursive definitions if they are not
really mutually recursive, e.g.:

function £ : ... = .... g ...
with g : .. = e

becomes

function g : .. = e
function £ : ... = .... g ...

if f does not occur in e

simplify trivial quantification simplifies quantifications of the form
forall x, x=t -> P(x)
or
forall x, t=x -> P(x)
when x does not occur in t into

P(t)
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More generally, it applies this simplification whenever x=t appear in a negative
position.

simplify trivial quantification in_goal same as above but applies only in the goal.

split _premise splits conjunctive premises.

Splitting transformations

full split _all composition of split_premise and full_split_goal.

full split _goal puts the goal in a conjunctive form, returns the corresponding set of
subgoals. The number of subgoals generated may be exponential in the size of the
initial goal.

simplify formula and task same as simplify_formula but also removes the goal if
it is equivalent to true.

split _all composition of split_premise and split_goal.

split_goal if the goal is a conjunction of goals, returns the corresponding set of subgoals.
The number of subgoals generated is linear in the size of the initial goal.

split _intro when a goal is an implication, moves the antecedents into the premises.
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