
ORSAY
N◦ d’ordre: XXXX

UNIVERSITÉ DE PARIS-SUD 11
CENTRE D’ORSAY

THÈSE

présentée
pour obtenir

le grade de docteur en sciences DE L’UNIVERSITÉ PARIS XI

PAR

Johannes KANIG
−→←−

SUJET:

Spécification et Preuve de Programmes d’Ordre Supérieur

Specification and Proof of Higher-Order Programs

soutenue le 26 novembre 2010 devant la commission d’examen

M. Olivier Danvy (Rapporteur)
M. Jean-Christophe Filliâtre (Directeur)
M. Xavier Leroy (Examinateur)
M. Jean-François Monin (Rapporteur)
Mme Christine Paulin (Directrice)
M. Burkhart Wolff (Examinateur)

Remerciements
Je veux tout d’abord remercier ma directrice Christine Paulin, et mon encadrant Jean-
Christophe Filliâtre, sans qui cette thèse n’aurait jamais été possible, et sans qui elle
n’aurait jamais pu être menée à bien. La capacité de Christine à s’occuper d’autant de
choses à la fois tout en trouvant le temps de me donner des conseils extrêmement perti-
nents m’a toujours impressionné. Jean-Christophe est tout simplement un phénomène :
toujours disponible pour écouter mes idées encore non abouties, toujours capable de me
donner de nouvelles pistes, toujours intéressé par une discussion autour de la program-
mation.
Je veux également remercier chaleureusement mes deux rapporteurs, Olivier Danvy

et Jean-François Monin, pour leur patience avec mon manuscrit et leurs remarques qui
ont permis de l’améliorer.
Je veux également remercier Xavier Leroy et Burkhart Wolff pour avoir accepté de

faire partie de mon jury. Ce sont des chercheurs d’une grande réputation dont j’ai
toujours admiré le travail.
Je remercie également tous mes collègues de l’équipe Proval. Sylvain Conchon m’a

accompagné pendant mon stage de mastère, et pendant ma thèse, et il a toujours été de
bon conseil, scientifiquement et personnellement. Claude Marché m’a souvent surpris
avec des questions en apparence simples, qui se révélaient très pertinentes. Je remercie
Guillaume Melquiond et Andrei Paskevich, desquelles j’ai pu apprendre tellement de
choses au coin café. J’ai également très apprécié les discussions, au travail et ailleurs,
avec Louis Mandel. Xavier Urbain m’a introduit au bon Champagne, je l’en remercie.
Je veux également remercier Evelyne Contejean et Sylvie Boldo, qui ont répondu à des
nombreuses questions, scientifiques et autres, que je leur ai posées. Véronique Benzaken
et Kim Nguyen sont arrivés juste à temps pour me donner de conseils précieux lors de
la préparation de ma soutenance.
Je veux remercier les “anciens” Thierry, Mathieu, Yannick et Florence, qui étaient

de très agréable compagnie, et qui m’ont montré qu’il y avait une lumière au bout du
tunnel. Romain, Wendi et Stéphane, désolé, j’aurai fini avant vous. Et finalement je
veux remercier et encourager François, Tuyen, Asma, Mohamed, Cédric et Alain : une
thèse, c’est long, mais à la fin on est fier.
Les “postdocs” et visiteurs Kalyan, Simão, David et Dariusz ont enrichi la vie de

l’équipe. Je veux remercier en particulier Yann Régis-Gianas : il m’a appris énormément
de choses sur ML au début de ma thèse, plus tard nous avons pu collaborer, et j’ai
beaucoup apprécié cette collaboration.
Je veux remercier mes co-auteurs Mlpost, à savoir François, Stéphane, Jean-Christophe

et Romain. Ce fût une véritable aventure en génie logiciel et j’espère que ce n’est pas
fini.
Ein großes Dankeschön an meine Familie, die mich immer unterstützt hat, und die

damit leben muss, dass ich so weit weg arbeite, und so selten nach Hause komme.
Finalement, je veus remercier mes amis, et en particulier Laurette, qui m’ont accom-

pagné pendant ces trois ans. Ce fût un plaisir.

Contents

1. Introduction 1
1.1. Generalities . 1
1.2. Methods to Obtain more Reliable Programs 2

1.2.1. Testing . 2
1.2.2. Formal Methods . 4
1.2.3. Language Techniques . 6

1.3. Two Techniques Presented in more Detail 8
1.3.1. Hoare Logic in more Detail . 10
1.3.2. The ML Type System and Extensions 20

1.4. Overview of the Document, Contributions and Related Work 30
1.4.1. An Overview of the Document 30
1.4.2. Design Choices . 32
1.4.3. Related Work . 34

2. The Specification Language 39
2.1. The Programming Language W . 39

2.1.1. Syntax . 39
2.1.2. Semantics . 45
2.1.3. Typing . 50
2.1.4. Properties . 54
2.1.5. A Generalization of the Results 61

2.2. The Logic L . 62
2.2.1. Syntax . 63
2.2.2. Typing . 64
2.2.3. Semantics . 66
2.2.4. Annotating Programs . 69

3. A Weakest Precondition Calculus 75
3.1. The wp Predicate Transformer . 75
3.2. Soundness of the wp Calculus . 82
3.3. Completeness . 90
3.4. Extensions . 102

3.4.1. Logical Symbols in Programs . 102
3.4.2. Read-Write Effects . 103
3.4.3. Algebraic Data Types and Pattern Matching 104

4. A Language without Aliasing 107
4.1. Excluding Aliasing of Regions . 108
4.2. Singleton Regions . 115

iii

Contents

5. Implementation and Case Studies 125
5.1. The Who Tool . 125
5.2. Translation from L to L0 . 128
5.3. Translation from Higher-Order Logic to First-Order Logic 133

5.3.1. Motivation . 133
5.3.2. An Overview of the Encoding . 135
5.3.3. The Source Language . 136
5.3.4. Elimination of Quantifiers . 138
5.3.5. Elimination of λ-Abstractions . 138
5.3.6. The Target Language: FOL . 140
5.3.7. The Encoding . 142
5.3.8. Optimizations of the Encoding 142
5.3.9. An Example . 145
5.3.10. Justifying the Encoding . 146

5.4. Case Studies . 149
5.4.1. Introductory Examples . 150
5.4.2. Memoization Functions . 153
5.4.3. The Array Module . 156
5.4.4. The List Module . 161
5.4.5. Koda and Ruskey’s Algorithm 163
5.4.6. A Challenge for the Who Tool . 168

6. Conclusion and Outlook 171
6.1. A Summary of the Contributions of this Thesis 171
6.2. Using Who to Verify OCaml Programs 172

A. Résumé en Français 177
A.1. Introduction . 177

A.1.1. La logique de Hoare . 177
A.1.2. L’ordre supérieur . 178
A.1.3. Le langage ML . 178
A.1.4. Les systèmes à effets . 178
A.1.5. Cette thèse . 179

A.2. Le langage de programmation W et la logique L 179
A.3. Le calcul de plus faible précondition . 180
A.4. Les restrictions d’alias . 181

A.4.1. L’exclusion d’aliasing de régions 182
A.4.2. Les régions singletons . 183

A.5. L’outil et des exemples . 183
A.5.1. Traduction vers la logique du premier ordre 184
A.5.2. Études de cas . 184

A.6. Conclusion . 185

Bibliography 187

Index 199

iv

1. Introduction

Educators, generals, dieticians, psychologists, and parents
program. Armies, students, and some societies are programmed.
An assault on large problems employs a succession of programs,
most of which spring into existence en route. These programs are
rife with issues that appear to be particular to the problem at
hand. [. . .] For all its power, the computer is a harsh taskmaster.
Its programs must be correct, and what we wish to say must be
said accurately in every detail. As in every other symbolic
activity, we become convinced of program truth through
argument.

Alan J. Perlis, in the foreword for Structure and Interpretation of
Computer Programs, (Abelson and Sussman, 1996).

Computers and software have become ubiquitous in our every-day life. The huge
majority of office work is done using computers, communication is done using email or a
software-controlled mobile phone, LEGO sells programmable robots. These applications
are non-critical, so when there is a problem with the hardware or the software, one will
usually try again, fix the problem when there is time or simply live with it. However,
computers have been increasingly used in environments where wrong behavior can have
serious consequences: military and civil airplanes, cars and subway trains are now partly
controlled by software; software makes medical devices work; huge amounts of money
are traded on financial markets by computer programs every second. These applications
are critical, a single fault in the system can trigger loss of money, or human lives, or
both.

1.1. Generalities

A computer program, or simply program, is a list of instructions intended to be executed
by a computer. It is also intended to be human-readable and human-writable. The text
of a program is also called the source code or simpler code. Computer programs are
written in a programming language; such a language is defined by its syntax, which
describes the form of valid programs, and its semantics, which describes the meaning
of valid programs. Programs in a human-readable language are in general not directly
understandable by a computer, so they have to be compiled (translated) to machine
code, a simpler programming language that is easy to interpret by the computer but
very difficult to understand for humans, because of the absence of structure and the
presence of many operational details. This translation process is done by a compiler,
another program.

1

1. Introduction

A computer program generally accepts a problem description as an input, and gives
an answer as an output. All but the simplest programs are divided into functions or
procedures, smaller parameterized units of instructions. Instructions manipulate data,
which is stored in thememory of the computer. Data structures are a way of representing
and structuring data in a program. A module is a group of functions or procedures that
deal with the same problem domain and/or data structures. An algorithm is the idea
of a program, independently of a particular programming language or computer. An
algorithm is intended to solve a problem, i.e., to give a correct answer to a question
given in a certain way. There may be several algorithms which solve the same problem.
An algorithm can also be formulated in English. A concrete program which has been
written with an algorithm in mind is called an implementation.
A specification is a text that describes the expected behavior of a program or algo-

rithm. Often, a specification describes conditions on the input (a precondition) of the
program under which it is supposed to function. It also describes properties of the
output of program (a postcondition) that are guaranteed if the program is correct. As
an example, a program to compute the square root of a real number should expect this
number to be positive, and should return a number which actually is (or is reasonably
close to) the square root of the input. A specification can be either informal, i.e., given
in English or with the help of diagrams, or formal, in which case it will probably be
expressed using logical formulas. The informal specification of a program computing
the square root has just been given. The formal one can be expressed as follows. If the
input value, call it x, satisfies the condition

x ≥ 0,

then the output value, call it r for result, has to satisfy the condition

r =
√
x.

An error in a computer program which causes it to not produce the intended result
is called a bug. The activity of searching and correcting bugs is called debugging.
A program or algorithm is correct when under all circumstances the specification is
verified. This definition also makes it clear that a program or algorithm can never
be correct by itself, it can only be correct with respect to a specification. Another
important distinction is between a safety specification which basically only states that
the program does not crash and a functional specification, which includes properties
about the intended result.

1.2. Methods to Obtain more Reliable Programs
For decades now, high reliability has been an important research focus. Many methods,
to either find bugs in existing software or avoid writing faulty software in the first place,
have been devised. We only present a few of them.

1.2.1. Testing
The first such method is testing (Kaner et al., 1993; Myers and Sandler, 2004). In its
simplest form, testing consists in choosing a set of input values and determining the

2

1.2. Methods to Obtain more Reliable Programs

expected output for each of it, then running the program to be tested on each input
and comparing the actual output of the program with the expected output. Testing
can take place at the program or function level. We briefly describe a few notions in
the area of testing.

Black box testing takes place when the program or function is considered to be an
opaque unit, i.e., one does not take into account its internal implementation.
Black box testing can test for general correctness.

White box testing takes place when the selection of the test input depends on the pro-
gram code to be tested. This can be useful to test a particular aspect of an
implementation or algorithm, which may not be relevant for other implementa-
tions of the same algorithm, or different algorithms solving the same problem.

Coverage A test may not execute all instructions of a program. The coverage is the
proportion of code executed during a test. In general, testing aims to maximize
coverage.

Unit tests test a single function or module of the program, instead of the entire program.

Integration tests test the interaction between two modules.

Regression tests test the program against known problems in prior versions, so that
an unintended reintroduction of these problems by future modifications of the
program can be easily detected.

Contracts (Meyer, 2000) are test conditions, similar to pre- and postconditions, that
usually appear at the beginning and at the end of a function. During the devel-
opment of the program, they can be executed each time the function is called,
to test the validity of input of the function and the correctness of its output.
These test conditions are usually removed for efficiency reasons once the program
is used in a production environment. Originally introduced by the language Eif-
fel (Meyer, 1992), this concept has been reused by others, for example in the
executable specification language JML (Leavens et al., 2009).

Test driven development describes a process of software development in which the test is
written before writing the program or function to be tested. This process is meant
to encourage proper analysis of the problem before starting to write the program.
Test-driven development has first been proposed by the eXtreme Programming
movement (Beck and Andres, 2004).

Testing is intuitive and relatively cheap to set up. This is certainly the reason why
testing is nowadays extensively applied to software development in all parts of the
industry. Much research has been dedicated to automatically generating test input. In
this setting, the distinction between black box and white box testing becomes even more
important. Formal or informal specifications have been used to guide this automated
generation.
Probably the biggest drawback of testing is that it gives relatively weak guarantees

about the correctness of the tested program. It can only verify the well-behavior of

3

1. Introduction

the program for the chosen pairs of input and output values, but other situations may
occur when the program is actually used. The reason is that even in very simple cases,
the input domain of a program is infinite, but only a finite (and usually small) amount
of input values can be tested. This fact implies that testing alone is not sufficient for
critical systems, where one wants to guarantee the absence of bugs.

1.2.2. Formal Methods

Given the inadequacy of testing to guarantee the absence of bugs, we have to turn to
other methods. The field of formal methods (Monin, 2002) tries to give better guaran-
tees; it is an extremely vast field, but one can say that formal methods try to apply
advances in mathematics, logics and theoretical computer science to the correctness
of programs. The notion of formal method is related to the notion of static analysis.
Static analysis describes processes that reason about computer programs without exe-
cuting them. Testing does not belong to static analysis because it necessarily has to
run the program to observe its output. Static analysis is most successful when the
programming language has a clear semantics, i.e., the meaning of every statement of
the language is clearly defined, so that one does not need to execute it in order to
understand its behavior.

Model checking and bounded model checking. Model checking (Clarke et al., 2000)
can be seen as exhaustive testing. Historically, model checking has first been applied
to hardware components, and it has been applied to software later. Model checking
represents the component to be checked by an abstract model consisting of states that
may or may not verify the properties to be checked. Each instruction corresponds to a
state change. The resulting diagram can now be exhaustively explored (in the case of
hardware components), starting from the initial state, and the property to be checked
can be verified in each reachable state. The variant bounded model checking does only
test if all states reachable in n steps are valid, for a given n.
Exhaustive model checking is again impossible for even very simple computer pro-

grams, because the number of states is infinite. So only bounded model checking is
directly applicable, but it can give only limited guarantees.

Abstract interpretation. Another way to deal with the infinite number of states is to
only consider a finite number of abstract states. Each possible state of the program
is mapped to an abstract state. Each instruction, which was modeled as a transition
between concrete states in model checking, now becomes a transition between abstract
states. The mapping from concrete to abstract states is also called abstraction. The
properties to be verified, initially formulated for concrete states, are reformulated to
deal with abstract states instead. The transition diagram now becomes finite again and
can be exhaustively explored, similar to the way model checking works.
This method of abstracting the search space is called abstract interpretation (Cousot

and Cousot, 1979), and it has been used to verify properties of a large number of
industrial-sized programs. The verifier Astree (Blanchet et al., 2003) and the commercial
tool The Mathworks Polyspace, among others, are based on abstract interpretation.

4

1.2. Methods to Obtain more Reliable Programs

Because there are many more concrete states than there are abstract states, mul-
tiple concrete states may be mapped to the same abstract state. In particular, valid
states and invalid concrete states may be mapped to the same abstract state. For the
abstraction to be correct, it must be an overapproximation of the concrete states, i.e.,
every abstract state that contains at least one invalid state has to be marked invalid
as well. Therefore, the analysis on the abstract diagram may fail although the initial
program is correct, for example when all accessible concrete states are valid, but the
abstraction rendered invalid states accessible. In such cases, abstract interpretation
will report false positives, spurious errors that are present only due to the choice of the
abstraction. Different abstraction methods may result in more or less false positives.

Hoare logic. When the other methods fail, we need a more powerful technique to prove
the correctness of our programs. Probably the most powerful, but also the most expen-
sive way of reasoning about programs is called Hoare logic, sometimes also Floyd-Hoare
logic (Floyd, 1967; Hoare, 1969). The basic principle is to push the idea of specifica-
tions to its extreme and specify each instruction of a program with a precondition and
a postcondition:

{P} C {Q},

where C is an instruction or a command, and P and Q are logical formulas expressing
the pre- and postcondition, respectively. The meaning of this expression is: in any
state where P is true, one can execute instruction C and finish in a state where Q is
true. These so-called Hoare triples can be combined under certain conditions. As an
example, when one has established that the postcondition of an instruction C1 is equal
to the precondition of an instruction C2, one can certainly first execute C1, then C2
and obtain a state validating the postcondition of C2. In Hoare logic, this reasoning is
written as an inference rule:

SEQ
{P} C1 {Q} {Q} C2 {R}

{P} C1;C2 {R}

where C1;C2 precisely means “execute C1, then C2”. An inference rule describes a
reasoning step. The hypotheses are written above the bar, and the conclusion below.
Similar rules have been developed for most constructs found in many programming
languages. The aim is to obtain, by successive application of these rules, a triple
{P} C {Q} where C is the entire program to be considered, and P and Q correspond
to the specification of the program. Once this has been done, one can conclude that the
program is correct with respect to its specification. Many sets of rules of Hoare logic
have been proved to be complete, i.e., in principle any correct program can be proved
to be correct.
The huge drawback of Hoare logic is that for programs of even moderate size it is

simply too much work to consider each and every instruction and establish a Hoare
triple for it. There have been many efforts to improve this situation. One way is to
propagate specifications automatically, and to require only certain key places to con-
tain specification annotations, such as function definitions and loops. For loops, these
special annotations are called loop invariants. The application of the rules can then be

5

1. Introduction

discovered automatically. The most popular variant of this is called the weakest precon-
dition calculus (Dijkstra, 1975). Other methods try to discover specifications or loop
invariants automatically. Nevertheless, Hoare logic and related methods remain by far
the most heavyweight solutions. On the other hand, to prove functional specifications
of complex programs they may be the only alternative.

Refinement. Refinement is a popular variant of Hoare logic where first a very high-
level specification of a program or module is given, a specification that does not need
to care about implementation details. In this initial phase of the process, abstract, or
mathematical instructions can replace actual instructions of the programming language.
This initial specification is then subject to one or several refinement steps; high-level
and abstract parts of the program and the specification are replaced by more and more
concrete instructions and specifications, until a fully executable program with a concrete
specification is obtained. Refinement rules help to assure that each refinement step is
correct. The correctness of the initial program and specification can be verified for ex-
ample using Hoare logic. Compared to using only Hoare logic, a user of refinement can
concentrate on the overall-structure of the program, and its high-level meaning, instead
of being overwhelmed by implementation details early in the development process. Re-
finement proceeds top-down, while Hoare logic is a bottom-up approach. The technique
of refinement has been enjoying a bit more use in the industry than approaches based
only on Hoare logic, in particular the B method (Abrial, 1996). It has been used to
verify, for example, the safety of the code of metro line 14 in Paris (Behm et al., 1999).

1.2.3. Language Techniques

We have mentioned several programming language independent techniques1 to test or
guarantee a certain program behavior. There is another class of techniques that aims
to rule out certain well-defined classes of errors, but says nothing about other errors.
The two most prominent classes of errors are bugs due to memory access and typing
errors. Techniques to avoid these errors are usually directly built into the programming
language. We briefly present the problems and proposed techniques.

Memory management. In so-called low-level languages such as C (Kernighan and
Ritchie, 1978), the programmer has complete control over the memory used by the
program. If the program needs more storage space, the programmer has to allocate
(ask the system to provide) more memory; this memory needs to be freed after use, to
be able to reuse it later for some other purpose. The programmer can read from and
write to unallocated memory, and can leave memory uninitialized (it may contain any
data that was previously stored at the same place). This liberty is sometimes needed
to communicate with external devices, or can be used to write more efficient programs,
but it is also a source of bugs. Typical programming errors in languages such as C are
failure to initialize data (and get random results), failure to free unused memory (this
results in memory leaks, a situation where a long-running program uses up more and

1Note that the principles of these techniques are language independent, but to apply them to a
particular program, they have to be adapted to the programming language that has been used.

6

1.2. Methods to Obtain more Reliable Programs

more memory of the system, while it actually uses only a moderate amount of space)
and access to unallocated memory (this can result in undefined behavior or program
crashes).
There have been many approaches to eliminate this kind of faulty behavior related to

memory management. Most modern languages have a garbage collector, a mechanism
that automatically deals with allocation and deallocation of memory as needed. This is
true for most object oriented languages with the notable exception of C++ (Stroustrup,
1991), all so-called functional languages such as theML family (Leroy et al., 2008; Milner
et al., 1997) and Haskell (Peyton Jones et al., 2003), and all dynamic languages such
as Python, Perl and Ruby. Usually, at the same time the language denies direct access
to the memory. As a consequence, this mechanism makes memory leaks and access to
unallocated parts of the memory simply impossible. A garbage collector on its own
does not rule out problems related to the initialization of data.
Another technique is the obligation to initialize all allocated memory. Despite the

simplicity and usefulness of this restriction (of course it rules out problems with unini-
tialized memory, and the dreaded NullPointerException in Java), it has not seen as
much success in programming languages as garbage collectors. It is present in dynamic
languages and in functional languages, but mostly not in object oriented languages.

Type systems. Another widespread technique to avoid common programming errors
is a type system. A type system is a technique to avoid operations that do not make
sense, such as adding the boolean true to a number, as in

5 + true

If executed, such an operation can have undefined behavior or can even crash.
The idea of a type system is to attribute types to objects such as 5 and true. In

particular, 5 will be of integer type, often written int, and true of boolean type, often
written bool. One also associates a signature to each operation describing its input and
output types; for example + takes two integers and returns an integer. Looking at the
types, it becomes clear that true is not of the right type to be an argument to +. The
expression 5 + true contains a type error.
The field of type systems is very vast. A possible distinction is between static and

dynamic types. In a dynamic type system, the program itself, while running, detects
that a type error would occur and stops the execution of the program. The idea is that
such an abortion is usually preferred to continuing with undefined behavior. On the
other hand, static type systems are capable of detecting type errors at compile time,
i.e., during the translation of the program to machine code. A program that contains
a type error does not even get executed. Languages with static type systems usually
exploit typing information to compile programs more efficiently. A drawback of static
types is that the analysis can be imprecise, i.e., a program that cannot exhibit a type
error at runtime may be rejected anyway.
Another distinction is the obtained type safety. The language C has a static type

system, but it also gives the possibility to change the type of objects with an operation
called cast. Casts basically disable the type system for a part of the program. Un-
fortunately, the type system of C is so restrictive that casts are often the only way to

7

1. Introduction

achieve a certain behavior. Due to frequent casts and manual memory management, the
fact that a C program is well-typed does not give many guarantees about its run-time
behavior.

On the other hand, languages such as Haskell and ML give strong guarantees about
well-typed programs. Their type systems, in connection with their garbage collected
memory management, can guarantee that a well-typed program does not access unal-
located memory nor read uninitialized memory. It also cannot contain memory leaks
(in the sense described above). They also avoid type errors: the types of objects never
change, and expressions such as 5 + true can never occur, even during program execu-
tion. Certain types of runtime errors can still occur when the type system is not strong
enough to detect them, e.g., division by zero. Already in this setting, one can regard
typing as a way to prove the absence of certain errors.

Languages such as Coq (The Coq Development Team, 2008), Epigram (McBride and
McKinna, 2004) and Agda (Coquand and Coquand, 1999) take this idea even further
and have so expressive type systems that even functional correctness can be expressed
within the system. As an example, while usual type systems such as theML type system
have a type list for list-like structures, in Coq one can define the type describing sorted
lists. As a consequence, a sorting function for lists would be characterized by stating
that it returns not only a list, but a sorted list. Its functional correctness has been
expressed using types. Types of this more powerful form are called dependent types and
there is very active research on how to use dependent types to prove programs. A nice
aspect of this way of specifying correctness is that there is no additional mechanism as
Hoare logic to be applied. Everything is already in the type system. However, these
systems put an additional burden on the programmer, who now has to prove that, for
example, the sorting function has indeed the expected type. In the end, a user of a
system with dependent types has to prove similar properties as a user of Hoare logic.

The dependent type systems of the last three languages are so powerful that they
open up new applications; they can be used to prove mathematical theorems. This
becomes possible through the remarkable Curry-Howard isomorphism (Curry, 1958;
Howard, 1980), whose slogan is that “proofs are programs and theorems are types.”
The main idea is that types in dependent type systems have the same structure as
logical formulas in logical systems that belong to the family of type theory. This means
that dependent types can be used to express theorems. To prove such a theorem,
expressed by a type, the user must supply a program that can be given that type. In
this sense, programming and proving really are the same activity.

1.3. Two Techniques Presented in more Detail

In this section, we want to introduce more thoroughly two aspects of program analysis
that are particularly relevant to this work, the ML type system and Hoare logic.

8

1.3. Two Techniques Presented in more Detail

x, y, · · · Variables
E ::= x | E + E | · · ·
B ::= True | False | E = E | E ≤ E | · · ·
C ::= skip | x := E | C;C | while B do C done
◦ ::= ∧ | ∨ | ⇒

P,Q ::= B | P ◦Q | ¬P | ∀x.P

{ P } C { Q }

Skip { P } skip { P } Assign { P [x 7→ E] } x := E { P }

Seq
{ P } C1 { Q } { Q } C2 { R }

{ P } C1;C2 { R }

While
{ B ∧ P } C { P }

{ P } while B do C done { ¬B ∧ P }

Consequence
P ⇒ P ′ { P ′ } C { Q } Q⇒ Q′

{ P } C { Q′ }

Figure 1.1: Hoare Logic, as defined by Hoare (1969).

9

1. Introduction

1.3.1. Hoare Logic in more Detail

The Definitions

C.A.R. Hoare, in his seminal 1969 paper (Hoare, 1969), introduces a very simple pro-
gramming language commonly called WHILE, and rules to reason about it. Fig. 1.1
describes the language and the rules. Programs in this language manipulate a fixed set
of mutable integer variables. Expressions E can be formed using variables and arith-
metic operators. There are also boolean expressions B, returning a truth value. Finally,
commands C consist of the no-op command skip, assignment x := E which modifies the
current value of x to the result of the expression E, sequencing using ; and while loops
which test against a boolean expression.
Along with this programming language, Hoare defines rules to establish Hoare triples

of the form { P } C { Q }, where P and Q are logical formulas. Formulas are either
boolean expressions, combined formulas using logical connectors or quantifications over
variables. It should be noted that expressions and boolean expressions are shared
between programs and logical formulas. Of course, the propositional values True and
False are also available.
The intended meaning of the triple { P } C { Q } is that in any state where P is

true, if one executes C, one reaches a state where Q is true. This implies that the
formulas P and Q can access the state; they do so by directly using the variables that
are manipulated by the program. All the rules, with maybe the exception of the Assign
rule, are very intuitive: Skip states that skip indeed does nothing (each formula that
is true before is true afterwards), Seq states that one can chain two commands if the
postcondition of the first is equal to the precondition of the second. Consequence
states that one can strengthen the precondition and weaken the postcondition. While
states that if a formula P is true before the loop, and if the loop body C preserves
P when the condition B is true, then P is true when exiting the loop, as well as the
negation of B. This rule is interesting because it introduces the notion of invariant; P
is a formula whose validity must be left unchanged by the loop body C.
The assignment rule Assign2 seems to be backwards: it states that if P is true after

assigning E to x, the formula obtained from P by substituting E for x is true before
executing the command. However, looking at an example shows that this is indeed a
good way to formulate what assignment does. The Hoare triple

{ 0 = 0 } x := 0 { x = 0 }

is an instance of the axiom and is indeed intuitively correct. The precondition 0 = 0 is
trivially true and can be replaced by True using the Consequence rule.

Notation. This is a good moment to make some comments about the notations used
throughout the document. A defined language is always written in capital letters, such
as WHILE. Parts of the concrete syntax, in particular keywords of the language, are
written in sans serif, such as the keyword while. Finally, names of inference rules are
written in small caps, such as While.

2Assign is actually an axiom, as it has no premises.

10

1.3. Two Techniques Presented in more Detail

We use metavariables to denote different elements of the syntax, such as programs, or
formulas, or boolean tests in the case of the WHILE language. Metavariables are either
atomic, such as the metavariables x, y, . . . representing program variables, or they can
correspond to a syntactic category. To describe the structure of such a category, we
use the following notation:

V ::= S1 | S2 | · · · | Sn
V is the metavariable, and the Si are the different possibilities to build elements in this
syntactic category. The metavariable V and any other previously defined metavariable
can appear in one or more of the Si, in this case the category has recursive structure.
We can use more than one metavariable to define a syntactic category. As an example
consider the definition of formulas in WHILE:

P,Q ::= B | P ◦Q | ¬P | ∀x.P

Here we say that the metavariables P and Q stand for formulas, and these formulas
can be constructed in four different ways; we use both P and Q to express the recursive
nature of the structure of formulas. For formulas, we will sometimes introduce the
notation P (x) to denote a formula that may contain the variable x. In this context, we
may then write P (E) to denote the same formula, with E substituted for x everywhere.
Inference rules are always presented like this:

Name
H1 · · · Hn

C

Name is the name of the inference rule, H1 to Hn are the hypotheses of the rule, and
C is the conclusion of the rule. An instance or application of an inference rule can be
obtained by replacing all free metavariables of a rule by concrete instances. Inference
rules are always attached to some predicate or judgment, such as the Hoare triple
{ P } C { Q }. The conclusion of every inference rule belonging to this judgment is
of this form. In general, the hypotheses Hi can contain judgments of this form as well.
The inference rules of a judgment thus describe a way to build proof trees to obtain
instances of this judgment. Rules whose hypotheses do not contain this judgment are
called leaves, because the proof tree ends at this point. Rules without hypotheses are
called axioms.
Another issue is the one of variable bindings. Most people agree that for formulas

such as
∀x.P (x),

the variable name x chosen here should not be of any importance. The formula

∀y.P (y)

is an equally good way of expressing the same property. Also, when we write

x = 0⇒ ∀x.P (x) (1.1)

the x on the left is distinct from the one on the right; in particular, as we just men-
tioned, we can replace the x on the right by y to make this distinction clear. Language

11

1. Introduction

constructs that introduce a variable name, such as ∀, are called binders. Variables that
refer to a variable introduced by a binder (such as the rightmost x in 1.1) are called
bound, while the other variables (such as the leftmost x in 1.1) are called free.
It follows from the discussion that bound variables are always distinct from all free

variables in the context and from each other. So, (1.1) is actually an abbreviation for

x = 0⇒ ∀x′.P (x′)

because bound variables are always different from free variables.
All this is very clear intuitively, but it becomes complicated when writing it down

(very) formally, or when implementing variable bindings, in particular when one uses
variable names such as x and y as binders. Indeed, one proposed solution to this
problem is to remove variable names from binders and to replace bound variables by
some means to point to the corresponding binder. These pointers could for example be
so-called de-Bruijn indices (de Bruijn, 1972), integers that count the number of binders
between the variable and the corresponding binder. In a pure de-Bruijn approach, free
variables are also replaced by integers, and the context has to clarify which integer
stands for which variable. In another, increasingly popular approach called the locally
nameless representation (Pollack, 1994; Aydemir et al., 2008), only bound variables are
replaced with integers, while free variables are represented by the usual variable names.
Of course, the context still has to state what a variable name stands for.
As variable binding is not the primary issue of our discussion, we will stick with

the less formal Barendregt convention (Barendregt, 1984), stating that bound variables
are always different from free variables in any given context, using variable names
everywhere. We believe that this practice is actually quite close to the locally nameless
approach, without its formal rigor.
Let us close the discussion about notation and go on with the discussion about Hoare

logic.

Partial correctness. It is important to note that, even when one has proved that
{ P } C { Q } holds, it can be the case that executing C in a state validating P does
not result in a state validatingQ. Namely, when C does not terminate, it does not halt in
such a state. In fact, the definition of Hoare triples only guarantees partial correctness,
i.e., it does not exclude non-termination. So the more precise interpretation of a Hoare
triple { P } C { Q } is the following: If C is executed in a state where P is true, and if
C terminates, it does so in a state where Q is true. In a partial correctness setting, if C
does not terminate, one can prove { P } C { False }. Hoare logics that guarantee total
correctness can be formulated, and in this case the Hoare triple guarantees termination
as well. In the WHILE languages, the only rule that would have to be changed is the
While rule, as while is the only construct that can be a source for non-termination.
A common way to achieve this is to introduce, in addition to the invariant, a variant.
A variant is an integer expression that must be non-negative and decreases at each
iteration of the loop. An additional hypothesis of such a modified While rule could
look like this:

{ z = E ∧ z > 0 } C { z′ = E ∧ z′ ≥0 ∧ z′ < z }

12

1.3. Two Techniques Presented in more Detail

Auxiliary variables. Hoare logic in the presented form requires the use of auxiliary
variables, variables that only appear in the logic, but not in programs, and whose
purpose is to stand for the value of a program variable at a given time. For example,
in Hoare logic one cannot directly express that the command x := x + 1 increases the
program variable by one; instead, one has to say the equivalent of “if x is equal to some
z before, x is equal to z + 1 after executing the command”. In Hoare triple notation,
we write:

{ x = z } x := x+ 1 { x = z + 1 }
Here, z stands for the value of x before executing the command.
Auxiliary variables can quickly become overwhelming in program proofs, and a user

may easily lose track which auxiliary variable stands for which program variable at
which point in time. A possible solution has been proposed in Why (Filliâtre, 2003)
with the use of labels. A label L is simply a name given to a program point. We write
L(x) to say “the value of x at program point L.” Now, the previous Hoare triple can
be rewritten as follows:

{ True } L : x := x+ 1 { x = L(x) + 1 }
where L is the program point just before the assignment.

Predicate Transformers

When justifying the rules of Hoare logic, they are usually read from top to bottom, as
the upper part represents the hypotheses and the lower part represents the conclusion.
When trying to prove a program using Hoare logic, however, one usually does the
opposite: Starting from a triple { P } C { Q } that one would like to obtain, one tries
to apply the different rules bottom to top, in order to build a proof tree. Leaves of the
tree are either applications of one of the axioms skip or Assign, or logical formulas to
prove such as in the Consequence rule.
After doing a few proofs in Hoare logic, one finds that the applications of Seq and

Assign are completely mechanical. Sure enough one can come up with a function f
that takes as input a command C and a postcondition Q, and returns a precondition
P such that { P } C { Q }. And indeed, for skip, the sequence and assignment this is
easy:

f(skip, Q) = Q

f(x := E,Q) = Q[x 7→ E]
f(C1;C2, Q) = f(C1, f(C2, Q))

This is just a different formulation of the inference rules, and it is easy to see that we
have

{ f(C,Q) } C { Q }.
For the While rule as currently stated, this does not work, because the postcondition

in the conclusion is not atomic, and neither is the precondition. We therefore need to
reformulate this rule. A possibility is

While2
B ∧ I ⇒ P { P } C { I } ¬B ∧ I ⇒ Q

{ I } while B do C done { Q }

13

1. Introduction

This formulation can actually be derived from While by the Consequence rule. But
now there is a difficulty to carry over this rule to our function f ; the problem is that in
order to call f on the body C, one needs the invariant I. There is no simple solution
to this problem, so for now we assume that the invariant is given along with the while
loop.
Let us try to find the corresponding case for the function f by looking at an example.

Let n be a positive integer; we would like to prove the following Hoare triple:
{ x = n ∧ y = 0 ∧ 0 ≤ n }

while x > 0 do {I} x := x − 1; y := y + 1 done
{x = 0 ∧ y = n}

where the loop invariant I is

I ⇔ x+ y = n ∧ 0 ≤ x ∧ 0 ≤ y

In the following, let us call P the precondition of the triple, Q its postcondition, and C
the loop body. It is clear that we have to prove three different facts:

• The loop invariant I must initially hold. This can be reformulated by stating that
the precondition implies the loop invariant:

x = n ∧ y = 0 ∧ 0 ≤ n ⇒ x+ y = n ∧ 0 ≤ x ∧ 0 ≤ y

This can be easily proved.

• The loop invariant I is preserved by the loop body C, if the loop test was true.
This can be expressed by the following Hoare triple:

{ x>0 ∧ I } C { I } (1.2)

Instead of searching for a proof tree, let us compute f(C, I):

f(C, I)⇔ f(x := x− 1; y := y + 1, I)
⇔ f(x := x− 1, x+ y + 1 = n ∧ 0 ≤ x ∧ 0 ≤ y + 1)
⇔ x− 1 + y + 1 = n ∧ 0 ≤ x− 1 ∧ 0 ≤ y + 1
⇔ x+ y = n ∧ 0 ≤ x− 1 ∧ 0 ≤ y + 1

The properties of f guarantee that we have { f(C, I) } C { I }, and if x > 0 ∧ I
implies f(C, I) — which is clearly the case — we can conclude by Consequence
that (1.2) holds.
In essence, we had to prove x > 0 ∧ I ⇒ f(C, I), and this for any possible
situation. Translated to logic, this means that we have to quantify over the
variables in the formula:

∀x∀y∀n.x > 0 ∧ I ⇒ f(C, I)

• The invariant, when the loop condition is false, has to imply the postcondition Q.
Again, this must be true for any situation in which the loop stops, so we need to
quantify:

∀x∀y∀n.¬x > 0 ∧ I ⇒ x = 0 ∧ y = n

14

1.3. Two Techniques Presented in more Detail

To summarize, a preliminary formulation of f for while loops is the following:

f(while B do {I} C done, Q) = I ∧ (∀v.B ∧ I ⇒ f(C, I)) ∧ (∀v.¬B ∧ I ⇒ Q) (1.3)

where v is the list of involved variables.3
An important optimization can be applied to this transformation. We recall that in a

Hoare triple, the precondition refers to the state before the execution of the instruction,
and the postcondition to the state after. The function f can be seen as transforming a
logical formula (or predicate) about the final state into one about the initial state; such
functions are called predicate transformers. This discussion makes clear that the result
of f is a formula concerning the initial state, and this is why we didn’t quantify any
variables in the leftmost occurrence of I in (1.3). The variables in this occurrence of I
directly refer to the initial state. Now, if a variable does not change during the execution
of the loop, e.g., n in our example, all occurrences of n should be equal, independently of
the number of loop iterations. Therefore, we can restrict the quantification to variables
that are actually modified by the loop body. The final formulation of the case for while
loops is now the following:

f(while B do {I} C done, Q) = I ∧ (∀ω.B ∧ I ⇒ f(C, I)) ∧ (∀ω.¬B ∧ I ⇒ Q)

where ω denotes all variable names that are modified by the command C. The list ω
of modified variables is also called effect of C, and this will be a central notion in this
work.
Dijkstra (1975) proposed this style of reasoning: instead of using Hoare logic directly,

i.e., annotating every subexpression of the program, annotate only while loops and let
the rest be done automatically. Using the function f , one obtains a formula which has
to be proved to establish the correctness of the program. This formula corresponds
roughly to the conjunction of all the leaf formulas in the Hoare logic proof tree. In his
paper, Dijkstra calls the predicate transformer wp instead of f ; wp stands for weakest
precondition, because wp(C,Q) is indeed the weakest formula P such that { P } C { Q }.
This can be proved easily. Dijkstra actually gives a slightly different definition of wp,
partly because his language is a bit different from the WHILE language but also because
he is interested in total correctness.

Structural rules. There is a difference between the consequence rule and the other
rules of the system: consequence is not tied to a particular program construct; in-
stead, in can be applied everywhere. Such rules are called structural rules. On the
one hand, the presence of structural rules gives a lot of liberty over the way proofs
are done, on the other hand they are a hindrance when one wants to automate parts
of the process. The presence of structural rules also makes proofs about Hoare logic
more difficult: indeed, such proofs will often proceed by a case analysis either on the
structure of a program or the structure of a derivation tree in Hoare logic. Without
structural rules, both would be essentially equivalent: the structure of the program
would dictate the structure of the derivation and vice-versa. Contrarily, in the presence
of structural rules, these can be found everywhere in the proof tree. The wp formulation

3Here, and in the remainder of the document, we use a bar, such as v, to indicate a list of objects.

15

1. Introduction

can also be seen as a variant of Hoare logic without structural rules, and thus easier to
automate and to reason about. As evidence that this is indeed the case, observe that
our formulation of wp has no equivalent of the consequence rule; therefore, in proofs,
there is one case less to be considered. Moreover, the structure of the program and the
structure of the recursive calls of the wp function are identical.

Limitations of Traditional Hoare Logic

We now describe two particular aspects of programs that are more difficult to deal with
in Hoare logic.

Aliasing. In the WHILE language, the set of program variables is fixed in advance.
This has two consequences which make life easier for Hoare logic. The first one is that
one cannot create any new variable; we will come back to this problem later. The
second one is that one always knows when two variables are different: simply when
they have different names. To illustrate this, let us look again at the Assign rule:

{ P [x 7→ E] } x := E { P }

or even better, a simple instance of it:

{ 0 = 0 ∧ y = 1 } x := 0 { x = 0 ∧ y = 1 }

How can we know that the assignment of x does not modify y? The answer is that this
must be guaranteed by the language; in our case, the semantics of WHILE (which we
have not given) guarantee that modifying a variable can never modify another. If this
is not the case, Hoare logic as presented breaks down.
To see why, imagine that we add function definitions to our language, with the

following syntax:
function F (x1, · · · , xn) = C

where the x1, . . . , xn are the arguments of F which can be used just as program variables
inside F . Also, they are passed by reference, which means that F can modify its
arguments, and these modifications are visible once F has returned. A function call
has the following syntax:

C ::= · · · | F (x1, · · · , xn)

Now it seems natural to postulate the following rule:

Call
function F (x1, · · · , xn) = C { P } C { Q }
{ P [xi 7→ yi] } F (y1, · · · , yn) { Q[xi 7→ yi] }

In English: when calling a function whose body is C, and for which we have proved
{ P } C { Q }, we can prove the same triple for the function call, but replacing the
formal parameters xi by the actual parameters yi. But adding this rule is already
incorrect and the reason is that, in our modified language, the assignment rule is no

16

1.3. Two Techniques Presented in more Detail

longer valid. To see this, let us return to our previous example, but now let us put the
code into a function call:

function F (x, y) = x := 0
This function sets its first argument to zero and ignores its second argument. We can
easily prove the Hoare triple

{ 0 = 0 ∧ y = 1 } x := 0 { x = 0 ∧ y = 1 }

for the body of the function, using the Assign axiom. But if we call F with the same
actual parameter a for both formal parameters, we arrive at a contradiction:

{ 0 = 0 ∧ a = 1 } F (a, a) { a = 0 ∧ a = 1 }

while the precondition can be easily satisfied (just assume that a = 1 before calling F),
the postcondition is clearly false: a cannot be simultaneously equal to 0 and to 1.
The reason for this faulty reasoning is a breach of contract. When proving the Hoare

triple for the body of the function, we have assumed that x and y are different (by
application of the Assign rule), but this turned out to be false when F was actually
called. The variables x and y have become aliased.
This is the aliasing problem and there have been uncountable attempts to solve it.

Our example of aliasing may seem contrived, but similar situations arise when reasoning
about more complex structures such as arrays, mutable lists, and trees. There are
roughly three possibilities to solve this problem:

• One can disallow aliasing entirely by restricting the language, in particular func-
tion calls. For example, a common syntactic restriction of early papers in the
Hoare logic community was that function calls were not allowed to mention the
same variable twice (as in F (a, a)). These approaches may potentially add some
analysis to recover from common situations. More systematic proposals, but still
based on the idea of disallowing aliasing, are the proposal called Syntactic inter-
ference (Reynolds, 1978) and the Why language (Filliâtre, 2003).

• One can disallow using mutable program variables directly in the logic; instead,
the logic provides access and update functions (acc and upd) and some means to
talk about the state. In our example of the assignment of x that may or may not
leave y unchanged, the following Hoare triple is now correct:

{acc(x, upd(x, 0, s)) = 0 ∧ acc(y, upd(x, 0, s)) = 1}
x := 0
{acc(x, s) = 0 ∧ acc(y, s) = 1}

As before, the first equation of the precondition reduces to 0 = 0 and is trivial,
but the second equation can only be simplified if one knows if x is equal to y or
not. In particular, if x = y, the equation reduces to 0 = 1 and cannot be proved;
the Hoare triple is still correct. The functions acc and upd actually form a simple
memory model, a way to reason about the memory layout of a program.
The Pioneers of this approach are Cartwright and Oppen (1981). A problem of
this approach is that all assignments must now be justified using the acc and

17

1. Introduction

upd functions, and a large amount of inequalities between variables is needed.
The reason is that when a single variable is modified, the entire state of the
program is considered to be modified. Many extensions have been proposed to
obtain inequalities between variables for free, for example when two variables are
of different type. Examples of these extensions are the papers of Burstall (1972)
and Bornat (2000). Tools such as Caduceus (Filliâtre and Marché, 2007) are
based on these techniques. Another line of work uses analyses such as the one by
Tofte and Talpin (1997) to cut the memory into small separate pieces instead of
one huge block. Variables that live in different regions are automatically different.
An example of an application of this technique is (Hubert and Marché, 2007).
One can also observe that this approach corresponds to the standard Hoare logic
approach with only a single mutable variable s, the state. The actual mutable
variables of the program, such as x and y above, are simply considered as entries
in the state, and they never change (they always point to the same entry). The
contents of the entry can change, using the upd function. An assignment operation
such as x := 0 becomes syntactic sugar (an abbreviation intended to increase
readability of a program) for an assignment to s:

s := upd(x, 0, s)

Using this viewpoint, the rules of Hoare logic do not need to be changed at all.

• Another, radically different approach is separation logic. Here, the state is built
into the semantics of the logic, but does not appear explicitly in formulas. A for-
mula of the form x 7→ v states that the program variable x does contain the value
v; the formula’s support is the memory location of x. The separating conjunction
∗ can be used to connect formulas with disjoint supports: the formula

x 7→ 0 ∧ y 7→ 1

states that x and y currently have certain values, but the formula

x 7→ 0 ∗ y 7→ 1

additionally states that x and y are not in the same memory location; the formula
is false if x and y are in fact the same location. In our running example, the Hoare
triple

{ x 7→ n ∗ y 7→ 1 } x := 0 { x 7→ 0 ∗ y 7→ 1 }
is correct for any n and can become the specification of the function F . For a
function call F (a, a), the precondition of F becomes

a 7→ n ∗ a 7→ 1

which is always false, because the left and right hand side of the star share the
memory location of a in their support. The Hoare triple itself remains correct
even after substitution.
Separation logic was first introduced by Reynolds (2002), and it has attracted
considerable attention since its discovery (Nanevski et al., 2006). We call this

18

1.3. Two Techniques Presented in more Detail

approach radical because it means a departure from the well-understood and
well-supported tools that first-order logic and standard higher-order logic have
been for decades.

Functions as values. Hoare logic was initially introduced using the WHILE language,
but is has been subsequently extended and refined to languages with procedures and
functions, recursive procedures, local variables, arrays and so on. Apt (1981) gives a
detailed overview of the first ten years of Hoare logic. With the rise of the influential
Algol language (Backus et al., 1960), it also became a challenge for the Hoare logic
community to apply their techniques to this language. However, Algol is relatively rich
and contains procedures and functions, nested procedures and higher-order functions,
i.e., procedures that can take other procedures as parameters. The problem is the
following: if F is a function parameter of some other function, what can possibly be
said about a call to F? In other words, what does a Hoare triple for calls to function
parameters look like:

{ ? } F (x) { ? }
A possibility is to inline higher-order function calls; if

function G (F) = C

is a higher-order function definition, instead of reasoning about C separately, and then
about calls to G, say G(F ′), one can simply reason about C[F 7→ F ′]. This approach,
expressed by a rule which is usually called the Copy rule, is simple and works, but it
is very inelegant. Most importantly, it is not modular: if C is a big and complex piece
of code, and if it is called several times in the main program, one has to reason several
times about (almost) the same code. Modularity, the ability to reason separately about
separate components of a program, is considered to be one of the key properties to have
for any proof system.
Clarke (1979) was able to prove that a sound and complete Hoare logic for a pro-

gramming language with the following features:

1. procedures as parameters (higher-order functions)

2. recursion

3. static scope

4. global variables in procedure bodies

5. nested procedure declarations

could not be defined using a first-order annotation language. This negative result came
as a surprise to many. So it was clear that either the features of the programming
language had to be restricted or the logic used in annotations had to be enriched.
Damm and Josko (1983) gave a Hoare logic for a subset of Algol containing higher-
order features. They circumvent Clarke’s impossibility result by moving to a higher-
order logic. Their rule for function application is the following: If one has

{ p } F { q }

19

1. Introduction

for a function F , one can derive

{ p x } F (x) { q x }

for an application of this function. The symbols p and q are variables that represent
one-argument predicates; the notation p x denotes application of the predicate p to the
argument x. To express this particular Hoare triple concerning F , they need higher-
order logic. This work is limited to a certain very restricted form of preconditions,
which have to describe exactly the state before the function call. Also, they only allow
procedure parameters, no ordinary parameters.
More recently, Honda and others were able to design a program logic for a language

with higher-order functions and closer to actual programming languages, first only with
global state (i.e., without aliasing), later including aliasing (Honda et al., 2005; Berger
et al., 2007). Again, they extend the logic used in annotations to avoid the impossibility
result of Clarke. Their logic is first-order, but it contains Hoare triples in the logic, so
that one can write, for example:

{ ∀x.{ P (x) } F (x) { Q(x) } ∧ P (z) } F (z) { Q(z) }.

The Hoare triple inside the precondition states exactly what is needed to justify the
call to F and the postcondition.
Régis-Gianas and Pottier (2008) established a Hoare-like system for a purely func-

tional higher-order language. Their approach is very elegant, but eludes the more
difficult part of dealing with side effects. Here is how it works. They allow themselves
to use the names of program functions in the logic; however, one cannot execute these
functions in the logic, because that could easily lead to incorrect derivations (because of
the possible non-termination of program functions). Instead, in the logic, it is possible
to access the pre- and postconditions of this function by operators pre and post. This
makes it possible to write the following (trivial) rule for function calls:

{ pre f x } f x { post f x }

For any concrete function f , the formula pre f x is equivalent to the actual precondition
of f , specialized for x. The advantage of this approach is that one does not need to know
the specification of f to prove something about calls to f . Instead, relations between
specifications of functions can be written in a generic way.

1.3.2. The ML Type System and Extensions

A particularity of ML programs, shared by other strongly typed languages such as
Haskell, is summarized by the slogan “well-typed programs can not go wrong”. This
means that a well-typed program in these languages cannot exhibit certain forms of
runtime behavior such as invalid memory accesses, access to uninitialized data and
type errors. How can this be achieved? Let us look at the definition of ML. We will be
formal, but not go into too much detail.

20

1.3. Two Techniques Presented in more Detail

Syntax. ML does not distinguish between expressions and instructions. As a conse-
quence, the syntax is remarkably short. ML expressions e can either be variables x,
constants c (such as integers, booleans, but also functions such as + can be constants),
an application of a function to its argument, written e e′, an anonymous function in one
argument, written λx.e and finally a way to introduce names for intermediate results,
written let x = e1 in e2. In total, we obtain the following syntactic categories:

c ::= n | true | false | + | · · ·
e ::= x | c | e e | λx.e | let x = e in e

Application in ML is left associative; the application of a two-argument function to its
arguments can be written without parenthesis. As an example, the addition of two
numbers can be written in two ways: (+ m) n or + m n. In this particular case we
also allow the infix syntax m+ n.

Semantics. In the theory of ML, the syntax is accompanied of its semantics, the
definition of the meaning of ML programs. It can be expressed in many different ways,
a common way (Wright and Felleisen, 1994) is to define a so-called small step semantics,
a relation e� e′ that describes that e will reduce (evaluate) to e′. There is also a notion
of values. In ML, variables, constants and anonymous functions are values; values have
the property that they do not reduce anymore. When we have e � v, then v is the
result of the evaluation of e.
To define the relation �, we proceed by three steps. We first define a top-level

reduction relation ⇀ which is defined as follows:

(λx.e) v ⇀ e[x 7→ v]
let x = v in e ⇀ e[x 7→ v]

c v ⇀ δ(c, v) if δ(c, v) is defined

This relation ⇀ describes a reduction step at the top of an ML term. An anonymous
function λx.e, when applied to a value v, reduces to its body e with the variable x
replaced by the argument v. This substitution is written e[x 7→ v]. The reduction of
a let-expression happens in the same way. When a constant c is applied to a value v,
we check if c is defined for this argument, and return the result of this application;
the check and the result are both realized using a function δ that “knows” all defined
constants.
The next step is the definition of a relation −→, describing a single reduction step.

We first define a reduction context E as follows:

E := [] | let x = E in e | E e | v E

A reduction context is either empty, or a let-expression with a context at the left hand
side, or an application with a context on the left, or finally an application with a value
on the left and a context on the right. One can also say that a reduction context is an
ML expression with a hole (the empty context), but the hole can only appear in certain
places of the expression. We write E[e] for an expression that has been obtained by

21

1. Introduction

replacing the hole in a context E with the expression E. We now can define the relation
−→:

e ⇀ e′ implies E[e] −→ E[e′]

To summarize, the relation −→ describes a single reduction step “anywhere” in a
term, where the precise meaning of “anywhere” is described by the definition of reduc-
tion contexts. The definition we have given corresponds to a strict evaluation — this
also corresponds to the evaluation order in ML— where arguments are evaluated before
being passed to functions and let-bound expressions are evaluated before continuing the
reduction. Other choices are possible and have been explored in the literature.
Finally, the relation � is the reflexive and transitive closure of −→. This means

that for any expression e we have e � e, and for any three expressions e1 � e2 and
e2 −→ e3, we also have e1 � e3.
The syntax of ML permits ill-typed expressions such as the addition of a boolean and

an integer. What does the semantics say about those? It says that these expressions
do not continue to evaluate; there is no reduction rule for nonsensical expressions such
as 1 + true. We say that such expressions are stuck.
With types, we can forbid such expressions. We begin by a simplified vision of types

called simple types. In this setting, types can either be constant types such as int or
bool, and function types or arrow types, written with an arrow →. The type int→ int,
for example, describes the type of functions having an integer argument and returning
an integer. The structure of types is summarized by the syntactic category τ :

ι ::= int | bool | · · ·
τ ::= ι | τ → τ

Now, the following typing rules define a relation Γ ` e : τ that describes that an
expression e is of type τ under the environment Γ. An environment is simply a list of
bindings from variables to types. The typing rules also define how this environment
can be enriched.

S-Const
Typeof (c) = τ

Γ ` c : τ
S-Var

Γ(x) = τ

Γ ` x : τ
S-App

Γ ` e1 : τ ′ → τ Γ ` e2 : τ ′

Γ ` e1 e2 : τ

S-Abs
Γ, x : τ ′ ` e : τ

Γ ` λx.e : τ ′ → τ
S-Let

Γ ` e1 : τ ′ Γ, x : τ ′ ` e2 : τ
Γ ` let x = e1 in e2 : τ

Let us briefly describe these rules.

• A function Typeof defines the types of all constants;

• Variables are typed using the information stored in the environment;

• On an application, the left term must be of function type, and the right term
must be of the corresponding argument type;

• When e is of type τ under the assumption that x is of type τ ′, then we can build
the function λx.e, and this expression is of function type τ ′ → τ .

22

1.3. Two Techniques Presented in more Detail

• The let-form permits to give names to results of sub-expressions; the name nec-
essarily has the same type as the expression which it abbreviates.

Now, using the definition for Γ ` e : τ and the definition for �, one can prove two
important theorems.
Theorem 1.1 (Preservation). For any well-typed expression e, i.e., an expression for
which we can prove Γ ` e : τ , and any e′ such that e � e′, e′ is also well-typed and of
the same type, i.e., Γ ` e′ : τ ′.
Theorem 1.2 (Progress). For any well-typed expression e, either e is a value, or there
exists an expression e′ such that e� e′.
The first theorem, preservation, states that during the evaluation of the program,

the type of the expression is preserved. This property is also called subject reduction.
The second theorem, progress, states that, if the program has not finished evaluating
yet, one can still continue. Together, both theorems imply the fact that any well-
typed expression in ML evaluates to a value of the same type. However, more subtle
runtime errors such as division by zero are not considered by these theorems and can
still happen. Wright and Felleisen (1994) seem to have been the first to prove the type
safety of ML in this form.
The system of simple types we have presented is very restrictive. Every variable

must have a fixed, concrete type. In practice, this means that functions that operate, for
example, on lists, must be duplicated for each type the list may contain: lists of integers,
lists of booleans and so on. There are many more cases where this restriction to concrete
types is a problem. For this reason, ML actually has a more powerful polymorphic type
system. To present it, we only need a few modifications to the definitions we have given.
The first modification is that we allow type variables α as types:

τ ::= α | · · ·
Next, our environment Γ maps not from variables to types, but to type schemes. A
type scheme is a type with a quantifier prefix:

σ ::= ∀α.τ
We use the bar to describe lists of objects (here: type variables). If an environment Γ
says that x has the type scheme ∀α.τ , this means that x can be used with any type
that can be obtained by substituting the α by a list of (more) concrete types. As an
example, consider the type scheme ∀α.α → α. This type describes all functions that
take an argument of any type, and return a result of the same type. The identity
function λx.x is a good candidate for such a type scheme. A type scheme does not need
to quantify over variables; in this case we say it is monomorphic.
The typing rules for constants, variables and let-bindings need a little bit of modifi-

cation as well:

ML-Const
Typeof (c) = σ τ ≤ σ

Γ ` c : τ
ML-Var

Γ(x) = σ τ ≤ σ
Γ ` x : τ

ML-Let
Γ ` e1 : τ ′ Γ, x : Gen(Γ, τ ′) ` e2 : τ

Γ ` let x = e1 in e2 : τ

23

1. Introduction

The rules ML-APP and ML-Abs are identical to their simply typed counterparts.
We write τ ≤ σ when τ is an instance of σ, i.e., when τ can be obtained from σ
by substituting the quantified type variables in σ by types. In the rules, we see that
variables and constants can have polymorphic type, and that the typing rules can choose
an instance of the type scheme to be the type of the expression. Note that abstractions
using λ still introduce monomorphic variables. The only way to introduce polymorphic
variables is using let.
Not all variables in a type (such as τ ′ in the ML-Let rule) can be generalized.

The function Gen determines the type variables α that can be generalized in τ ′ and
returns the type scheme ∀α.τ ′. The environment is needed to determine which variables
are generalizable, so we write Gen(Γ, τ ′) to underline this dependency. This function
checks if a type variable in τ ′ also appears in the environment Γ. If it does, it can not
be generalized; if not, it can be generalized.
In this variant of ML, one can write polymorphic functions, that work for several

concrete types. But polymorphic types are not just a tool to avoid code duplication;
they also express generic properties about the objects of the programming language,
without knowing the concrete instantiations that will appear later in the program. For
example, using the type scheme ∀α.α → α, we are able to express that a function
of this type has always identical argument and return types, even though we do not
know yet what these types will turn out to be. It is worth noting that in a restricted
setting, polymorphic types can say much more about the corresponding functions than
one might expect (Reynolds, 1983).
The theorems of Preservation and Progress are of course correct also in the polymor-

phic setting of ML.

Type inference. An important aspect of ML, and in fact the source of some particular-
ities of its formulation, is type inference. The reader may have noticed that ML terms
do not contain any types; how does one know which type to associate to the variable
of a λ-abstraction? Finding this out is the job of type inference, and one of the most
important properties of ML is that type inference is decidable and complete. There is
an algorithm, called W in the literature (Damas and Milner, 1982) that, for any ML
program, finds a typing derivation if one exists. This is a valuable property, and ML
is among the most powerful type systems that still enjoy this property. To illustrate
this, consider a modification of ML where the variables at λ-abstractions can also be
polymorphic; the resulting system is called System F (Girard, 1972). This seems like a
minor modification, but it came as a surprise to many that type inference in System F
is undecidable (Wells, 1998).

Recursion. A looping construct such as while in the WHILE language, or another
means to express iteration, is essential to obtain Turing completeness for a programming
language, i.e., the property that in principle every computable function can be expressed
in this language. There are (at least) two ways this can be achieved in ML. The first is
by introducing a fixed-point combinator, written Y , as a new expression:

e ::= · · · | Y

24

1.3. Two Techniques Presented in more Detail

We also add a new reduction rule for the relation ⇀:

Y v ⇀ v (λx.Y v x)

To understand what this does imagine that v is a two-argument function:

v = λf.λy.E[f v′]

The argument f of v is used for recursive calls; we have fixed the body of v to some
expression whose first step is precisely a call to f using some value v′. Then for some
value v0,

Y v v0 ⇀ (λf.λy.E[f v′]) (λx.Y v x) v0

⇀ (λy.E[(λx.Y v x) v′]) v0

⇀ E[(λx.Y v x) v′][y 7→ v0]
−→ E[Y v v′][y 7→ v0]

The idea is that in v, every occurrence of f is bound to be replaced with Y v, in which
again every occurrence of f is replaced by Y v and so on. Y computes the fixed point
of v, hence the name of fixed point combinator. One cannot replace Y by an actual
expression in ML, but one can still give it a type scheme:

Y : ∀αβ.((α→ β)→ α→ β)→ α→ β

Another, equivalent way is to allow anonymous function to be recursive. We simply
need a second variable name that stands for recursive calls. To differentiate between
usual λ-abstractions,we use the keyword rec instead of λ:

e ::= · · · | rec f (x). e

The variable f can be used for recursive function calls, and x is the name of the function
argument. The reduction rules for ⇀ must be changed again:

rec f (x). e v ⇀ v[f 7→ rec f (x). e, x 7→ v]

Here, in addition to the substitution of v for x, we also replace the name f by the
recursive anonymous function rec f (x). e. Now, one can choose to either supply these
recursive anonymous functions in addition to usual λ-abstractions or replacing the latter
by the former. After all, a non-recursive function is a recursive one that does not contain
any recursive calls.

Algebraic data types and pattern matching. One of the most important concepts of
ML-like programming languages, second only to strong typing and first-class functions,
is the concept of algebraic data types and pattern matching. The idea of algebraic data
types is that a user can define potentially polymorphic type constants along with con-
structors, i.e., function constants which return objects of that type. A simple example
is the option type:

25

1. Introduction

type option α =
| None
| Some of α

This definition introduces the unary type constant option along with the constructor
None of type scheme ∀α.option α and the constructor Some of type scheme ∀α.α →
option α. The definition of this algebraic data type also guarantees that every value of
type option τ is either of the form None or of the form Some v′ where v′ is a value of
type τ . The option type is a safe possibility to represent a value that may be present
or not.
Another example is the list type:

type list α =
| Nil
| Cons of α ∗ list α

Similarly, this defines a type constant list along with the constructor Nil of type scheme
∀α.list α, representing the empty list, and the constructor Cons of type ∀α.a→ list α→
list α (note that definitions of algebraic data types can mention the type to be defined,
i.e., they can be recursive), the operator which prepends an element to an already
existing list. Note the separator ∗ in the definition of the algebraic data type, which
separates the argument types of the constructor Cons. For a list of the form Cons x xs,
we call x the head, and xs the tail of the list.
This way of defining a type and its constructors is already a nice help for program-

mers, compared to other, more low-level programming languages such as C, where
defining such types along with constructors is tedious and error-prone. But ML also
offers pattern matching, i.e., a syntactic convenience to simplify the analysis of values
that belong to an algebraic data type.
Imagine a program p that is supposed to execute an expression e1 when a list l is

empty, and execute some expression e2 when the list is not empty. In e2, we want to
use the head and the tail of l for computations. Let us first look at a program that
does not use pattern matching. In this case, we assume that the following functions are
provided:

is_nil : list α→ bool

head : list α→ α

tail : list α→ list α

The function is_nil decides whether a list is empty (equal to Nil) or not. The functions
head and tail, unsurprisingly, return the head, respectively the tail, of a non-empty list.
If called on the empty list, they fail. In our idealized language, this failure can for
example be modeled by non-termination; in a real language, some kind of runtime error
would occur. We can now return to our program p and implement it as follows4:

4We assume here the existence of an if-then-else-construct. For the sake of completeness, let us describe
the necessary steps to add such a construct to the language we defined in this section. We first need
to extend the expressions accordingly:

e ::= · · · | if e1 then e2 else e3.

26

1.3. Two Techniques Presented in more Detail

if is_nil l then e1 else e2

In e2 we can use the functions head and tail to obtain the desired information.
Now this approach works fine, but it has several drawbacks. First of all, the functions

head and tail can fail when called on the empty list, for example in e1. Another problem
arises when the algebraic data type has more than two constructors; we then need
functions like is_nil for each constructor, and accessor functions similar to head for
each of the arguments of each constructor. All of these functions fail when called with
a value that does not correspond to the right constructor. It also becomes a burden for
the writer of these functions to invent names for them, as well as for the programmer
to remember them. Finally, the programmer might simply forget to check for certain
cases (such as the empty list in the previous example), in particular when the number
of constructors is high or is subject to change.
Pattern matching avoids these problems. Let us rewrite our example:

match l with
| Nil → e1
| Cons (x, xs) → e2

The match keyword introduces a pattern matching construct. It is followed by an
expression whose type is an algebraic data type (here list) and the keyword with. It
is followed by a list of branches, separated by the symbol |. Each branch consists of
a pattern to the left of the arrow and an expression to the right. A pattern is a full
application of a constructor to variables. The idea is that the list l is compared in
turn with each of the patterns. If one pattern matches, the corresponding expression
is executed, otherwise the next pattern is tried. When a pattern matches, its variables
are bound to the corresponding components of the matched object. For example, in the
pattern Cons(x, xs), which matches if l is not the empty list, x is bound to the head of
the list, while xs is bound to the tail of the list. The expression e2 now can use x and
xs instead of head l and tail l.
Pattern matching greatly simplifies programs dealing with algebraic data types. It

removes the need for accessor functions, that are not only tedious to define and to
use, but also error-prone. The code becomes clearer because of the clear separation
of the different cases. Finally, the compiler can check for completeness of the pattern
matching, i.e., that the programmer has dealt with all possible cases.

We also need to adapt the top level reduction relation ⇀:

if true then e1 else e2 ⇀ e1

if false then e1 else e2 ⇀ e2

as well as the reduction contexts:

E ::= · · · | if E then e1 else e2.

Finally, we have to extend the typing relation:

S-If Γ ` e1 : bool Γ ` e2 : τ Γ ` e3 : τ
Γ ` if e1 then e2 else e3 : τ

27

1. Introduction

References. Another language feature of ML that we have not presented yet is the
feature of mutable variables or references. At first glance, it is easy to add them, using
a new type constructor ref τ and three new function constants, with their type schemes:

τ ::= · · · | ref τ
ref : ∀α.α→ ref α

! : ∀α.ref α→ α

:= : ∀α.ref α→ α→ unit

To capture the semantics of these three functions, we need to modify the definition of
� significantly; expressions e are now evaluated with respect to a store s containing
the values of all created references. The semantics is now of the form s, e� s′, e′. The
old rules of the semantics do not modify the store so that we have s = s′, but the rules
concerning references may modify it: ref adds a new entry to the store, ! reads it, and
:= modifies the store.
Damas (1985) was the first to give an account in this style, but his proof of type safety

(Theorems 1.1 and 1.2) was incorrect, and that is because this modified language is not
type safe! Without going into too much detail, the reason is that the generalization of
type variables (written Gen(Γ, τ) in our notation) at let-bindings does generalize too
much. As a consequence a reference can be written using one type and read assuming
another, which can lead to a crash. Tofte (1990) discovered the error in the proof and
published a version where less generalization takes place; others, for example Talpin
and Jouvelot (1994), presented different systems to obtain the same restrictions on
generalization. All those systems had the drawback to be relatively complex for a
type checker in a programming language. Wright (1995), after having analyzed a huge
amount of real ML programs, came to the conclusion that the vast majority of let-
bound expressions are values; generalization of type variables in values does not pose
a problem, so his proposal was to cut the ML-Let typing rule in two, according to
whether e1 is a value or not:

ML-LetPoly
Γ ` v : τ ′ Γ, x : Gen(Γ, τ ′) ` e2 : τ

Γ ` let x = v in e2 : τ

ML-LetMono
Γ ` e1 : τ ′ Γ, x : τ ′ ` e2 : τ

Γ ` let x = e1 in e2 : τ

When e1 is a value, we can generalize as before, but when e1 is an expression (po-
tentially containing side effects), we do not generalize at all. Wright showed that this
modification to the type system, while it reduces the set of typable programs, has little
negative impact in practice. It got adopted by most ML type checkers. In the same
time, Harper (1994) proposed a variant of the typing rules where, in addition to the
environment Γ, a store typing Σ can be used to type store locations l. These locations
are the runtime equivalent of references and are added to the syntax. The store typing
Σ is a mapping from locations to types such that the store contains at that location
a value of that type. This variant increases the size of the definitions, but makes the
proofs much simpler.

28

1.3. Two Techniques Presented in more Detail

Effects and regions. Parallel to the integration of references into ML, it became ob-
vious that typing can do more than just exclude invalid programs; it can also be used
to discover additional properties of a program. A good example where typing helps to
obtain additional information are effect systems. In an effect system, each expression
is not only assigned a type, but also an effect; usually, an effect is a set of some atomic
observable side effects. Such side effects can include assignments to mutable variables
or raised exceptions, but also calls to certain functions or access to external resources
such as files and peripherals. Now the idea is that some basic expressions, such as
writing a mutable variable or opening a file, are defined to have a certain effect, and
combining expressions combines their effects. Consider the two following typing rules:

E-Assign
Γ ` v : τ Γ ` x : ref τ

Γ ` x := v : unit, {x} E-Let
Γ ` e1 : τ ′, ϕ1 Γ, x : τ ′ ` e2 : τ, ϕ2

Γ ` let x = e1 in e2 : τ, ϕ1 ∪ ϕ2

The first rule states that writing a variable x produces an effect {x}. The second rule
concerns let-bindings and states that if e1 has effect ϕ1 and e2 has effect ϕ2, the overall
effect of the expression is the union ϕ1∪ϕ2 of both effects. The rule E-Let deliberately
omits issues of type generalization.
In languages where functions can be values (such as ML), one has to distinguish

between the immediate effect of an expression whose result is a function, and the latent
effect of the function when it is called. The immediate effect is of the kind we have just
seen; in the typing rules, it it stated after the type of the expression. The information
about the latent effect must be put in the type of the function. Now, instead of a simple
function type τ → τ ′, we deal with types of the form τ →ϕ τ ′; functions of this type
take an argument of type τ , return a result of type τ ′ and have the effect ϕ during
execution. The usual rule for the application in such systems is thus the following:

E-App
Γ ` e1 : τ ′ →ϕ τ, ϕ1 Γ ` e2 : τ ′, ϕ2

Γ ` e1 e2 : τ, ϕ1 ∪ ϕ2 ∪ ϕ

As can be read in the typing rule, the overall effect of an application is the union of the
immediate effects of both expressions and the latent effect of the called function.
In the previous paragraphs we have used the names of mutable variables to form

effects. This is possible and has been done, for example, in the Why language (Filliâtre,
2003), but this approach has severe limitations. Consider the following expression, in
which x is assumed to be a mutable variable:

let y = x in y := 0

We are clearly modifying the memory location attached to x, but via the program
variable y. Should the effect of this expression contain x or y, or both? A consequence
of this example is that systems that use program variable names to express effects must
impose restrictions on the programming language to maintain precision. In Why, for
example, renaming mutable variables using let is forbidden.
A more flexible, but more involved approach is to use the type system to obtain

additional information. We dissociate the program variable and the memory location
by giving a name to the location; this name is called a region. We now put this

29

1. Introduction

information in the type of references; instead of simply stating the type contained by
the reference, we also state its location. The type refr τ describes the reference that
points to the location r which contains a value of type τ . The assignment rule now does
not use the variable name; instead it uses the region name to describe the effect of the
assignment:

R-Assign
Γ ` v : τ Γ ` x : refr τ

Γ ` x := v : unit, {r}

As the region information is contained in the type, we now can freely rename mutable
variables. For example, in the example above, x and y are both of the same reference
type, thus we know by typing that they point to the same location. There is no ambiguity
anymore about the effect of the expression.
Regions which correspond exactly to a memory location are called singleton regions.

It can become quite involved to maintain this property, so many type systems use
group regions that group several memory locations, either exclusively or in addition
to singleton regions. Group regions are less precise, but more flexible than singleton
regions.
Lucassen and Gifford (1988) were the first to present an effect system containing

effects and regions. Talpin and Jouvelot (1994) designed a correct and complete type
inference algorithm for this system. Tofte and Talpin (1997) used the same basic ideas
to propose a region-based alternative to garbage collection. Nielson et al. (1999) give
a good introduction to type and effect systems in general and advanced issues such as
type inference and subtyping.

1.4. Overview of the Document, Contributions and Related
Work

In this section, we give an overview of the contributions of this document, justify central
design choices and compare our work to the work of similar systems in the literature.

1.4.1. An Overview of the Document
The goal of this thesis is to obtain a practical system to prove properties of programs
written in an ML-like language. This means that our system does have to support
side effects and higher-order functions, and combinations of these features. “Practi-
cal” means that it should be possible to automatically prove simple properties of such
programs.
In a nutshell, to achieve this goal, this thesis defines an ML-like language with an

effect analysis, and a specification language (a variant of higher-order logic) that can
express properties of the state. A wp calculus is introduced, as a means to obtain proof
obligations from annotated programs. As these obligations are in higher-order logic, we
also show a way to translate these formulas to first-order logic, which is the logic used
by almost all automated provers. We now give a more detailed overview of each part.
In Chapter 2 we define a higher-order ML-like language, called W, with side-effects

(references), equipped with an effect calculus. W has a type system similar to the one

30

1.4. Overview of the Document, Contributions and Related Work

of ML, but instead of a typing relation Γ ` e : τ , there are actually two typing relations:
one for values, of the form

Γ; Σ `v v : τ,

and one for expressions that may have a side effect, of the form

Γ; Σ ` e : τ, ϕ,

where ϕ is an effect, an expression that approximates the effect that the expression e
may have on a store s when reducing to a value.5 Additionally, we improve this effect
analysis by introducing regions; a region is a portion of the store. Regions also appear
in types: each reference type is annotated by a region, so when a reference is modified,
this modification effect can be associated to a certain region. To increase flexibility,
the system also contains region and effect polymorphism, two mechanisms that are
very similar to ML type polymorphism. It is effect polymorphism that guarantees the
modularity of the effect analysis for higher-order functions. Chapter 2 contains a type
soundness proof for this system.
The language W is a minor contribution of this thesis; The basic idea of this system

is already present in Lucassen and Gifford (1988), but we also integrate refinements by
other authors, for example the lighter syntax which is much closer to ML, by Talpin
and Jouvelot (1994), the letregion keyword introduced by Tofte and Talpin (1997) in
a different setting and finally the region keyword introduced by Calcagno et al. (2002)
which greatly simplifies the soundness proof.
Chapter 2 also defines a specification language, called L, adapted to the programming

language and its type system. This specification language is new. The two main
ingredients of this specification language are higher-order logic and the presence of
state types, of the form 〈ϕ〉, where ϕ is an effect expression. An object of state type
represents a portion of the store and permits to express properties that depend on
the state. Both ingredients together enable us to reason about higher-order functions
with side effects. We refine the definition of W to include specifications written using
formulas of L.
The central contribution of this thesis is the definition of a weakest precondition

calculus for programs in W, given in Chapter 3. This calculus, written wp(e, q), takes
an expression e and a formula that specifies properties of the return value of e and
final state, and returns a formula p in L, depending on the initial state. The formula p
guarantees that e executes correctly and that the return value and the final state verify
q. The formula p is in general a conjunction of proof obligations, that have to be proved
in order to guarantee the correctness of the program. Thanks to the properties of the
effect analysis and the logic L, the formulation of this calculus is relatively simple and
resembles first-order formulations. We prove the soundness of this calculus, i.e., the fact
that if p is true, then e indeed executes correctly. We also prove a completeness result,
that states that any “correct” program can be proved correct in this calculus. The wp
calculus takes its general form from Filliâtre (2003), and a few ideas, in particular the
reflection of effectful functions as pairs in the logic, are taken from Régis-Gianas and
Pottier (2008).

5We cannot, at this point, explain the meaning of the symbol Σ in the typing relation.

31

1. Introduction

In Chapter 4, we show two modifications of W. The first one rules out aliasing of
regions by excluding certain instantiations of region and effect polymorphism. We
show that this leads to a simplification of the proof obligations, with only moderate
impact on expressiveness. This system is a generalization of the system of Hubert and
Marché (2007) to a setting with higher-order functions. A second modification of W, in
addition to the first, rules out aliasing between regions entirely, limiting the system to
so-called singleton regions. We again show that this implies important simplifications in
the produced proof obligations, but this time the expressiveness of the system is greatly
reduced; programs with shared mutable data structures are not well-typed anymore in
this modified system. This more restricted system turns out to be an adaptation of the
Why system (Filliâtre, 2003) to regions.
In Chapter 5, we consider practical issues that have been eluded in the previous

sections. The wp calculus returns a number of proof obligations in L, a custom, non-
standard logic. We show that formulas in L can easily be translated to a more standard
higher-order logic. But to use state-of-the-art automated provers, which almost exclu-
sively expect first-order formulas, there is more work to do. Therefore, we introduce an
encoding from higher-order formulas to first-order formulas. Parts of the translation
are well-known, for example from Meng and Paulson (2008) and Pottier and Gauthier
(2006). However, we achieve two desirable properties: the first one is that formulas that
are already in first-order form are left unchanged, which greatly improves efficiency of
automated provers, in particular for built-in symbols like arithmetic operators. The
second one is that a proof of equivalence between a concrete pair of input and output
formulas can essentially be obtained by evaluation, and therefore is trivial.
In Chapter 5, we also briefly detail the prototype implementation called Who, which

includes an implementation of W and L, the wp calculus and the translation from L to
higher-order logic. The translation from higher-order logic to first-order logic is imple-
mented in a separate tool called Pangoline, which has been developed in collaboration
with Yann Régis-Gianas.
We close by giving many examples of programs that have been proved correct using

Who and Pangoline (and the Why system to call different automated provers). The
most complex example is Koda and Ruskey’s algorithm to enumerate certain colorings
of forests.

1.4.2. Design Choices
The choice of the programming language. One could ask why we are interested
in ML and not other, more widespread programming languages such as C or Java.
A first answer is that while we indeed focus on ML, the techniques proposed in this
document can also apply in other programming languages, even the treatment of higher-
order functions. In C, one can manipulate pointers to functions and thus effectively
write higher-order programs. In Java (and most other object-oriented languages), the
concept of an object itself is already higher-order, as an object always contains methods
(functions that are related to a particular object), except in the most trivial cases.
Common idioms such as callback functions are simply higher-order mechanisms.
If these languages provide higher-order features, then why not use such a language

as the basis of our work? The main reason is that the type system of ML gives us

32

1.4. Overview of the Document, Contributions and Related Work

much more guarantees and does in fact reduce the number of proof obligations one has
to prove. In proof systems for C, one often has to maintain additional properties, in
particular about pointers. They should always point to an allocated region, one needs
to specify the size of the corresponding memory block, and so on. In practice, this
encumbers the specifications and the proofs of a particular program. The choice of ML
as programming language seems to be a natural step towards program verification. If
the objective is to write a program and prove it correct, as opposed to prove correct an
existing program, then ML or similar languages seem to be a better choice than “unsafe”
languages such as C. It is therefore surprising that there are so few proof systems for
such languages. This thesis is also an attempt to change this situation.
Finally,ML is close to be the smallest system in which higher-order features and effects

are both present and can interact in interesting ways. Dealing with larger languages
such as C and Java would also mean dealing with additional language construct whose
treatment is mostly orthogonal to effects and higher-order functions. So, to obtain a
simple formalization, the natural choice is again ML.

Capabilities and why they are absent from this thesis. A dual notion to effects,
so-called capabilities, has been introduced by Smith et al. (2000). Effects describe
what changes during the evaluation of an expression. Capabilities describe what an
expression has the right to change. In an effect system, an effect can always occur, and
the typing relation registers this effect. In a system with capabilities, an expression
needs the corresponding capabilities to execute an effectful statement. Instead of a
typing relation of the form

Γ ` e : τ, ϕ,

where the effect ϕ is a result of the derivation, we would have a relation

Γ, ϕ ` e : τ,

where the capabilities ϕ are granted to e. In itself this modification of the point of
view does not increase the expressiveness of the system. But capabilities, much more
than effects, express the standpoint that a side effect needs a resource, which can be
consumed. Therefore, since their introduction, capabilities have been used linearly,
i.e., they must be used once and exactly once. This means, for example, that the
function !, that reads the contents of a reference, must not only require a capability
on that reference, but must also return another one; otherwise, no one else could read
from this reference again. On the one hand, such systems require a lot of bookkeeping.
On the other hand, linear capabilities enable a number of improvements over more
traditional effect systems. For example, deallocation can be expressed much more
conveniently than in other systems: the function free, that deallocates a reference,
requires a capability on that reference, but it does not return one. This reference now
becomes inaccessible. Capabilities also enable strong update, i.e., assignment that can
change the type of a reference. As capabilities are linear, only a single portion of the
code can possess each capability at each time. Thus, changing the type of a reference
can not affect other parts of the system.
Systems with capabilities belong to the family of substructural systems, because of

their usage of linearity. Another variant exists, where objects are used in an affine way,

33

1. Introduction

i.e., they can be used at most once. This discipline is a bit less strict than the linear
one.
As has been explained, capabilities have first been introduced by Smith et al. (2000),

and then improved by Walker et al. (2000). Fähndrich and DeLine (2002) presented a
capability-based system with group regions (regions containing more than one reference)
and singleton regions (regions containing a single reference), as well as two mechanisms,
adoption and focus that permit to pass from one to the other. This improvement permits
aliasing and precise tracking of references. Charguéraud and Pottier (2008) present a
very precise translation of an ML-like language with side effects to a pure language
without side effects, using capabilities with adoption and focus.
Capabilities are a useful tool, and it is legitimate to ask why the W language, intro-

duced in Chapter 2, does not feature them. The answer is two-fold. First, there is a
concern of simplicity. Capabilities are slightly more complex than effects, because of
their linear nature. Adding this additional complexity to an already complex system,
containing annotations and a wp calculus, is something that has to be thought about
twice. Second, capabilities have two main strengths with respect to effects that are the
upside of this added complexity: simpler reasoning about allocation and deallocation,
and better tracking of aliasing. We argue that, in our particular setting, these two
advantages are not worth the complexity.
ML-like languages are traditionally equipped with a garbage collector, so deallocation

is never explicitly requested by the programmer, but taken care of automatically by the
language. Allocation is also implicit in ML: a programmer never explicitly allocates
memory.
Aliasing, however, can appear in ML programs. Being able to reason about aliasing

is primarily useful when reasoning about mutable data structures with sharing. Our
system is capable of reasoning about sharing, but capabilities are certainly superior in
that aspect. However, we believe that this kind of programming is not representative for
ML programs. We believe that sharing data structures can be encapsulated in particular
modules, and be given an external specification that does not rely on sharing. The rest
of the (sharing-free) code can then be reasoned about using techniques that do not need
to be able to support sharing.

1.4.3. Related Work

Other techniques, and combinations of techniques, have been proposed to prove prop-
erties of effectful higher-order programs.

Techniques dealing with first-order programs. Systems for verification of first-order
programs are well-established now and are increasingly applied even in industrial ap-
plications. Among the most prominent systems are the Why platform (Filliâtre and
Marché, 2007) and the Spec# platform (Barnett et al., 2004b). Usually, these systems
propose one or several input languages with annotations (C and Java in the case of the
Why platform) and translate programs in this language to proof obligations in first-
order logic, often via an intermediate language (for example the Why language). These
proof obligations are then sent to automated or interactive provers. When all proof

34

1.4. Overview of the Document, Contributions and Related Work

obligations are proved, either manually or automatically, the program is considered to
be correct with respect to its specification.
Compared to Who, the implementation of our weakest precondition calculus, these

systems are not capable of reasoning about higher-order functions, the main reason
being that this programming style is not an often-used idiom in these languages. How-
ever, they deal very well with the usual features of first-order programs, for example
arrays, use SMT solvers to discharge proof obligations and strive for the best possible
automation. The objective of Who is to keep the same degree of automation while
adding support for effectful higher-order functions.

Techniques dealing with purely functional programs. Proof assistants can be used
to implement and prove programs. One strong point of many proof assistants is that
one can use the same language for programs and specifications, and sometimes even for
proofs. The Coq proof assistant (The Coq Development Team, 2008) is such a system.
It has been applied to prove many complex programs. The plain Coq system has been
used to prove several implementations of compilers, from proof-of-concept (Chlipala,
2010) to realistic (Leroy, 2009). Sozeau (2007) has extended Coq with a syntax that
simplifies the manipulation of dependent types and has applied his extension to the
correctness proof of an implementation of finger trees. The appeal of that approach is
that the only limit of expressiveness is the one of Coq. One can also do meta-reasoning
about programs inside Coq and, at the end of the development, extract a certified
implementation in OCaml or Haskell. The confidence in programs proved in this way
is very high, because in the end one obtains a Coq proof term that corresponds to the
correctness of the program. This term has been checked by Coq’s kernel. The drawback
of this approach is that, without extensions such as Ynot (see the next paragraph), it is
impossible to implement (and reason about) effectful computations. Another drawback
of this approach is lack of automation. Indeed, in systems like Coq, all proofs are in
principle done “by hand”, using a tactic language that permits to manipulate the goal
to be proved and the context (lemmas to apply, equations to rewrite). A number of
automated tactics exist, that deal for example with linear arithmetic, or propositional
tautologies. However, these tactics usually combine badly, and the resulting sum is
weaker than state-of-the-art automated provers.
The Pangolin system, the implementation of the theoretical system of Régis-Gianas

and Pottier (2008), can also be used to reason about purely functional programs. To-
gether with the Why tool, it is one of the starting points of our work, and our purely
functional fragment is basically the Pangolin system, although we removed algebraic
data types for clarity of presentation. In Pangolin, one can write functional higher-order
programs and annotate then using higher-order logic. Pangolin and our system share
the advantages and drawbacks in the sense that both are relatively simple systems from
a theoretical point of view and provide good automation via automated provers to the
user, but use slightly less expressive logics than systems with dependent types, and do
not provide a machine-checkable proof term. Note that the name “Pangolin” (without
“e”) stands for the tool we just described, while the name “Pangoline” (with “e”) stands
for the tool that encodes formulas in higher-order logic to formulas in first-order logic,
and which is part of the contributions of this thesis.

35

1. Introduction

Charguéraud (2010) presents a way to compute a characteristic formula from a purely
functional function definition. This formula summarizes exactly the given function and
can then be used, e.g., in Coq, to prove derived properties about the function. Char-
guéraud has implemented this system and has proved correct many purely functional
algorithms. In particular, the size of the specifications and proofs is close to the size of
the programs to be proved. However, it is not yet clear how this work can be extended
to support side effects.

Systems for higher-order programs with side effects. Berger, Honda and Yoshida
(Honda et al., 2005; Berger et al., 2007) present a logic for imperative higher-order
programs. They present their calculus using rules in Hoare logic style, while we propose
a wp-calculus. The main advantage of a wp calculus is that it can be easily implemented,
while a system in Hoare logic style, possibly with many structural rules, can be difficult
to implement. A wp calculus basically is a Hoare logic together with a strategy, that
decides at which moment the rules should be applied. The presentation of a system
in Hoare logic style can be slightly more intuitive compared to a wp calculus. On the
one hand, the systems they propose are slightly lighter, because they do not include
any effect analysis or similar mechanisms. On the other hand, we believe that the
absence of such an analysis would render proofs in this system relatively cumbersome.
In particular, one needs to describe in annotations what does not change; also, the
absence of any mechanism similar to effect polymorphism seems to make it impossible
to reason modularly about higher-order functions.
One particularity of the systems of Berger, Honda and Yoshida, that is at the source

of the ability to reason about higher-order functions, is the Hoare triple

{ P } e :m { Q }

that is available in the logic directly. In this Hoare triple, the variable m is a binding
variable and stands for the result of the evaluation of e. Another ingredient of their
logic is the application operator •: if f is an effectful function of type τ → τ ′, then,
in the logic, the expression f • x represents the return value of the call to f using x as
argument. This expression does not state anything about the pre- or postcondition of
f , nor its effects. It should be noted that • is useful only when the precondition of f
holds.
The Hoare triple can be simulated in our logic, and is indeed part of the syntax of the

input language of our implementationWho, as we explain in Section 5.1. The • operator
cannot be represented as-is, but the variant f • x = v where v is any formula, can be
expressed using Hoare triples, in their system and ours:

f • x = v ≡ { True } f x :r { r = v }

Fixing the precondition to True is not a serious restriction, as the operator is only useful
in this case anyway.
Berger, Honda and Yoshida have not presented an implementation of their Hoare

logic, therefore it is not clear how such a system could be realized. From our point
of view, there are two main difficulties to overcome. First, the system description by
a set of Hoare logic rules is quite far from an algorithm; second, in the case where

36

1.4. Overview of the Document, Contributions and Related Work

aliasing is allowed, they generate proof obligations in a non-standard logic, and they
do not explain how to obtain formulas in a standard logic to be able to discharge proof
obligations using available interactive or automated provers.
The Ynot System (Nanevski et al., 2008; Chlipala et al., 2009) is maybe the most

advanced proposal for the proof of higher-order programs with side effects. It is an
extension to the Coq proof assistant, capable of reasoning about imperative higher-order
programs, including effectful functions as arguments, using a monad in which effectful
computations can take place. Ynot belongs to the proponents of programming with
dependent types, whose thesis is that properties of objects, for example the preconditions
on function arguments, should be declared directly in the types instead of being stated
apart in the precondition. In practice, programming using Ynot means programming
with dependent types, while being able to use side effects; programming and proving go
hand in hand, partly using the same language.6 To deal with aliasing, Ynot proposes
the use of separation logic formulas.
A central ingredient of Ynot, and the underlying theory called Hoare Type The-

ory (Nanevski et al., 2006), is the Hoare triple type of the form

τ → {P}τ ′{Q},

which describes functions of argument type τ and return type τ ′, whose precondition
is P and the postcondition is Q. This type is simply defined in Coq, so arbitrary
Coq types can be used in place of τ and τ ′, and arbitrary Coq formulas can be used
in place of P and Q. In connection with a higher-order logic, this enables reasoning
about higher-order functions. A mechanism similar to our effect polymorphism can be
achieved by abstracting over the heap that is modified by a function. This enables
reasoning about the effects of a function in argument.
An impressive collection of programs has been proved correct using Ynot, including

a number of container libraries (Nanevski et al., 2008), web services (Wisnesky et al.,
2009) and a database system (Malecha et al., 2010).
Ynot is inevitably tied to the Coq system. While Coq is a very flexible language, it

as also relatively difficult to learn. In addition, to use Ynot, one has to master many
different techniques: programming with dependent types, using the tactics language of
Coq, and separation logic, any of which are considered to be difficult to master. Also,
being tied to the Coq system means that all proofs have to be done in this system.
While a set of custom tactics provides a limited form of automation (Chlipala et al.,
2009), one sometimes would like to use another system, or even automated provers, to
discharge an obligation. This is not possible using Ynot, and the fact that formulas are
in separation logic hinders even more the use of external tools.
Maingaud et al. (2010), based on the Paf! proof assistant (Baro and Manoury,

2003; Baro, 2003), have developed a system to prove properties of effectful higher-order
programs. The basic idea is to transform the semantic reduction rules of the considered
programming language into reasoning rules of the system. This amounts to symbolically
evaluate the program under consideration. Formulas of the form

[e].q
6In practice, one also needs to use the tactic language of Coq, which in most cases is more convenient
to write proofs than the actual programming language of Coq.

37

1. Introduction

state that after program e is executed, q is true. This approach is very intuitive and
simple, and can deal with aliasing. Similarly to the system of Berger, Honda and
Yoshida, the absence of any effect analysis or similar mechanism will require to prove
framing properties that delimit the effect of an expression. To our knowledge, an
implementation for this system does not exist.
The work by Borgström et al. (2010), to our knowledge, is one of the few works with

an implementation where a substructural type system is used for program verification
of higher-order programs with effects. At the basis of their system is Fine, a purely
functional language with dependent types and affine types. This language permits to
express many properties relative to sharing and even mutation, thanks to the presence of
affine types. They also present an effectful programming language FX and a translation
from FX to Fine. They are capable of producing proof obligations from Fine programs
and discharge them using SMT solvers. Comparing to our work, their system seems
to be more convenient for programs with sharing thanks to affine types. On the other
hand, they have not yet proved any higher-order programs, and only conjecture that
they could.

Encodings of higher-order logic. Hurd (2003), to our knowledge, was one of the first to
encode higher-order formulas in HOL (Gordon, 2000) into first-order logic with the goal
to use automated provers to prove them. He does so by simply encoding λ-abstractions
by the combinators S, K, I and C. The higher-order unary application is encoded
by a binary application symbol @. He does not give any proof or formalization of his
translation.
Meng and Paulson (2008) continue the work of Hurd in a similar setting, taking

formulas from Isabelle (Nipkow et al., 2002) instead of HOL. They have compared
several different encodings of higher-order features, in particular λ-abstractions, either
using combinators, or λ-lifting. Again, they do not give any formalization of their
translation. They have compared these different choices and have found that it makes
little difference to choose one or the other, in terms of efficiency.
Both the work of Hurd and Meng/Paulson translate formulas in a typed higher-order

logic to an untyped first-order logic. To be correct, such a translation must include
information about the types of the terms. Meng and Paulson developed several different
encodings of type information of varying verbosity.
Compared to the work of Meng and Paulson (2008) and Hurd (2003), we introduce

two improvements. By giving definitions to the function symbols introduced by the
encoding, we first obtain an ad-hoc justification of the equivalence of the original for-
mula and its encoding, simply by evaluation. Second, the definitions can also lead to
simplifications in the formulas. As a result, our encoding does not add any overhead to
formulas that are already in first-order form.

38

2. The Specification Language
In this chapter, we define the language of our discussion. In Section 2.1, we present a
programming language called W, which is very similar to ML, but contains a type and
effect system with regions. In W, the type system allows us to know the effect of an
expression precisely. Along with W, we define the specification language L in Section
2.2. This second language is designed to be used to specify W programs. We give
examples throughout the chapter.

2.1. The Programming Language W
We start by introducing the syntax, semantics and type system of W, along with a type
soundness proof.

2.1.1. Syntax
We now present the syntax of W. As types and effects are part of the syntax, we
introduce them first.

Regions and effects. One central point of W are regions and effects. A region ρ is
a set of mutable memory cells. Every reference in a W program belongs to a region.
Regions come in two flavors: concrete regions or region constants r and region variables
%:

% Region Variable
r Region Constant
ρ ::= r | %

The difference between a region constant and a region variable will become clear later.
Region expressions are always atomic (being either a constant or a variable), there is
no way to somehow combine regions.
An effect ϕ is simply a set of regions. In the syntax, such a set is written as a list,

sometimes with curly braces: {%, r1} is an effect expression, and %r1 is the same effect
expression, written more concisely. There are also effect variables ε that stand for an
entire effect. Effects can be joined together to form larger effects. However, instead
of the usual set notation to describe the union of two effects, such as {%, r1} ∪ ε, we
simply list effect variables inside the curly braces: {%, r1, ε}, or in the shorter form %r1ε.
We still use the notation ϕ1 ∪ ϕ2 to describe the union of two arbitrary effects in the
metatheory.

ϕ ::= (ρ | ε)∗

39

2. The Specification Language

Types. Just as ML, W is a typed programming language. Besides the usual base types
such as bool, and int, and the type unit whose only value is the constant void , a type
τ in W can also be a type refρ τ of mutable references of type τ . As every reference
must be in a certain region, this is also indicated in the type. The type τ1 →ϕ τ2
describes one-argument functions whose input type is τ1 and whose output type is
τ2. Additionally, these “arrow types” are annotated with the effect ϕ of the function.
Functions with different effects have different types. There are also type constructors
ι, which have a certain arity n associated to them. If ι is a type constructor of arity n,
then ι (τ1, · · · , τn) is a valid type in W. The base types bool, unit and int can be seen
as nullary type constructors. Finally, just as there are region and effect variables, there
are also type variables α.

ι ::= bool | unit | int | · · ·
τ ::= α | τ →ϕ τ | ι τ | refρ τ

Metavariables for generalization and instantiation. Types, regions and effects can
contain variables. These variables can be instantiated again by types, regions and
effects. This mechanism is common to all three constructs. Therefore, we use the
metavariable χ to stand for any kind of type, region or effect variable, and the metavari-
able κ to stand for any kind of type, region or effect. When we describe substitutions,
such as in the notation τ [χ 7→ κ], we assume χ and κ to be of compatible type. So the
expression τ [χ 7→ κ] describes either a substitution of a region for a region variable, a
substitution of an effect for an effect variable, or finally a substitution of a type for a
type variable.

χ ::= α | % | ε
κ ::= τ | ρ | ϕ

Values and expressions. We now can describe the programming language W itself. As
the languages of the ML family, it does not make a distinction between statements and
expressions; there are only the latter. Every programming language needs constants c:

c ::= void | n | true | false | ref | := | ! | :=r,l,τ · · ·

In W we have the constant void, the only value of the type unit, as well as integer
constants n and the boolean constants true and false. More interestingly, the three
functions ref , ! and := for reference creation, reading and writing are also constants.
The family of constants :=r,l,τ is a technical necessity and describes a partial application
of := to a location l in region r of type τ . Right now we cannot go into more detail, but
the meaning of this family of constants will become clear when we explain the semantics
of W.
While W does not distinguish commands and expressions, it does distinguish values v

from other expressions e. A value is an expression that cannot be evaluated any more.

40

2.1. The Programming Language W

Constants c and program variables x are of course values. Constants and variables can
be instantiated with types, regions and effects:

v ::= c [κ] | x [κ] | · · ·

Functions are also values and can be built using the syntax

v ::= · · · | rec f (x : τ). e | · · ·

This creates a recursive function with one argument x of type τ and function body e.
In W, all functions are recursive, and they may use the first variable name in the rec
binding for recursive calls. Of course, functions that do not contain recursive calls are
accepted as well. The name f is not available outside of the function body. We will
see later how to give a name to such a function to be able to use it with the usual
function call syntax. Functions are values: as long as they are not applied, they cannot
be evaluated any more. The last kind of values are memory locations l, whose meaning
we will explain in the Section 2.1.2.

l Location
v ::= c [κ] | x [κ] | l | rec f (x : τ). e

Values can be used in several ways to form expressions, that are the central syntactic
notion of W. Every value can be an expression as well. An application

v1 v2

of a function value v1 to another value v2 is an expression. The branching construct

if v then e else e

is an expression. Using an expression of the form

let x [χ] = e1 in e2

users can give the name x to the result of the expression e1 and use the name x in e2.
The type, effect and region variables χ can be used inside e1. The construct

letregion % in e

permits to create a new (empty) region. The meaning of the region construct

region r in e

will be explained in Section 2.1.2 about semantics.

e ::= v | v v | let x [χ] = e in e | if v then e else e | letregion % in e | region r in e

41

2. The Specification Language

% Region Variable
r Region Constant
ε Effect Variable
ρ ::= r | %
ϕ ::= (ρ | ε)∗
ι ::= bool | unit | int
τ ::= α | τ →ϕ τ | ι τ | refρ τ
χ ::= α | % | ε
κ ::= τ | ρ | ϕ
l Location
c ::= void | n | true | ref | := | ! | :=r,l,τ

v ::= c [κ] | x [κ] | l | rec f (x : τ). e
e ::= v | v v | let x [χ] = e in e | if v then e else e | letregion % in e | region r in e
Γ ::= ∅ | Γ, χ | Γ, x : ∀χ.τ

Figure 2.1: The syntax of language W.

A-normal form and syntactic sugar. The syntax of W is summarized in Fig. 2.1. The
reader may be surprised that one cannot write

e1 e2

for an application of a function returned by the expression e1 to the expression e2, or
why the boolean condition in an if-branch can only be a value instead of any expression
e. The reason is that for the sake of simplicity of presentation of the later sections,
W is presented in the so-called A-normal form (Flanagan et al., 1993), in which every
intermediate result of computation must be named using let. The application e1 e2
must be rewritten as follows:

let f = e1 in
let x = e2 in
f x

This seems very restrictive at first, as even nested function calls such as f (g x) must
be rewritten into let z = g x in f z. However, as is shown in the paper by Flanagan
et al., this is not a serious restriction, because every program in a language with full
expressions can be translated to A-normal form. For this reason, we will allow ourselves
to use arbitrarily nested expressions in examples.
Additionally, we introduce syntactic sugar for common constructs. First, we accept

an underscore _ at binding positions instead of a variable name, when we do not want
to give a name to this variable. This concerns let-bindings and recursive functions. We
use the pair of parentheses () in two ways: first as a synonym for the value void of type

42

2.1. The Programming Language W

unit, and second, similarly to the underscore, as a way to indicate a function argument
of unit type for which we do not want to invent a name.
The semicolon ; indicates chaining of expressions while ignoring the return value of

the first one, and we propose syntactic sugar for function definitions:

e1; e2 := let _ = e1 in e2

let f [χ] (x : τ) = e1 in e2 := let f [χ] = rec _ (x : τ). e1 in e2

let rec f [χ] (x : τ) = e1 in e2 := let f [χ] = rec f (x : τ). e1 in e2

In addition, we introduce syntactic sugar for the usual for loop:
for i = e1 to e2 do e3 done

stands for the following program:
let a = e1 in
let b = e2 in
let f i = e3 in
let rec aux k =

if k > b then void else (f k; aux (k + 1))
in
aux a

Occasionally, we will omit type annotations for function arguments, when the context
allows it; for example, in the above expansion of the for loop, the variables i and k are
clearly of integer type.
While we have not introduced function constants for operations on integers such as

addition and multiplication, we still use such functions in our examples. For example,
we use the well-known functions +, −, × and ÷, which are of type int →∅ int →∅ int.
The usual comparison functions <,≤,≥, > are also occasionally used, and are of type
int→∅ int→∅ bool. We allow infix notation for all these functions.
Another issue is the one of equality tests; most programming languages supply a

binary function (=) to test for equality between two values. Formally, we do not
introduce a generic equality test, that works for all types. Instead, we use specific
equality tests such as

=int: int→∅ int→∅ bool.
for the equality test between integers. In example programs, we still use the infix symbol
= for clarity.

Top-level bindings. In most programming languages, a program is a list of top-level
declarations and definitions. However, we only have presented expressions in W. It is
easy to remedy to this situation. Take the three introduction forms let, letregion and
region and define three top-level forms without the in part. Now a list of such top-level
forms, for example

letregion %
let f (x : τ) = e

is transformed into a single expression using the corresponding expression forms with

43

2. The Specification Language

the in part, terminating with, for example, the void expression. In our example, we
obtain:

letregion % in
let f (x : τ) = e in
void

We use top-level bindings in our examples.
We observe that the main differences between W and ML are explicit type, effect

and region generalization and instantiation, the two constructs letregion and region and
finally the presentation of W in A-normal form.

Examples. Let us give a few example programs to see what programs in W look like.
We start with a simple factorial function:

let rec fact (n : int) = if n = 1 then 1 else n × f (n − 1)

and its imperative counterpart, which uses a for loop instead of a recursive function:

let factwhile (n : int) =
letregion % in
let x = ref [int, %] 1 in
for i = 1 to n do

x := [int, %] ![int, %] x × i
done;
!x

Note that the type and region polymorphic functions ref , := and ! have to be given the
corresponding type and region instantiations. We will often omit these instantiations
when the context permits it; in the case of := and !, both the type instantiation and the
region instantiation can be easily derived. We will always give the region instantiation
for ref , however.
Maybe the simplest higher-order function is the one that takes a function argument

and executes it:

let exec [ε] (f : unit→ε unit) = f ()

The function definition itself is not very interesting; we will show how this function
can be typed in Section 2.1.3.
Yet another interesting function is the so-called Landin’s Knot (Landin, 1966), which

achieves recursion without using recursive functions. It does so by stocking the function
in a reference; recursive calls are replaced by calls to the function stored in the reference.
Here is the factorial function, implemented using this method:

letregion %
let circfact =

let id n = n in
let x = ref [%] id in
let f n = if n = 0 then 1 else n × (!x) (n − 1) in
x := f ;
!x

44

2.1. The Programming Language W

The circfact function returns the contents of the reference x, i.e., a function that com-
putes the factorial of its argument.

2.1.2. Semantics
We now move on to the semantics of the language. The semantics expresses what
each language construct actually does, and under what conditions a program executes
normally or gets stuck.
One can imagine using Hoare logic to define the semantics of a programming language;

there have been attempts to do just that (Hoare, 1974). But in our setting, this would
have several drawbacks. First, such rules would possibly be relatively complex and
not particularly illuminating. Second, more importantly, as we want to prove that
the Hoare logic we are going to define is correct, we need some other definition of the
semantics of the language. We therefore settle for the now-standard approach of Wright
and Felleisen (1994), called small step semantics. We define the semantics of W by a
syntactic relation � that describes under what condition an expression can reduce to
another. The intention is that this relation is reasonably close to what actually happens
on a computer, and reasonably easy to formulate and to understand. The rules of Hoare
logic will be proved correct with respect to this semantics.
We do not define � directly; instead, we first define a reduction relation ⇀ describes

a reduction step at the top of an expression. Then we define a relation −→, that
describes a single such step at certain positions in an expression. The desired relation
� is then simply the transitive closure of −→: it describes a sequence of zero or more
steps of the relation −→.
We now define more formally a few notions that are necessary to express the seman-

tics.

Definition 2.1. A dynamic region R is a finite mapping from locations l to values Region R
v. We write dom(R) to denote its domain. We write R[l 7→ v] to add the binding l 7→ v
to R, or update an existing binding of l in R. We write ∅ for the empty region.

Definition 2.2. A store s is a finite mapping from region names r to dynamic regions Store s
R. We write dom(s) to denote its domain. We write s[r 7→ R] to add the binding r 7→ R
to s, or update an existing binding of r in s.

Definition 2.3. We assume the existence of a function δ with the signature δ

Store × Const ×Value → Store ×Value,

which knows how to interpret constant symbols when they are applied to an argument.
This function may be undefined, in particular for ill-typed applications. Throughout
our development, we assume a number of hypotheses about δ. We will give a partial
definition of δ. We also assume that δ verifies a number of properties, and we will prove
these properties for our partial definition.

To be able to formulate the semantics of W, we need a notion of substitution of
values for variables. However, in W, values can be polymorphic, and variables can
carry instantiations. The consequence is that the notion of substitution is slightly more

45

2. The Specification Language

s, e ⇀ s′, e′

(β) s, (rec f (x : τ ′). e) v ⇀ s, e[x 7→ v, f 7→ rec ...]
(let) s, let x [χ] = v in e ⇀ s, e[x 7→ Λχ.v]
(δ) s, c [κ] v ⇀ δ(s, c[κ], v)
(iftrue) s, if true then e1 else e2 ⇀ s, e1
(iffalse) s, if false then e1 else e2 ⇀ s, e2
(letreg) s, letregion % in e ⇀ s[r 7→ ∅], region r in e[% 7→ r] r /∈ dom(s)
(region) s, region r in v ⇀ s, v

Figure 2.2: The reduction relation of W.

involved than in the standard literature. We therefore define a polymorphic substitution
of values, written [x 7→ Λχ.v]. Its informal meaning is the following: replace every
occurrence of x, possibly applied to some instantiations κ, by v, in which the parameters
χ have been replaced by κ.
Definition 2.4. We define the polymorphic substitution as descending in every sub-[x 7→ Λχ.v]
term, but on variables, it is defined as follows:

(x [κ]) [x 7→ Λχ.v] = v[χ 7→ κ]
(y [κ]) [x 7→ Λχ.v] = y [κ] x 6= y

If the list χ is empty, we simply write [x 7→ v]. For the simultaneous substitution of
multiple values for multiple variables, we write [x 7→ Λχ.v, y 7→ Λχ′.v′].
Now we have provided everything to define the reduction relation of our language. It

is summarized in Fig. 2.2. A state of our semantics is described by a pair s, e, where
s is a store and e is an expression. The pair s, e is also called a configuration. The
relation s, e ⇀ s′, e′ describes how e may reduce to e′, and provoke modifications in s to
obtain s′, at the top-level of the expression, i.e., the relation inspects only the top-most
structure of e. An application of a recursive function to an argument v is called a
β-reduction: we replace every occurrence of x in the body by the argument, and every
recursive occurrence f by the anonymous function. The reduction of a let-expression
is similar, but the value v is potentially polymorphic, so we need to use polymorphic
substitution. When we encounter a constant applied to a value, we use the function
δ to evaluate this expression and return the potentially modified state. Conditional
expressions are evaluated in the usual way. Finally, a letregion-construct creates a new
region with a fresh name in the store and reduces to a region-construct with the same
body. A region-expression can only reduce if its body is a value, in which case it simply
returns the value.
The reduction semantics makes use of the function δ, which interprets constants.

Definition 2.5. We assume δ to contain at least the following mappings:δ

δ(s, ! [τr], l) = s, s(r)(l) r ∈ dom(s), l ∈ dom(s(r))
δ(s, := [τr], l) = s, :=r,l,τ

δ(s, :=r,l,τ , v) = s[r 7→ s(r)[l 7→ v]], void r ∈ dom(s), l ∈ dom(s(r))
δ(s, ref [τr], v)) = s[r 7→ s(r)[l 7→ v]], l r ∈ dom(s), l /∈ dom(s(r))

46

2.1. The Programming Language W

So the function !, with a certain type and region instantiation, applied to a memory
location, looks up the region in the store, and the memory location in the region, and
returns the contained value. The function ref creates a new memory location in an
existing region. The intention of the function constant := is that := [τr] l v overwrites
the current value of l in region r by v. However, δ needs two steps to achieve this,
passing by the constant :=r,l,t. We now see the meaning of this constant; it represents
the partial application of := to a memory location, and its instantiation. This formality
is necessary because we only allow a single argument to constants.

The relation ⇀ is undefined for tuples s, e for which none of the reduction rules
applies. This includes application of constants c to arguments for which δ is not defined,
the attempt to apply non-functional values, or an if-branch whose test is neither true
nor false.
To be able to describe reduction deeply inside a term, we use evaluation contexts:

E ::= � | let x [χ] = E in e | region r in E

An evaluation context describes where a reduction can take place inside a term. Hence,
an evaluation context can be seen as a term with a hole. However, only a very limited
choice is available for building evaluation contexts. Such a context can either be empty,
noted �, which means that the reduction takes place at top-level. It can also be a
let-expression with the hole on the left side. Finally, an evaluation context can be a
region-expression.
The actual one-step reduction −→ is now simply the closure w.r.t. contexts of the

top-level one-step reduction: s, e −→ s′, e′

Context
s, e ⇀ s′, e′

s, E[e] −→ s′, E[e′]

It describes how a term can be reduced to another using a single rewriting step of the
relation ⇀, but only at certain points of an expression.
Finally, we define the reduction relation � as the reflexive and transitive closure of

the relation −→: s, e� s′, e′

Refl
s, e� s, e

Step
s, e� s′, e′ s′, e′ −→ s′′, e′′

s, e� s′′, e′′

Stated otherwise, if s, e � s′, e′, then s, e reduces in a finite number of steps of the
relation −→, possibly no step at all, to s′, e′.
A special situation occurs when for a given configuration s, e, there is no s′, e′ such

that s, e −→ s′, e′. We distinguish two cases. Either e is actually a value v (no rule of⇀
or −→ applies to values); we then say that the evaluation has terminated and v is the
result of the evaluation. On the other hand, if e is not a value, we say that e is stuck.
Being stuck is the way our semantics models undesirable errors such as typing errors
(applying, for example, the addition function to boolean values or trying to apply an
object which is not a function, say an integer, to some arguments) and memory errors
(accessing a memory location that does not exist).

47

2. The Specification Language

Surface language. A few elements of the syntax are not actually part of the language,
at least not the language a programmer might use. Users cannot refer to memory
locations in their programs, they cannot use region constants, and they cannot use the
region construct. These constructs are only there to simplify the reasoning about the
semantics of the language. This will become clearer in Section 2.1.3 concerning typing
and Section 2.1.4 containing the type soundness proof.
So far we have seen four different letters for the concept of regions: R, r, % and

ρ. Conceptually, they are all the same thing, but technically we have to distinguish
between: the actual mappings R from memory locations to values; the names r for
regions, that can appear in a running program; and the region variables % which stand
for a region name r and can appear in programs written by a user or in running
programs, but are always bound by a letregion or let construct. Finally, the metavariable
ρ can be used to designate one of % and r. Apart from Section 2.1.2, we mostly use the
metavariable ρ to deal with the most general case. A user of W only ever sees region
variables %.
The relation between memory locations l and program variables is somehow similar;

one the one hand, the surface language contains only variables x, but in a running
program, memory locations l may also appear.
As a bibliographic note, the letregion construct has appeared, among others, in the

work of Tofte and Talpin (1997). We learned about the region construct in the paper
of Calcagno et al. (2002).

Examples. Fig. 2.3 presents an example of an evaluation, namely the application of
the factwhile function to the argument 2. The example shows the effects of the letregion
construct as well as the functions that manipulate references. The symbol ∅ repre-
sents either the empty store (in the first two steps) or an empty region (in the third
configuration).

A few properties. Before we go on, we prove a few technical properties about the
reduction relation. As we have stated, the region construct is not part of the surface
language, but it can be created at certain places during the evaluation of an expression.
Some of the type soundness theorems (Section 2.1.4) are not correct if we do not re-
strict the occurrences of region to the ones that can actually occur in a reduction. We
introduce the notion of purity.

Definition 2.6. Let a value v be pure if v does not contain the region keyword atpure
all. We call an expression e pure if it only contains pure values. A store s is pure if all
stored values are pure. For example, the expression region r in 5 is pure, even though
it contains region, because every value in this expression is pure.

We now assume the function δ to preserve purity of expressions. This is an assump-
tion; we cannot prove it in general because we did not define δ. However, we need to
prove that our assumption is coherent with Definition 2.5, in which we fixed some of the
mappings present in δ. Therefore, our hypothesis is followed by a partial “proof”, that
only considers these fixed mappings. We use this scheme for all hypotheses concerning
δ.

48

2.1. The Programming Language W

∅,
fa

ct
w

hi
le

2
⇀

∅,

let
re

gi
on

%
in

let
x

=
re

f
[in

t,
%
]1

in
fo

ri
=

1
to

2
do

x
:=

!x
×

i
do

ne
;

!x

⇀
[r
7→
∅]
,

re
gi

on
r

in
let

x
=

re
f

[in
t,

r]
1

in
fo

ri
=

1
to

2
do

x
:=

!x
×

i
do

ne
;

!x

−→
[r
7→

[l
7→

1]
],

re
gi

on
r

in
let

x
=

li
n

fo
ri

=
1

to
2

do
x

:=
!x
×

i
do

ne
;

!x

�
[r
7→

[l
7→

1]
],

re
gi

on
r

in
let

f
i

=
l

:=
!l
×

i
in

let
re

c
au

x
k

=
if

k
>

2
th

en
vo

id
els

e
(f

k;
au

x
(k

+
1)

)
in au

x
1;

!l

�
[r
7→

[l
7→

1]
],

re
gi

on
r

in
au

x
1;

!l
−→

[r
7→

[l
7→

1]
],

re
gi

on
r

in
if

1
>

2
th

en
vo

id
els

e
(f

k;
au

x
(k

+
1)

);
!l

−→
[r
7→

[l
7→

1]
],

re
gi

on
r

in
l

:=
!l
×

1;
au

x
2;

!l
�

[r
7→

[l
7→

1]
],

re
gi

on
r

in
au

x
2

;
!l

�
[r
7→

[l
7→

1]
],

re
gi

on
r

in
l

:=
!l
×

2;
au

x
3;

!l
�

[r
7→

[l
7→

2]
],

re
gi

on
r

in
if

3
>

2
th

en
vo

id
els

e
(f

k;
au

x
(k

+
1)

);
!l

−→
[r
7→

[l
7→

2]
],

re
gi

on
r

in
!l

−→
[r
7→

[l
7→

2]
],

re
gi

on
r

in
2

⇀
[r
7→

[l
7→

2]
],

2

Fi
gu

re
2.
3:

A
n
ex
am

pl
e
of

an
ev
al
ua

tio
n.

A
ll
re
gi
on

in
st
an

tia
tio

ns
co
nc
er
n
th
e
re
gi
on

r
cr
ea
te
d
in

th
e
se
co
nd

st
ep
.
Va

ria
bl
es

in
bo

ld
,c

on
tr
ar
y
to

pr
og
ra
m

va
ria

bl
es
,r

ep
re
se
nt

an
on

ym
ou

s
fu
nc
tio

ns
pr
ev
io
us
ly

in
tr
od

uc
ed

us
in
g
let

.
Fo

r
ex
am

pl
e,
f

re
pr
es
en
ts

th
e
cl
os
ur
e

re
c
_

(i
:

in
t)
.
l

:=
!l
×
i.

In
th
e
st
ep

fro
m

co
nfi

gu
ra
tio

n
fo
ur

to
co
nfi

gu
ra
tio

n
fiv

e,
we

ha
ve

de
su
ga
re
d
th
e
fo
rl
oo

p
an

d
ap

pl
ie
d
th
e
re
du

ct
io
n
ru
le
le
t
th
re
e
tim

es
.

49

2. The Specification Language

Hypothesis 2.7. If s is pure, and the value v is pure, and

s′, v′ = δ(s, c[κ], v),

then s′ and v′ are pure.

Proof for the constants of Definition 2.5. This hypothesis can easily be checked for the
mappings of Definition 2.5.

Lemma 2.8. If e and s are pure, and if for s′ and e′ one of the conditions

1. s, e ⇀ s′, e′

2. s, e −→ s′, e′

3. s, e� s′, e′

is true, then s′ and e′ are pure as well.

Proof. 1. For the relation ⇀, we simply check for each rule that purity is preserved.
Hypothesis 2.7 guarantees this for the rule (δ). The rules iftrue, iffalse and region
do not change the store, and the resulting expression is a subexpression of the
initial one, so region is not produced. The rules (β) and let substitute values
for variables, but all values have been present before and cannot contain region.
Finally, the rule letregion produces a region construct, but it is not contained in a
value.

2. For the relation −→, we proceed by induction on the form of the reduction context
E. If E is empty, the claim follows from the one about⇀. In the other two cases,
it is clear that any subexpression of the result of the reduction has either been
present before (and thus is pure) or has been obtained by reduction using ⇀, and
is pure as well, as we already have proved the claim for ⇀. The resulting state s′
is pure because it necessarily results from a reduction with ⇀.

3. The claim for � is trivial; just proceed by induction over the length of the chain
of reductions using −→.

2.1.3. Typing
One of the great advantages of ML programs compared to other languages such as C or
C++ is that ML programs can never get stuck. How is this possible, given that we have
seen that there exist expressions that can get stuck in our language? The answer is well-
typedness: not every well-formed expression is considered a valid program; in addition
to the syntactic restrictions, a typing relation ensures that no typing errors occur and
that all memory locations have been used correctly. In this section, we present our
typing relation, which also rules out wrong behavior with respect to regions.
An expression or a value must always be well-typed with respect to an environment

Γ, which basically gives types to all variables in the expression. In our case, programs
do not only contain variables, but also memory locations. Memory locations should

50

2.1. The Programming Language W

be of type refr τ , but the typing environment gives no information which region r and
which type τ is appropriate. As a consequence, we need an additional environment that
associates to each memory location a type and a region.

Definition 2.9. A store typing Σ is a mapping from locations l to a pair of a region Store Typing Σ
name r and a type τ : Location→ Region× Type.
Finally, our programs also contain constants. A predefined function Typeof () gives

the type schemes of all constants; we only partially define this function here for the
constants we are interested in: Typeof (c)

Typeof (ref) := ∀α%.α→% ref% α
Typeof (:=) := ∀α%.ref% α→∅ α→% unit

Typeof (:=r,l,τ) := τ →r unit
Typeof (!) := ∀α%.ref% α→% α

Typeof (void) := unit
Typeof (n) := int

Typeof (true) := bool
Typeof (false) := bool

For example, the function := takes as an argument a memory location in any region %, of
any type α, a value of type α and, according to the semantics defined earlier, updates
the memory location with this value. The word “any” in the previous sentence is
translated by the generalization of the type and the region of the reference. Of course,
since the region which contains the location is affected by this operation, the region
appears in the effect of := on the second arrow. Similar considerations are valid for
the other functions manipulating references. Notice that we do not distinguish between
reading and writing a region, so ! also affects the region of its location argument. The
let construct permits to define polymorphic functions in W itself. Such polymorphic
constants and variables have to be used with an instantiation, which specializes its
type. This is the purpose of the syntax c [κ] and x [κ] for variables. Of course, for
monomorphic variables and constants, no instantiation needs to be given.
We now define the typing relations for values and programs; both are mutually recur-

sive. The typing relation for values is of the form Γ; Σ `v v : τ , which means that in the
environment Γ, given the store typing Σ, the value v has type τ . The typing relation
for expressions is of the form Γ; Σ ` e : τ, ϕ and states that under Γ and Σ, e has type
τ and effect ϕ. The relation for values is defined in Fig. 2.4. Since we are working
with store typings, the case for memory locations is easy: l is well-typed of type refr τ
if Σ contains a mapping l 7→ r, τ . Variables with an instantiation κ are well-typed if
they are contained in the environment and if their instantiation corresponds to their
type scheme. Constants are typed in a similar way. Recursive functions are of function
type τ ′ →ϕ τ when, assuming that their argument is of type τ ′ and assuming that the
recursive call is already of type τ ′ →ϕ τ , the body can be typed to be of type τ and
effect ϕ.
The typing relation for expressions is defined in Fig. 2.5. Every well-typed value is a

well-typed expression with no effect (rule Value). The effect of any expression can be

51

2. The Specification Language

Γ; Σ `v v : τ

PVar
Γ(x) = ∀χ.τ

Γ; Σ `v x [κ] : τ [χ 7→ κ]
PConst

Typeof (c) = ∀χ.τ
Γ; Σ `v c [κ] : τ [χ 7→ κ]

Rec
Γ, f : τ ′ →ϕ τ, x : τ ′; Σ ` e : τ, ϕ
Γ; Σ `v rec f (x : τ ′). e : τ ′ →ϕ τ

Loc
Σ(l) = r, τ

Γ; Σ `v l : refr τ

Figure 2.4: The typing rules for program values.

Γ; Σ ` e : τ, ϕ

Value
Γ; Σ `v v : τ
Γ; Σ ` v : τ, ∅ App

Γ; Σ `v v : τ ′ →ϕ τ Γ; Σ `v v′ : τ ′
Γ; Σ ` v v′ : τ, ϕ

LetPoly
Γ, χ; Σ `v v : τ ′ Γ, x : ∀χ.τ ′; Σ ` e2 : τ, ϕ

Γ; Σ ` let x [χ] = v in e2 : τ, ϕ

Let
Γ; Σ ` e1 : τ ′, ϕ1 Γ, x : τ ′; Σ ` e2 : τ, ϕ2

Γ; Σ ` let x = e1 in e2 : τ, ϕ1 ∪ ϕ2

If
Γ; Σ `v v : bool Γ; Σ ` e1 : τ, ϕ Γ; Σ ` e2 : τ, ϕ

Γ; Σ ` if v then e1 else e2 : τ, ϕ

LetReg
Γ, %; Σ ` e : τ, ϕ % /∈ τ

Γ; Σ ` letregion % in e : τ, ϕ \ % Region
Γ; Σ ` e : τ, ϕ r /∈ τ

Γ; Σ ` region r in e : τ, ϕ \ r

Sub
Γ; Σ ` e : τ, ϕ ϕ ⊆ ϕ′

Γ; Σ ` e : τ, ϕ′

Figure 2.5: The typing rules for program expressions.

52

2.1. The Programming Language W

increased using the rule Sub. The letregion construct introduces a new region variable
in the typing environment, and removes it from the effect of the overall expression,
given that the region does not occur in the type, which is expressed by % /∈ τ . The
region construct is typed similarly, with the difference that the region constant r is not
introduced into the context. If a value v is of function type and if v′ is of the same
type as the argument of the function, then v v′ is of the return type of the function.
The overall effect of this expression is the latent effect of the function (rule App). If-
then-else expressions are well-typed if the condition is indeed of type bool and if the
two branches are of the same type and same effect. The overall effect is the union of
the effects of the two branches. A let-expression introduces a variable-binding into the
environment; this binding can only be polymorphic when the inner term e1 is actually
a value v (rule LetPoly); in this case, the effect of the let-expression is the effect of
the outer expression e2. Otherwise, if e1 is not a value, the introduced variable binding
must be monomorphic (rule Let).

Examples. Recall the following simple function (see page 44) that takes a function
argument f and applies it to the unit value:

let exec [ε] (f : unit→ε unit) = f () in . . .

We show its typing derivation in our system, where we have assumed that the expression
following the in, represented by the three dots, is of type τ and effect ϕ:

LetPoly

Rec
App

Γ, ε, f : unit→ε unit; Σ `v f : unit→ε unit
Γ, ε, f : unit→ε unit; Σ ` f () : unit, ε

Γ, ε; Σ `v rec _ (f : unit→ε unit). f () : (unit→ε unit)→ε unit
Γ, exec : ∀ε.(unit→ε unit)→ε unit; Σ ` . . . : τ, ϕ

Γ; Σ ` let exec [ε] = rec _ (f : unit→ε unit). f () in . . . : τ, ϕ

The particularity of this derivation is that exec is effect polymorphic; its type

exec : ∀ε.(unit→ε unit)→ε unit

describes that whatever the effect of f , the exec function has the same effect. This
generalization of the type of exec is achieved using the LetPoly rule.
Let us show some other subtleties of the typing relation using an example. We recall

the factorial function defined using Landin’s knot (see page 44):
letregion %
let circfact () =

let id n = n in
let x = ref [%] id in
let f n = if n = 0 then 1 else n × (!x) (n − 1) in
x := f ;
!x

This function can be typed as follows. First, we set Γ0 to be the environment inside
the letregion construct: Γ0 = %. Next, we observe that we can obtain the judgment

Γ0, n : int; Σ ` n : int, {%}

53

2. The Specification Language

with the following derivation (setting Γn = Γ0, n : int):

Sub
Value

Var
Γn(n) = int

Γn; Σ `v n : int
Γn; Σ ` n : int, ∅

Γn; Σ ` n : int, {%}

This proves that the identity function id can be typed with the effectful type int→% int.
We go on and give the type ref% (int→% int) to the reference x. Let us set

Γx = Γ0, id : int→% int, x : ref% (int→% int).

Setting again Γn to Γx, n : int, we can prove

If
Sub

Value
Γn; Σ `v 1 : int
Γn; Σ ` 1 : int, ∅

Γn; Σ ` 1 : int, {%} App
Γn; Σ `!x : int→% int, {%}

Γn; Σ ` n× (!x)(n− 1) : int, {%}
Γn; Σ ` if n = 0 then 1 else n× (!x)(n− 1) : int, {%}

where we have omitted the typing derivations for the boolean condition n = 0 and the
integer expressions n and n− 1. This derivation now can be used to prove that f can
be given the type int →% int, just as id. As a consequence, we can assign x to f and
return the new contents of x, i.e., f .
The crucial part of this derivation is that id and f can be given the same type,

although f has an effect on % while id is pure. However, this purity can be abandoned
for typing purposes.

2.1.4. Properties
To prove that a program in our language cannot be stuck, we first prove that a closed
well-typed program is either a value or can do a reduction step using −→. This property
is called progress. But this is not sufficient, because maybe our program will be stuck
after that one step, or after n steps. So the second part of the proof is preservation,
also called subject reduction, which states that all the reduction relations ⇀, −→ and
� preserve the property of well-typedness.
First, we assure ourselves that there are no unexpected constants of certain types:

Hypothesis 2.10. We assume that true and false are the only constants c such that
Typeof (c) = bool. Furthermore, we assume that there is no constant c such that
Typeof (c) = refρ τ .

Next, we assume that δ does not get stuck on well-typed values.

Hypothesis 2.11. δ(s, c[κ] v) is always defined if c[κ] v is well-typed in the empty
environment.

Proof for the constants of Definition 2.5. One can easily convince oneself that the well-
typed applications of ref , ! and := are exactly the ones for which δ is defined.

54

2.1. The Programming Language W

Proposition 2.12 (Canonical values). In the empty environment Γ = ∅,

1. a value of type τ →ϕ τ ′ is either a constant or of the form rec f (x : τ). e,

2. a value of type bool is a constant,

3. a value of type refρ τ is a memory location.

Proof. Simply by looking at the typing rules, and observing that, in the empty envi-
ronment, the rule PVar can never be applied.

Additionally, we have to assume that the only constants of type bool are the values
true and false, and that there are no other constants of that type.

Hypothesis 2.13 (Constants of type bool). If a constant c is of type bool, then either
c = true or c = false.

Before we can prove progress, we have to introduce a notion of compatibility between
stores and store typings.

Definition 2.14. A store s is compatible with a store typing, written Σ ` s, when for Σ ` s
each region r ∈ dom(s) and each location l ∈ dom(s(r)), the store typing Σ contains
a mapping (l 7→ r, τ) for some τ , and we have ∅; Σ `v s(r)(l) : τ . Compatibility of Σ
with s also includes preciseness, i.e., the domain of Σ and the set of locations in s (the
union of the domains of all regions in s) are equal.

Given these requirements on the typing of values and the constant interpretation
function δ, proving the “progress”-property is relatively easy.

Theorem 2.15 (Progress). For every expression e such that ∅; Σ ` e : τ, ϕ, and every
state s such that Σ ` s, either e is a value or there is a state s′ and an expression e′

such that s, e −→ s′, e′.

Proof. The proof is by induction of the structure of the typing derivation of e, and we
do a case analysis on the last rule that is applied.

Case Value In this case we are done because then e is actually a value.

Case Sub In this case, we can use the induction hypothesis, because e is unchanged.

Case App In this case, e = v v′ and both values are well-typed in the empty environ-
ment. We can now apply Proposition 2.12 and we obtain that v is either of the
form rec f (x : τ). e0 or a constant. In the former case, e admits a reduction,
because of the rule β, and in the other case e is an application of a constant c,
and we know that all (even partial) well-typed applications of constants admit a
reduction using the δ rule.

Cases Let and LetPoly In this case e = let x [χ] = e1 in e2. If e1 is a value, this
expression admits a reduction using let, and otherwise we can conclude by the
induction hypothesis and the Context rule.

55

2. The Specification Language

Case If Now we use again Proposition 2.12 to obtain that the condition is a constant.
We also know that true and false are the only constants of type bool, by Hypoth-
esis 2.13. Therefore, one of the reduction rules iftrue and iffalse must apply.

Case LetReg An expression of the form e = letregion % in e′ can always be reduced; it
is sufficient to choose a fresh region name.

Case Region Then e is of the form e = region r in e′. There are two subcases here.
If e′ is a value, then e reduces to e′. If e′ is not a value, then we can apply the
induction hypothesis using the Context rule again.

Next we would like to prove subject reduction: when a reduction takes place, the
well-typedness of an expression is preserved. Actually, it is even better: reduction also
keeps the type of an expression. So, our subject reduction theorem for an expression e
could look like this:

Γ; Σ ` e : τ, ϕ and s, e� s′, e′ imply Γ; Σ ` e′ : τ, ϕ

but this is actually not quite right, for two reasons. The first reason is that the reduction
might decrease the effect of an expression. Think of the reduction of a lookup ! [rτ] l;
This expression has an effect on the region ρ, but it reduces to an effect-free value
s(r)(l). Fortunately, the Sub rule helps out; using it, we can increase at will the effect
of an expression. In the example, we can simply pretend that s(r)(l) also has an effect
on r. The other reason is that a reduction can create new memory locations. Memory
locations are typed with the help of the store typing Σ, so when a new location is
created, we must update Σ to reflect this. To capture this update of Σ we define:

Definition 2.16. A store typing Σ is subsumed by another one Σ′, written Σ ⊆ Σ′,Σ ⊆ Σ′

if every mapping of Σ also exists in Σ′.

And now we can formulate the actual subject reduction theorem (see Theorem 2.23
on page 61):

For every e such as Γ; Σ ` e : τ, ϕ and Σ ` s and s, e � s′, e′, we have
Γ; Σ′ ` e′ : τ, ϕ for some Σ′ ⊇ Σ.

A first step is to prove that δ preserves well-typedness. Again, we cannot prove,
but must assume this property. We prove the property for the mappings fixed in
Definition 2.5.

Hypothesis 2.17 (δ preserves well-typedness). For each defined mapping (s, c[κ], v 7→
s′, v′) in δ, if Γ; Σ ` c[κ] v : τ, ϕ and Σ ` s, then there is some Σ′ ⊇ Σ such that Σ′ ` s′
and Γ; Σ′ ` v′ : τ, ϕ.

Proof for the constants of Definition 2.5. By definition, this is true for !, because the
fact that Σ ` s precisely states that v′ = s(r)(l), the result of evaluating ! l, is of the
type specified in Σ. So here it is sufficient to choose Σ′ = Σ. We also need to increase
the effect of v′ using Sub.

56

2.1. The Programming Language W

For := [τr]l, the claim is obvious.
For :=r,l,τ v, we need to rely on the well-typedness of its argument v, which we

obtain by inversion of the typing rules. Thus we know that the type of v w.r.t. to Γ
and Σ is the same as is specified by Σ(l). As for the return type, the application of :=
and void are both of type unit.
In the case of ref , we have to extend Σ to accommodate the newly created reference

cell. If the expression in question is ref [τr] v, and if the newly created location is called
l, then define Σ′ = Σ[l 7→ (r, τ)]. It is now clear that Σ′ ` s′ by construction, and, as
v′ = l, we obtain well-typedness of the result value.
In all cases, we actually obtain Γ; Σ′ `v v′ : τ , but by application of Value and Sub,

we can obtain the desired judgment Γ; Σ′ ` v′ : τ, ϕ for any effect ϕ.

Lemma 2.18. Type, effect and region substitution preserve well-typedness:

1. For a pure value v, from Γ, χ,Γ′; Σ `v v : τ follows Γ,Γ′φ; Σ `v vφ : τφ,

2. For a pure expression e without region constructs, from Γ, χ,Γ′; Σ ` e : τ, ϕ follows
Γ,Γ′φ; Σ ` eφ : τφ, ϕφ

where φ is a substitution of the form [χ 7→ κ].

Proof. We can proceed by simultaneous induction of the typing derivations, because
pure values do only contain expressions without region constructs, and pure expressions
only contain pure values. The actual proof is very easy, because we have evacuated
the only problematic case, the one of the region construct, for which the claim is actu-
ally false. In all cases, we can deconstruct the typing derivation, apply the induction
hypothesis and put things back together again.

Substitution is an important part of the reduction relation; we prove that substitution
preserves the type of an expression separately.

Lemma 2.19 (Substitution Lemma). Suppose we have a pure, well-typed value v, such
that Γ, χ; Σ `v v : τ . For the two typing relations, we have:

1. Γ, x : ∀χ.τ,Γ′; Σ `v v′ : τ ′ implies Γ,Γ′; Σ `v v′[x 7→ Λχ.v] : τ ′.

2. Γ, x : ∀χ.τ,Γ′; Σ ` e : τ ′, ϕ implies Γ,Γ′; Σ ` e[x 7→ Λχ.v] : τ ′, ϕ.

Proof. We have to prove these properties by mutual induction over the typing deriva-
tions. We start by proving the first claim. We thus assume that Γ, χ; Σ `v v : τ and
Γ, x : ∀χ.τ ; Σ `v v′ : τ ′, and proceed by a case analysis of the last typing rule of the latter
derivation. We denote by φ the substitution [x 7→ Λχ.v] and we set Γx = Γ, x : ∀χ.τ,Γ′.
We also set Γφ = Γ,Γ′.

Case Var We have v′ = y[κ] and the following typing derivation:

Var
Γx(y) = ∀χ.τy

Γx; Σ `v y[κ] : τy[χ 7→ κ]

Let us first assume that x 6= y. In this case, v′ is untouched by the substitution,
and the typing derivation remains unchanged when switching from Γx to Γφ, as

57

2. The Specification Language

the removal of the binding for x does not change anything when looking up the
binding for y. Therefore, we have the desired claim.
Let now x = y. We set θ = [χ 7→ κ]. In this case, v′φ = vθ. We know that vθ
verifies Γφ; Σ `v vθ : τθ because of Lemma 2.18 and the fact that v is pure. Now
we only have to prove that τθ = τ ′ and we are done. But this is obvious, as in Γx
we have x : ∀χ.τ and we know that under Γx, the term x [κ] has type τ ′.
We have shown that whether x = y or not, we obtain the claim in both cases.

Cases Loc and Const Both memory locations and constants are not affected by sub-
stitutions, and their typing is not affected by the typing environment. Therefore,
the lemma is trivially true.

Case Abs We have v′ = rec f (y : τy). e. We obtain the following derivation:

Abs
Γx, f : τy →ϕ τ1, y : τy; Σ ` e : τ1, ϕ

Γx; Σ `v rec f (y : τy). e : τy →ϕ τ1

and we assume the lemma to be true for the hypothesis of the typing rule. We
therefore obtain the substituted typing derivation

Γφ, f : τy →ϕ τ1, y : τy; Σ ` eφ : τ1, ϕ

we can now simply reconstruct the function definition using the Abs rule, and we
are done.

We have shown the first claim, provided the second claim is true for smaller expressions.
The missing part of the proof, showing that the second claim is true, provided that the
first claim is true for values, is simple; we just have to decompose the typing derivation,
apply the induction hypothesis and put the different parts together again. We do not
show this mechanical development here.

Proposition 2.20 (Values have empty effect). For any value v such that Γ; Σ ` v : τ, ϕ,
we can also prove Γ; Σ `v v : τ and Γ; Σ ` v : τ, ϕ′, for any effect ϕ′.

Proof. If we have Γ; Σ `v v : τ , we can prove Γ; Σ ` e : τ, ∅ by an application of the
Value rule and Γ; Σ ` e : τ, ϕ′ by an application of Sub, because ∅ ⊆ ϕ′ is always true.
So we have proved that the first claim implies the second. Now let use prove the first
claim, by induction of the length of the typing derivation of Γ; Σ ` e : τ, ϕ and by case
analysis of the last rule applied. The only two cases to consider are the rules Value
and Sub, the other typing rules do not apply to values. For the case of Sub, we simply
apply the induction hypothesis and we are done. For the case of Value, the claim is
stated in the hypothesis of the typing rule.

Basically, what we have proved is that the only way a value can be typed as an
expression is by using the Value rule and an arbitrary number of applications of Sub.
We can now proceed and prove the subject reduction property for each of the reduc-

tion relations ⇀, −→ and �.

58

2.1. The Programming Language W

Lemma 2.21 (Top Level Subject Reduction). For every pure e such as Γ; Σ ` e : τ, ϕ
and Σ ` s and s, e ⇀ s′, e′, we have Γ; Σ′ ` e′ : τ, ϕ and Σ′ ` s′ for some Σ′ ⊇ Σ.

Proof. By case analysis over the last rule of the typing derivation of e. We must consider
every rule except Value.

Case App If App was the last typing rule to be applied, we are considering one of the
reductions (β) or (δ). If the rule (δ) was applied, we can conclude by Hypoth-
esis 2.17. If the reduction (β) was applied, we obtain the following derivation
tree:

App
Rec

Γ′; Σ ` e1 : τ, ϕ
Γ; Σ `v rec f (x : τ ′). e1 : τ ′ →ϕ τ Γ; Σ `v v : τ ′

Γ; Σ ` (rec f (x : τ ′). e1) v : τ, ϕ

where Γ′ = Γ, f : τ ′ →ϕ τ, x : τ ′. Looking at the (β) rule, we see that

e′ = e1[x 7→ v, f 7→ rec f (x : τ ′). e1].

We can set Σ′ = Σ, because s is unchanged, so we are left to prove:

Γ; Σ ` e1[x 7→ v, f 7→ rec f (x : τ ′). e1] : τ, ϕ.

Using the two hypotheses of the derivation together with a double application of
Lemma 2.19 we obtain the desired conclusion. Both substituted values are pure
by hypothesis.

Case Let In this case, the only possible reduction rule is (let), and as we are in the
monomorphic case, there is no generalization. The term e must be of the form
let x = v in e1, and we can deduce the following derivation tree:

Let
Γ; Σ ` v : τ ′, ϕ1 Γ, x : τ ′; Σ ` e1 : τ, ϕ2

Γ; Σ ` let x = v in e1 : τ, ϕ1 ∪ ϕ2

We can derive that e′ = e1[x 7→ v] and we have to prove that e′ can be typed with
type τ and effect ϕ. We can conclude by Lemma 2.19, because we can also derive
a judgment of the form Γ; Σ `v v : τ ′ for v, and v is pure. We can again leave Σ
unchanged, because s did not change.

Case LetPoly This case is identical, but now we have to fully use the Substitution
Lemma in its polymorphic case.

Case If The two possible reduction rules are iftrue and iffalse; we will focus on the
former, the proof for the latter being symmetric. By inversion, we obtain the
following typing derivation for e = if v then e1 else e2:

If
Γ; Σ `v v : bool Γ; Σ ` e1 : τ1, ϕ Γ; Σ ` e2 : τ1, ϕ

Γ; Σ ` if v then e1 else e2 : τ1, ϕ

The reduction of iftrue leaves us with e′ = e1, and the induction hypothesis applied
to the second hypothesis of the typing derivation allows to obtain the required
statement for e1, setting Σ′ = Σ.

59

2. The Specification Language

Case Sub Here we cannot tell what reduction rule has been applied. But we know that
we have the following typing derivation:

Sub
Γ; Σ ` e : τ, ϕ′ ϕ′ ⊆ ϕ

Γ; Σ ` e : τ, ϕ

We can now apply the induction hypothesis to the shorter typing derivation of
Γ; Σ ` e : τ, ϕ′, and obtain Γ; Σ′ ` e : τ, ϕ′ for some Σ′. Now we simply apply the
rule Sub again and we are done. This last application is correct since ϕ′ ⊆ ϕ.

Case Region The only possible reduction rule is region, so we know that

e = region r in v.

We have the following typing derivation:

Region
Γ; Σ ` v : τ, ϕ

Γ; Σ ` region r in v : τ, ϕ′ \ r

The result of the reduction is v. By Proposition 2.20, we can also prove

Γ; Σ ` v : τ, ϕ′ \ r,

and as s is unchanged, we are done.

Case LetReg The only possible reduction rule is letreg, and we obtain

e = letregion % in e.

We have the following typing derivation:

LetReg
Γ, %; Σ ` e : τ, ϕ % /∈ τ

Γ; Σ ` letregion % in e : τ, ϕ \ %

The result of the reduction is region r in e[% 7→ r], where r is the region name
chosen during the execution of the reduction. Setting θ = [% 7→ r], and using
Lemma 2.18, we can prove that Γ; Σ ` eθ : τθ, ϕθ. As % /∈ τ , we have τθ = τ .
We also have ϕ \ % = ϕθ \ r, so we can conclude using the Region rule. As the
newly created region does not contain any memory locations yet, we do not need
to change Σ.

We have completed the most difficult part. We can now continue to prove the same
property about the relation −→.

Lemma 2.22 (One Step Subject Reduction). For every pure e such as Γ; Σ ` e : τ, ϕ
and Σ ` s and s, e −→ s′, e′, we have Γ; Σ′ ` e′ : τ, ϕ and Σ′ ` s′ for some Σ′ ⊇ Σ.

Proof. We prove this lemma by induction over the form of reduction contexts. If the
context is empty, i.e., of the form�, the lemma states the same property as Lemma 2.21.
There are two cases remaining.

60

2.1. The Programming Language W

Case region We know that e = region r in E[e1] and that we have s, e1 ⇀ s′, e′1. We can
derive s, E[e1] −→ s′, E[e′1] as well. Using the induction hypothesis, we obtain a
derivation for Γ; Σ′ ` E[e′1] : τ, ϕ′ for some Σ′ for which Σ′ ` s′. Now we simply
apply the Region rule to obtain the desired statement for the overall expression
e = region r in E[e′1].

Case let The term we are considering is of the form e = let x [χ] = E[e1] in e2, and
we have s, e1 ⇀ s′, e′1. We can derive s, E[e1] −→ s′, E[e′1] as well. Therefore,
E[e1] is not a value, and the applied typing rule must have been Let, with the
list χ being empty. We also know, by induction hypothesis, that s′ and E[e′1] are
well-typed w.r.t. to Γ and some Σ′. We can conclude by applying the Let rule
once again, obtaining that Γ; Σ′ ` let x = E[e′1] in e2 : τ, ϕ.

Theorem 2.23 (Subject Reduction). For every pure e such as Γ; Σ ` e : τ, ϕ and Σ ` s
and s, e� s′, e′, we have Γ; Σ′ ` e′ : τ, ϕ for some Σ′ ⊇ Σ.

Proof. We prove this theorem by induction over the length n of the reduction chain
described by s, e −→ · · · −→ s′, e′. If n is zero, this chain is empty and s = s′ as well
as e = e′; the theorem is trivial. In the induction step, we assume the property for a
chain of length n, ending with s′′, e′′ and have to prove it for a chain of length n + 1,
ending with s′, e′. By the induction hypothesis, the property is true for s′′, e′′, and as
we have s′′, e′′ −→ s′, e′, we can use Lemma 2.22 for the last step.

Together with the Progress property of Theorem 2.15, we now can establish the
safety property of our language. We have underlined that region is not part of the
surface language, and this property is now a hypothesis of the main result.

Corollary. For any well-typed expression e without region such that ∅; ∅ ` e : τ, ϕ,
starting in the empty store ∅, the configuration ∅, e either reduces forever or reduces to
a configuration s′, v with ∅; Σ `v v : τ for some Σ′.

2.1.5. A Generalization of the Results
By looking closely at the results of the previous section, it is clear that we have used
only a few properties of effects. Indeed, the precise form of effects is largely irrelevant.
We only need the union ∪ of effects and the removal \ of a region from an effect:

ϕ1 ∪ ϕ2 and ϕ \ ρ

as well as the tests of presence and inclusion of effects:

ρ ∈ ϕ and ϕ ⊆ ϕ′

To be able to prove Lemma 2.18, we need the effect union to be stable under substi-
tution:

(ϕ1 ∪ ϕ2)φ = ϕ1φ ∪ ϕ2φ.

61

2. The Specification Language

Stability of the the region removal operation \ is also required, but we can restrict the
substitution φ to particular cases, because of the precise places where \ is employed in
the typing rules. In the case of the region being a region variable %, we are in the case
of the letregion construct, and therefore we can assume that % is fresh, i.e., that φ does
not contain %, neither in the domain nor the image.

(ϕ \ %)φ = ϕφ \ %φ = ϕφ \ % if ρ /∈ φ

In the case where ρ is a region constant r we are in the case of the region construct; we
do not need stability in this case, because of purity requirement in Lemma 2.18. All
these properties also suffice to prove Lemma 2.19.
To prove subject reduction, we also need the following property:

ϕ \ % = ϕ[% 7→ r] \ r

It is needed in the case concerning letregion in Lemma 2.21.
In Chapter 3 and Chapter 4, we will use this more general formulation of type sound-

ness to enable interesting variants of the presented system, just by modifying the rep-
resentation of effects.
Nielson et al. (1999) have noticed this genericity of effects long ago. Leroy and

Pessaux (2000) have developed an effect system for exceptions, that is very similar to
ours, but with an efficient type inference algorithm. Marino and Millstein (2009) have
proposed a generic effect system, along with a mechanized soundness proof.

2.2. The Logic L
The previous section has shown that programs in our language cannot get stuck —
they cannot crash. Looking at it from the right angle, typing a program (establishing
its well-typedness) actually means proving something about a program. According to
Theorem 2.23, someone who establishes the well-typedness of a program has proved
that this program will not crash.
However, as we have seen in the introduction, a program can exhibit undesirable

behavior other than a simple crash; for example, an incorrect implementation of an
algorithm may not be very useful. Non-termination is another undesirable behavior.
Similarly to the well-typedness, one would like to prove that the program terminates,
and prove that the program is correct, i.e., that it computes the expected value.
Unfortunately, proving the correctness of programs is as hard as proving mathemat-

ical theorems. This is not surprising, as many algorithms are based on mathematical
theorems. There are countless examples, but a very simple one is the second program of
The Art of Computer Programming (Knuth, 1997), which computes the first n primes.
To minimize the number of division tests, this program uses an optimization that can
by justified by Bertrand’s Theorem , a non-trivial result of the theory of prime numbers.
To prove the program correct, one has to prove Bertrand’s Theorem (Théry, 2002).
This also means that program correctness is undecidable: there can not be an al-

gorithm which takes a program and its specification as an input and checks that the
program indeed verifies the specification.

62

2.2. The Logic L

In this section, we describe our own language of specifications. It is a formal logic
language. As we have stated, a specification language should be able to express all
aspects of the programming language. As our language is a higher-order language with
side effects, the two main aspects of our logic are the presence of higher-order functions
and state. We call this logic the language L.

2.2.1. Syntax
State types. The logic L is aimed at the verification of programs written in W. There-
fore, there should be some possibility to speak about the state, as programs in W may
have side effects. This possibility is provided by state types. A state type is written
〈ϕ〉, where ϕ is an effect expression. An Object of this type, a state object, can be seen
as a portion of the store whose domain is described by the effect expression ϕ. Such
a state object can be restricted in its domain, or merged with another state object, or
queried at a certain region and memory location.

Logic types. The types in the logic, denoted by the symbol σ, are very similar to
the types in the programming language. As before, we have type variables α, type
constructors ι and reference types refρ σ. There is no type for effectful functions;
instead, there is the type σ → σ′ for pure functions of argument type σ and return
type σ′. These functions always terminate as well. We have already discussed state
types, written 〈ϕ〉. There are also two new type constructors: the first one is prop, it
represents the type of propositions. The second one is ×, a binary type constructor
that represents pairs. We write σ1×σ2 instead of ×(σ1, σ2). The metavariable χ is used
in the logic as well, but we replace the metavariable κ by the metavariable κ, which
stands for effects, regions or logic types.

ι ::= · · · | prop | ×
σ ::= α | σ → σ | ι σ | 〈ϕ〉 | refρ σ
κ ::= σ | ρ | ϕ

Constants. Even the syntax of the logic is not that different from programs. All pro-
gram constants are also part of the constants in L. Additionally, we have two constants
True and False of type prop, the usual logical connectives, the constant mkpair to con-
struct pairs and the constants fst and snd to access the left and right component of
a pair, respectively. Finally, there are three other constants combine, restrict and get
which will be explained later.

c ::= · · · | True | False | ⇒ | ∧ | ∨
| combine | ∈ | restrict | get | mkpair | fst | snd

Terms. The actual language is a standard higher-order language, as for example de-
fined in (Andrews, 1986). As in the programming language, a term t can be a constant
c or a variable x, both with possible type, effect and region instantiations. There is

63

2. The Specification Language

ι ::= · · · | prop | ×
σ ::= α | σ → σ | ι σ | 〈ϕ〉 | refρ σ
c ::= · · · | True | False | ⇒ | ∧ | ∨

| combine | ∈ | restrict | get | mkpair | fst | snd
t, p, q ::= c [κ] | x [κ] | l | | ϑ | t t | t = t | λ(x : σ).t

| let x [χ] = t in t | ∀x : σ.t | ∀χ.t | ρ ∈ t | % = %

∆ ::= ∅ | ∆, x : ∀χ.σ | ∆, χ

Figure 2.6: The syntax of L.

the pure application t t′ and the equality between two terms t = t′. In the logic, one
can build anonymous functions using a λ-abstraction λ(x : σ).t. It is important to note
that these functions are non-recursive, terminating and cannot have any side effects.
Just as in W, we have a polymorphic let construct. For the sake of the later formal
development, we also need to refer to memory locations l in L, just as we do in W.
There is the usual quantification ∀x : σ.t and the introduction of type, effect and region
variables ∀χ.t. The expression ρ ∈ t is a predicate that decides if a certain region is in
the domain of a value of state type. Finally, we can check if two regions are equal using
the test % = %.

t, p, q ::= c [κ] | x [κ] | l | ϑ | t t | t = t | λ(x : σ).t
| let x [χ] = t in t | ∀x : σ.t | ∀χ.t | % ∈ t | % = %

The special term ϑ is not available to the user and is only there for the purpose of the
correctness proof. It stands for the current state; what that means becomes clear in
section Section 2.2.4.
A summary of the syntax of the logic appears in Fig. 2.6. The logical connectors
⇒, ∧ and so on will be used in infix form, i.e., t ⇒ t′ instead of ⇒ t t′. Instead of
mkpair t t′ we will write (t, t′). If type, region and effect instantiations are not important
or easy to derive from the context, we omit them.

2.2.2. Typing
Just as our programming language, logical formulas are typed to avoid writing mean-
ingless formulas. The judgment ∆; Σ `l t : σ expresses that in the typing environment
∆, and under the store typing Σ, the formula t has type σ. This judgment is defined
in Fig. 2.7. It is straightforward, but it contains a few unusual parts. First, just as in
programs, we have type, effect and region substitutions (rules L-Const and L-Var).
To type constants, we use the function LogicTypeof instead of the counterpart Typeof
for programs. Second, as logical terms are always pure, we can generalize every let-
binding (L-Let rule). Application, abstraction, quantification and equality are typed
in the usual way. Memory locations l are typed using the store typing Σ (rule L-Loc).
It should also be noticed that albeit the syntax and typing derivation of the logic are

64

2.2. The Logic L

∆; Σ `l t : σ

L-Var
∆(x) = ∀χ.σ

∆; Σ `l x [κ] : σ[χ 7→ κ]
L-Const

LogicTypeof (c) = ∀χ.σ
∆; Σ `l c [κ] : σ[χ 7→ κ]

L-Loc
Σ(l) = r, τ

∆; Σ `l l : refr dτe
L-Store

regions(Σ) = ϕ

∆; Σ `l ϑ : 〈ϕ〉

L-App
∆; Σ `l t : σ′ → σ ∆; Σ `l t′ : σ′

∆; Σ `l t t′ : σ
L-Abs

∆, x : σ′; Σ `l t : σ
∆; Σ `l λ(x : σ′).t : σ′ → σ

L-Forall
∆, x : σ′; Σ `l t : prop
∆; Σ `l ∀x : σ′.t : prop

L-Let
∆, χ; Σ `l t′ : σ′ ∆, x : ∀χ.σ′; Σ `l t : σ

∆; Σ `l let x [χ] = t′ in t : σ

L-Eq
∆; Σ `l t1, t2 : σ

∆; Σ `l t1 = t2 : prop
L-ForallType

∆, χ; Σ `l t : prop
∆; Σ `l ∀χ.t : prop

L-InDom
∆, %; Σ `l t : 〈ϕ〉

∆; Σ `l % ∈ t : prop
L-RegEq

∆, %1, %2; Σ `l %1 = %2 : prop

Figure 2.7: The typing rules for L.

quite similar to the one of programs, and despite the presence of memory locations and
reference types in the syntax, logical terms can not have any side effects, a fact that
is also reflected in the form of the typing derivation. An appropriate translation from
program values to logical formulas (presented in this chapter) will take care of this
property. The general idea is that in the logic, references can only be used to read, and
only with respect to an explicitly given portion of the store at a certain point in time.
Finally, the special term ϑ is of state type, whose domain is given by the store typing
Σ (rule L-Store).
There is a correspondence between the types τ of programs and the types σ of formu-

las: every program type τ has a corresponding logical type dσe. This correspondence
is defined as follows.

Definition 2.24. The logical reflection of a program type τ , written dτe, is defined as dτe
follows:

dαe = α

dι τe = ι dτe
drefρ τe = refρ dτe

dτ1 →ϕ τ2e = (dτ1e → 〈ϕ〉 → prop)× (dτ1e → 〈ϕ〉 → 〈ϕ〉 → dτ2e → prop)

This basically means that type variables and type constructors can be taken over
as-is to the logic. But effectful functions do not exist in L, so we need to do something.

65

2. The Specification Language

The idea (Régis-Gianas and Pottier, 2008) is to represent an effectful function in the
logic by its specification. A specification is a precondition depending on the argument
and a state and a postcondition depending on the initial state and the final state, the
argument and the return value. Therefore, an effectful function type is translated as
a tuple whose components have exactly the expected types. Note that the state types
have as domain precisely the effect of the body of the function.

Definition 2.25. We assume the existence of a function LogicTypeof , which associatesLogicTypeof
a logic type to each constant. We also assume that the domain of the Typeof function
is included in the one of LogicTypeof . We finally assume that it is defined such that for
every constant in the domain of Typeof , we have

LogicTypeof (c) = dTypeof (c)e.

This means, for example, that even though ref , ! and := are constants in the logic,
one cannot use them to produce side effects, as in L their types are tuples with pre-
and postconditions and not function types.
Additionally, we assume that LogicTypeof is defined as follows for the previously

introduced constants:

True,False : prop
∧ , ∨ ,⇒ : prop→ prop→ prop

mkpair : ∀αβ.α→ β → α× β
fst, pre : ∀αβ.α× β → α
snd, post : ∀αβ.α× β → β

The following constants are associated with state and are typed as follows:

combine : ∀ε1ε2ε3.〈ε1ε2〉 → 〈ε2ε3〉 → 〈ε1ε2ε3〉
restrict : ∀ε1ε2.〈ε1ε2〉 → 〈ε1〉
get : ∀α%ε.〈%ε〉 → ref% α→ α
set : ∀α%ε.〈%ε〉 → ref% α→ α→ 〈%ε〉
∈ : ∀αρε.〈%ε〉 → ref% α→ prop

Their meaning is explained in Section 2.2.3.
When writing terms of L, we will mostly omit type, effect and region instantiations.

In the particular case of the functions concerning state types, we sometimes explicit
such instantiations. We therefore introduce the following notations:

getρ = get [σρϕ] where σ and ϕ can be derived from the context
setρ = set [σρϕ] where σ and ϕ can be derived from the context

restrictϕ = restrict [ϕϕ′] where ϕ′ can be derived from the context

In other words, the subscript of get determines its region instantiation, while the sub-
script of restrict determines its return type.

2.2.3. Semantics
A logic is useless if we do not know what its formulas mean. To be able to say anything
about our formulas, we need a semantics for it. Defining the semantics of a logic is a

66

2.2. The Logic L

very difficult task. We reuse here parts of the semantics of the higher-order logic defined
by Andrews (1986). We only extend the semantics to cover the language elements we
have added, namely region and effect polymorphism and store objects.
Andrews (1986), based on the work by Henkin (1950), defines the semantics by frames,

a pair
({Dσ}σ, J)

where for each type σ, Dσ is the set of all semantics values of type σ. For example,
Dint = {. . . ,−1, 0, 1, 2, . . .} and the set Dσ1→σ2 is the set of all functions from σ1 to σ2.
J is a mapping from the constants to their intended meaning, e.g., the conjunction ∧
is mapped to the function that is equal to True whenever both its arguments are True.
In this semantics, each construction in the logic is mapped to a similar construct

of the semantic domain. For example, application of a term t1 to another term t2 is
modeled by the application of the meaning of t1, which is a mathematical function, to
the meaning of t2. These definitions make it trivial to prove the following properties:

Proposition 2.26 ((Andrews, 1986)). The following equalities can be proved in L:

(λx : σ.t1) t2 = t1[x 7→ t2]
let x [χ] = t1 in t2 = t2[x 7→ Λχ.t1]

Wemake the additional hypothesis that all models we consider also admit η-equivalence.

Hypothesis 2.27 (η-equivalence). The following equality can be proved in L:

(λx : σ.f x) = f

We now extend this semantics to the constructs that we have added: region variables
are interpreted as region names such as r, and effect variables are interpreted as sets
of region names. Under this interpretation, an effect is simply a set of region names,
and the type D〈ϕ〉 is the set of stores with exactly the region domain described by ϕ.
Finally, for all % and σ, the set Dref% σ is the set of memory locations l.
We now have to give an meaning to the constants of the logic that concern state

objects. Most of them are obvious and quite simple. The formula % ∈ s is true when
the region name designated by % is in the domain of the store described by s; the
function symbol ∈ concerning references checks if a memory location is in the domain
of the region of a store. The constant restrict is the function that restricts the store to
a certain domain of regions, but leaves the contents unchanged. The function combine
merges two stores, such that, when there is overlap in the region domains of the two
stores, the contents of the second store are kept. The domain of the result store is
always the union of the initial domains. The function set corresponds to the update
operation of a location in a store: s[r 7→ s(r)[l 7→ v]].
The only delicate constant is get. It is intended to represent the lookup of a location

in a certain region of a store, written s(r)(l). By the typing information, we can prove
that r is indeed in the domain of s, otherwise the application of get would be ill-typed.
However, we cannot guarantee that l is indeed in the domain of s(r).
However, it is easy to render the interpretation of get [σ%ϕ] s x total. Let us first

make the assumption that all types in L are inhabited. This seems to be a strong

67

2. The Specification Language

requirement, but it is easy to see that it is true. First remark that all base types such
as int and bool are inhabited. The set of memory locations, which is the interpretation
of reference types, is also inhabited, as is any concrete state type: simply choose the
store with the corresponding region domain, where all regions are empty. The only
remaining type are function types σ1 → σ2. There is always a function of this type,
namely the function that throws away its argument and returns an inhabitant of σ2.
Note that HOL (Gordon, 2000), whose logic is very similar to L, requires types to be
inhabited as well (Keller and Werner, 2010).
This property now helps us to render the interpretation of get [σrϕ] s l total. We

define get to check whether the memory location l exists in the region r; if it does, the
value s(r)(l) is returned. If it does not, some arbitrary value of type σ is returned.
Such a value exists because σ is inhabited.
Using this interpretation as the semantic basis of our logic, we can prove the following

properties of our functions:

A1 : get (set s x v) x = v
A2 : x 6= y ⇒ get (set s y v) x = get s x
A3 : %1 6= %2 ⇒ get%1 (set%2 s y v) x = get%1 s x

A4 : get (restrict s) x = get s x
A5 : % /∈ s2 ⇒ get% (combine s1 s2) x = get s1 x
A6 : % ∈ s2 ⇒ get (combine s1 s2) x = get s2 x
A7 : combine (restrictϕ1 s) (restrictϕ2 s) = restrictϕ1∪ϕ2 s

The first three properties simply summarize the usual properties of finite maps: writing
a value and reading at the same place recovers the same value (A1); when reading at
other places — either a different location in the same region (A2) or in a different region
(A3), the update is irrelevant. Property (A4) expresses that restrict never changes the
values of a map, while (A5) and (A6) rephrase that the second argument of combine
may overwrite parts of the first one. Property (A7) states that restricting the same
state twice and recombining it is equivalent to restricting it only once. In the following,
we will accept these properties as axioms.

Examples. Let us show a few examples of formulas, including formulas that reason
about state. The following anonymous predicate over integers states that its second
argument is one greater than the first:
λi : int. λj : int. i = j + 1

The next formula is a higher-order predicate over a pair of functions:
λf : (int → 〈%〉 → prop) × (int → 〈%〉 → 〈%〉 → int → prop).
∀x : int. ∀s : 〈%〉. x > 0 ⇒ fst f x s

It states that the first component of f — a predicate over an integer and a state with
region %— holds whenever its first argument x is positive. Considering the type of f to
be the image of the program type int→% int, this statement can also be interpreted as
saying that the precondition of f holds whenever the function argument x is positive.
We could have used the synonym pre instead of fst, to underline the fact that we access
the precondition of f .

68

2.2. The Logic L

Finally, a predicate concerning state can look like this:
λs : 〈%〉.λx : ref% int. get% x s = 0

We use the function get to access the state s at the memory location denoted by x. We
could have also used our notation !! instead of get to abbreviate the formula:

!! x s = 0
The region instantiation of get is implied by the type of x.

Properties of the typing derivation. We give here, without proof, some important
properties about typing derivations for terms. First note that type, region and effect
substitutions are defined in the same way as in W (see Definition 2.4).
Lemma 2.28 (Substitution Lemma for Metavariables). From

∆, χ,∆′; Σ `l t : σ
follows

∆,∆′[χ 7→ κ]; Σ `l t[χ 7→ κ] : σ[χ 7→ κ]

Lemma 2.29 (Substitution Lemma for L). From
∆, x : ∀χ.σ′,∆′; Σ `l t : σ and ∆, χ; Σ `l t′ : σ′

follows
∆,∆′; Σ `l t[x 7→ Λχ.t′] : σ.

Both lemmas are straightforward to prove.

2.2.4. Annotating Programs
Up to now, we have defined a logic L and a programming language W, but they do not
interact. Before we define the weakest precondition calculus in Chapter 3, we integrate
annotations into the programming language. A natural building block of programs
are functions, so functions should be annotated with pre- and postconditions. In W,
functions are built using the rec construct. Therefore, we change the syntax of recursive
functions to this one:

e ::= · · · | rec f (x : τ ′).{p}e{q} | · · ·
where p, q are logical terms. The semantics of functions does not change; upon β-
reduction, the annotations are simply thrown away. Typing does change slightly; we
replace the rule for recursive functions by this one:

Rec

Γ, f : τ ′ →ϕ τ, x : τ ′; Σ ` e : τ, ϕ
dΓ, x : τ ′e; Σ `l p : 〈ϕ〉 → prop dΓ, x : τ ′e; Σ `l q : 〈ϕ〉 → 〈ϕ〉 → dτe → prop

Γ; Σ `v rec f (x : τ ′).{p}e{q} : τ ′ →ϕ τ

We can argue that this does not change anything about the progress and subject
reduction theorems. In particular, the substitution lemma still holds because we also
have a substitution lemma for logical terms.

69

2. The Specification Language

Notation and examples. Let us look at purely functional factorial function. We can
fully specify this function like this:

let rec fact (n : int) =
{ λcur : 〈〉. n ≥ 1 }
if n = 1 then 1 else n ∗ f (n − 1)
{ λold, cur : 〈〉.λr : int.r = n! }

where n! is the mathematical definition of the factorial. Note that our precondition
(the first formula framed by curly braces) has, as expected, the type 〈〉 → prop; it
expresses that the argument n must be at least 1 for a call to fact to be meaningful.
The postcondition has type 〈〉 → 〈〉 → int → prop and states that the return value is
indeed the factorial of the argument.
It would be tedious to write all those abstractions all the time. We therefore agree

upon names for state abstractions once and for all: we fix them to be cur for the current
state in the pre- and postcondition, and to be old for the initial state of the function
call (available only in the postcondition). Having set these names, we can leave out
the abstractions and let them be implicit. For the abstraction of the return value, we
choose another syntax, so that we can write the specification of fact in this way:

let rec fact (n : int) =
{ n ≥ 1 }
if n = 1 then 1 else n ∗ f (n − 1)
{ r : r = n! }

which is much more readable.
Now let us move on to an example with side effects. We present here a trivial example

just to introduce the notation.
let setzero [%] (n : ref% int) =
{}
n := 0
{ get%n cur = 0 }

We have used the function get and the convention cur for the current state to express
that n, after executing the function, is indeed equal to 0. To be able to say this more
concisely, we use !! instead of get, the region parameter is implied by the reference type,
and we say that if no state variable is given, the considered state is always cur. The
postcondition can now be written as:

{ !! n = 0 }
The examples we have seen only intend to introduce the syntax and some notation.

Chapter 5 contains many examples that are much more realistic and interesting than
the ones in this chapter.

Functions with more than one argument. Up to now, we have only dealt with one-
argument functions, because that is what the syntax contains directly. It is very easy to
obtain functions with several arguments, both in the simple and the recursive case. Let
us forget for a moment about specification annotations. Simple and recursive functions
with several arguments can be written as follows: the two function definitions

70

2.2. The Logic L

let f x1 . . . xn = e
let rec g x1 . . . xn = e

stand for

let f = rec _ x1. . . . rec _ xn .e
let g = rec g x1. . . . rec _ xn .e

Now, the situation is slightly more complicated when specifications come into play. We
would like to write specifications for multiple-argument functions like this:

let f x1 . . . xn = { pf } e { qf }
let rec g x1 . . . xn = { pg } e { qg }

where the pre- and postconditions may refer to the argument variables. For such a
function definition, we only have a single pair of specifications, but we need n pre- and
postconditions for the expansion of the syntactic sugar. The missing preconditions are
easy to find: it is always possible to partially apply the first n− 1 arguments to obtain
the function closure. We therefore can simply put True as precondition of the n − 1
outer abstractions, and pf (or pg) as precondition of the innermost abstraction. In this
way, pf is in the scope of all abstraction variables, and this choice does reflect the fact
that pf has to be true when all arguments of f are applied. The same argument makes
clear that qf must be the postcondition of the innermost abstraction, but we cannot
simply set the other postconditions to True as we did for the preconditions. Otherwise,
a program that partially applies f would not be able to state anything about the result;
and remember that in our language, all applications to n-ary functions are transformed
into n partial applications because of the transformation into A-normal form. The best
solution is to state in each postcondition precisely that the partial application returns
a function with the correct specification.
Let us see a very simple example. We want to define our own addition function, here

in the surface syntax:

let plus x y =
{ }
x + y
{ r : r = x + y }

Following what we said before, we can translate this program to the basic syntax as
follows:

let plus =
rec _ x.
{ True }

rec _ y.{ True }. x + y { r : r = x + y}
{ r : r = (λx.λcur.True, λx.λold.λcur.λr . r = x + y) }

The initial specification of plus becomes the specification of the inner anonymous func-
tion. The precondition of the outer function is True, while the postcondition states that
its result is equal to the lifted inner function.

71

2. The Specification Language

Lifting values. We have seen that program types can be lifted to logical types using
the d·e transformation. If we want to refer to values of our program in annotations, we
need a similar operation for values of the programming language. Starting from the
basic idea that effectful functions are represented by their specification, this is actually
easy.

Definition 2.30. The reflection of a program value v in the logic is defined as:dve

dc κe = c dκe
dx κe = x dκe
dle = l

drec f (x : τ).{p}e{q}e = (λx : dτe.p, λx : dτe.q)

The notation dκe indicates that a lift operation is applied to all types in this list; lifting
has no impact on effects and regions.

Of course, the intention is that the two definitions for lifting of values and types are
consistent:

Proposition 2.31. Γ; Σ `v v : τ implies dΓe; Σ `l dve : dτe.
Proof. By case analysis on the structure of the value. The case for constants and vari-
ables is trivial; we simply have to observe that lifting and type substitution commutes.
We have

dτφe = dτeφ
for any type, effect or region substitution φ. The case for memory locations is equally
trivial. For the case of recursive functions, observe that p and q already have the
expected types of the first and second component of the pair (see the Rec rule), or
almost; we just have to add the abstraction over the argument x of the function.

Proposition 2.32. Lifting and value substitution commute:

dv[x 7→ χ.v′]e = dve[x 7→ χ.dv′e]

Proof. Trivial; simply unfold the definition of d·e and of the substitution.

Validity of a formula with respect to a state. Formulas refer to the state of a program
using state objects, whose types are of the form 〈ϕ〉, as we have seen. In the next
chapter, we link the semantics of W to the semantics of Ł. In particular, this requires to
be able to interpret the store s in the logic. Let us remark that the domain of a store,
a set of regions, can be interpreted as an effect expression.

Definition 2.33. If s is a store of domain ϕ, we define dse to be a state object ofdse
type 〈ϕ〉 such that all well-typed instances of the following axiom are true:

getr s l = ds(r)(l)e.

72

2.2. The Logic L

We can argue, using the program typing rule Loc and Proposition 2.31, that ds(r)(l)e
is of the expected type, namely if l is of (program) type refr τ for some region r, then
ds(r)(l)e is of type dτe.
The store s in which a program e evolves is not directly available; it is outside of

the program, and it is subject to change. In the proofs of Chapter 3, we still need to
refer to the “current” store sometimes; we therefore introduce a special constant ϑ that
stands for the current store; its type is determined by the store typing Σ. We now can
define the validity of a formula w.r.t. a store:

Definition 2.34. Let s be a store, Σ ` s and f a formula such that ∆; Σ `l f : prop. s |= f

We define s |= f to be true if f [ϑ 7→ dse] is true. Said otherwise, in s |= f , the special
term ϑ refers to the lifted store dse.

Similar to the region construct and memory locations l, the term ϑ is not available in
the surface language. It appears only in the correctness proofs of Chapter 3. We will
use the notation ϑϕ to refer to the restriction of ϑ to ϕ.

73

3. A Weakest Precondition Calculus

In the previous chapter we have defined a programming language containing annota-
tions in the form of logic formulas. Up to now we have not done anything with these
annotations, other than verifying that they are well-typed. It is now time to put these
annotations to use, and to ultimately prove that a given program is correct with respect
to its annotations.
In this chapter, we define a function wp, similar to the function f of Section 1.3.1,

which takes a program and a postcondition to prove and returns a valid precondition.
What distinguishes a pre- and a postcondition? The state they refer to. The precon-
dition refers to the initial state, at the beginning of the execution of the program; the
postcondition refers to the state after the execution of the program. In addition, the
postcondition may refer to the return value of the program. Therefore let us be more
precise: we want to define a function wp which takes a program e of effect ϕ and type
τ as input, and a postcondition of type 〈ϕ〉 → dτe → prop, and returns a precondition,
a formula of type 〈ϕ〉 → prop.
Having defined this function, we will prove its correctness with respect to the seman-

tics of W programs that we have defined in Chapter 2. In the community of program
verification, correctness usually means the combination of

• soundness: if the wp calculus computes a valid formula, the program is indeed
partially correct with respect to its specification, i.e., the program either does not
terminate or computes a value that indeed verifies the intended postcondition;

• completeness: every program can be proved correct if it is correct, or said other-
wise, if there is a precondition p that, if it is true, guarantees that a program e
computes values that verify a postcondition q, then one can annotate e such that
the wp calculus computes a formula that is implied by p (weaker than p).

3.1. The wp Predicate Transformer
Before delving into the details of the definition of wp, let us first make clear that we
only consider well-typed expressions and values from now on, i.e., expressions e with
a derivation Γ; Σ ` e : τ, ϕ. Therefore, it makes sense now to speak of “the type” τ
and “the effect” ϕ of e. We rarely need to refer to the typing environment Γ or the
store typing Σ, so we write eτ,ϕ to refer to an expression e with type τ and effect ϕ.
Finally, we also use the subscript notation for formulas, e.g., p〈ϕ〉→prop means that p is
a predicate on objects of type 〈ϕ〉. Usually, programs and formulas that appear in the
same context (a theorem or a proof case) are typed in the same typing environment Γ
(or lifted environment dΓe for formulas) and store typing Σ. If we also mention a store
s, we assume Σ ` s.

75

3. A Weakest Precondition Calculus

We also introduce special syntax for the function symbols concerning state:

s|ϕ = restrictϕ s
s1 ⊕ s2 = combine s1 s2

We have seen that wp should return a function of type 〈ϕ〉 → prop, taking the initial
state as an argument. In practice, this would require the definition of wp to start with
an abstraction over the state:

λs : 〈ϕ〉. · · · ,
and this for all cases of its definition. To avoid this, and to allow a simpler presentation
of the wp-calculus, we consider a predicate transformer wps(e, q) where s is of type 〈ϕ〉,
e is of type τ and effect ϕ, and q is of the expected type for postconditions. The state s
plays the role of the initial state, before executing e and replaces the initial abstraction
over s. Using this modification, wps(e, q) returns a simple formula of type prop, with
free occurrences of the state s. To obtain a closed formula of type 〈ϕ〉 → prop, we can
of course simply abstract over s:

wp(e, q) = λs : 〈ϕ〉.wps(e, q)

If an expression’s evaluation has terminated, it is a value. For values, the wp-calculus
has nothing to do: the postcondition becomes the precondition. We simply have to
apply the current state and the returned value to the postcondition. The value has to
be lifted to the logic first.

wps(v, q) = q s dve
For a function application (application of a functional value to a value), we have to

prove that we have the right to do so (the precondition of the function is true) and that
the postcondition of the function implies the postcondition to be established.

wps(vτ ′→ϕτ v
′, q) =

pre dve dv′e s ∧ ∀s′ : 〈ϕ〉. ∀x : dτe. post dve dv′e s s′ x⇒ q s′ x

Let us explain. In the case where v is a function variable, say f , to establish the
condition q of a function call f v′ (for example), we first have to prove the precondition of
f on its argument and the current state, pre f dv′e s and then prove that for any possible
final state s′, and any return value x, which both have to satisfy the postcondition of f ,
we also have the condition q, applied to s′ and x. Recall that in the logic, an effectful
function is represented by the pair of its pre- and postcondition; to emphasize that
these components are predicates, we use the names pre and post instead of fst and snd
to access the components of the pair.
We have used the word “postcondition” with two slightly different meanings. The

postcondition of an anonymous function

rec f (x).{p}e{q}

is the formula q; it is a predicate over two states, because it abstracts over the initial
state and the final state of the function call. The postcondition of an application of the
wp calculus

wps(e, p)

76

3.1. The wp Predicate Transformer

is the formula p; it is a predicate over a single state, the state after executing p.
Let us continue to define the wp calculus. Branching expressions are rather simple

to deal with: we simply have to express that, depending on the truth value of the test,
only one branch is relevant.

wps(if v then e1 else e2, q) = (dve = true⇒ wps(e1, q)) ∧ (dve = false⇒ wps(e2, q))

We have assumed that e1 and e2 have the same effect, which is true when the branching
expression is well-typed.
A let-expression which introduces a value does not pose any problems; we simply lift

the value and compute the wp predicate inside the scope of a new let-binding.

wps(let x [χ] = v in e, q) = let x [χ] = dve in wps(t, q)

When the let-binding does not bind a value, but the result of an expression with side
effects, it becomes slightly more complicated. We now also have to deal with the state
modifications introduced by both expressions:

wps(let x = eτ,ϕ in e′, q) = wps(e, λs′ : 〈ϕ〉.λx : dτe.wps′(e′, q))

Here we assume that both e and e′ have the same effect ϕ, which can of course always
be achieved using the Sub typing rule. We first compute the weakest precondition for
e′, given an intermediate state s′ and the return value of e called x. Using this predicate
as postcondition, we compute the wp of e in the current state s.
Let us turn to the letregion construct. The difficulty here is to deal with the local

region % hidden by the construct. Let’s say that the expression letregion % in e is of type
ϕ, then e may have an effect on the local region %, so its effect can be ϕ ∪ %.

wps(letregion % in e, q) = ∀%.% /∈ s⇒ ∀s′ : 〈%〉.wps⊕s′(e, λt : 〈ϕ ∪ %〉.q t|ϕ)

The trick is to quantify over any region % and any state s′ that only contains region %.
We then enrich the current state s as well as the expected state in the postcondition
using s′, because e may contain effects on %. In addition, we can assume that % is
different from all regions in s.
The rule for the region construct is the following:

wps(region r in e, q) = wps⊕ϑr
(e, λt : 〈ϕ ∪ r〉.q t|ϕ)

It corresponds to an instantiation of the formula for the letregion case, where the region
variable % has been replaced by a concrete region r. Also, the quantification over the
state containing % is replaced with the state ϑr.
In the case of if-expressions and let expressions, we have argued that applications of

the Sub typing rule can render the effects of the two subexpressions equal. However,
if we want our wp-calculus to be precise, applications of this rule require a special
treatment. We must not lose the information that an expression whose effect has been
artificially increased using Sub does in fact modify a smaller part of the state. We write
(e : ϕ <: ϕ′) to express an application of the Sub rule where ϕ has been augmented to
ϕ′.

wps(e : ϕ <: ϕ′, q) = wps|ϕ(e, λs′ : 〈ϕ〉.q (s⊕ s′))

77

3. A Weakest Precondition Calculus

correct(x [κ]) = True
correct(c [κ]) = True

correct(l) = True
correct(rec f (x : τ).{p}eτ ′,ϕ{q}) = ∀x : dτe.∀f : dτ →ϕ τ ′e.f = drec f (x : τ) · · ·e

⇒ ∀s : 〈ϕ〉.p s⇒ wps(e, q s)
wps(v, q) = correct(v) ∧ q s dve

wps(vτ ′→ϕτ v
′, q) = correct(v) ∧ correct(v′) ∧ pre dve dv′e s ∧

∀s′ : 〈ϕ〉. ∀x : dτe. post dve dv′e s s′ x⇒ q s′ x

wps(let x [χ] = v in e, q) = ∀χ.correct(v) ∧ let x [χ] = dve in wps(e, q)
wps(let x = eτ,ϕ in e′, q) = wps(e, λs′ : 〈ϕ〉.λx : dτe.wps′(e′, q))

wps(if v then e1 else e2, q) = (dve = true⇒ wps(e1, q)) ∧
(dve = false⇒ wps(e2, q))

wps(letregion % in e, q) = ∀%.% /∈ s⇒ ∀s′ : 〈%〉.wps⊕s′(e, λt : 〈ϕ ∪ %〉.q t|ϕ)
wps(region r in e, q) = wps⊕ϑr

(e, λt : 〈ϕ ∪ r〉.q t|ϕ)
wps(e : ϕ <: ϕ′, q) = wps|ϕ(e, λs′ : 〈ϕ〉.q (s⊕ s′))

Figure 3.1: The weakest precondition calculus.

We restrict the current state s to the actual effect of e when calling wp recursively; also,
we build a new postcondition by abstracting over a state s′ with domain ϕ, and pass
the combined state s⊕ s′ to q; we therefore guarantee that the part of the store that is
not modified by e, basically ϕ′ \ ϕ, is the same in s and s⊕ s′.

Correctness obligations. There is something missing in our wp-calculus. Let us look
at a simple example to see the problem. Let us call id the following anonymous function:

id = rec f (x : int).{λs.True}x{λs.λs′.λr.False}
It is essentially the identity function, but the specification is rather strange. Let us not
worry about it; instead, let us apply this function to the integer 0; the result should of
course be 0 again. However, we are able to prove that the result is 1:

wps(id 0, λs′λr.r = 1) = pre id 0 s ∧ ∀s′.∀r.post id 0 s s′ r ⇒ (λs′λr.r = 1) s′ r
⇔ (λx.λs.True) 0 s ∧
∀s′.∀r.(λx.λs.λs′.λr.False) 0 s s′ r ⇒ r = 1

⇔ True ∧ ∀s′.∀r.False⇒ r = 1

The last line can be easily proved because of the False premise. This means that in its
current form, the wp calculus is not sound.
The problem is of course the specification of id itself, which is already wrong. We

need a way to ensure that only correct values appear in the program. We therefore
define a formula correct(v), which, for any value v, expresses its correctness.

78

3.1. The wp Predicate Transformer

For variables, constants and memory locations, there is nothing to do; all these
values are trivially correct and correct(v) is True in this case. In the remaining case for
anonymous recursive functions, there is some work to do. We have to guarantee that
the specification of the function is coherent with its body. More precisely, when the
precondition is true for some initial state, we want the postcondition to be true for any
final state and result. This sounds familiar, and indeed, the most natural formulation
of the correctness of values involves the wp-calculus itself. If we set

v = rec f (x : τ).{p}eτ ′,ϕ{q},

then

correct(v) = ∀x : dτe.∀f : dτ →ϕ τ ′e.f = dve ⇒ ∀s : 〈ϕ〉.p s⇒ wps(e, q s)

This requires a bit of explanation. On the right hand side, at the right of the first
implication, we have the expected formula: for any state s, the precondition on s
implies the weakest precondition of the body of the function and the postcondition,
evaluated at s. Note that the postcondition q is applied to s before being passed to
the wp function; this allows it to refer to the initial state of the function call. The part
which precedes this formula may be surprising: we quantify not only over the argument
x, but also over the recursive name f of the function. Additionally, we assume that f
is equal to dve. What does this mean?
First of all, as the function is potentially recursive, we need to quantify over f , as the

formula obtained by wp may refer to f . What can we say about these recursive calls
to f? We claim (and will later prove) that it is sound to assume the correctness of the
specifications of f for recursive calls to establish the adequacy of the body of f with
respect to its specification — and ultimately the correctness of f itself. We assert that
the specification of f is correct by stating the equality f = dve. By unfolding dve, we
see that this corresponds to

f = (λx.p, λx.q),
so we actually equate f with its specification.
This seems to be a circular argument, but it really is not. We only assume the

correctness of f for recursive calls, not for the body itself. In the context of partial
correctness, this is enough. The reader does not need to believe us; we will set out to
prove this soon.
Now, to connect the generation of correctness formulas with the generation of weakest

preconditions, we simply require that each value in a program needs to be correct; we
enrich the wp-calculus with the corresponding conjunctions. Fig. 3.1 summarizes the
definitions of correct and wp.
The fact that we add correctness formulas for all functions in the program text poses

a problem for the completeness proof. In the extreme case, this means that, if an
unused function is incorrectly annotated, then the correctness of the program cannot
be proved. Here is an example:

let f x = { True } x { False } in
1

We cannot prove that this program always returns 1, even if this property is trivial,

79

3. A Weakest Precondition Calculus

simply because we also have to prove the correctness of the annotations of f , which
are trivially wrong. We see in Section 3.3 how the completeness proof deals with this
problem.

Well-definedness of wp. There is an ambiguity in our definition of wp. If our program
contains a monomorphic let-binding of a value, say let x = v in e, which of the two rules
concerning let applies? We briefly show that it does not matter which rule is applied,
as in this case they collapse to equivalent formulas. In the case of the rule concerning
the polymorphic let, we derive:

wps(let x = v in e, q) = correct(v) ∧ let x = dve in wps(e, q)

and in the monomorphic case:

wps(let x = v in e, q) = wps(v, λs′〈ϕ〉.λx : dτe.wps′(e, q))
= correct(v) ∧ (λs′〈ϕ〉.λxdτe.wps′(e, q)) s dve
⇔ correct(v) ∧ wps(e, q)[x 7→ dve]
⇔ correct(v) ∧ let x = dve in wps(e, q)

References. The wp calculus does not mention regions or references explicitly. How
can we deal with operations on references? In Chapter 2, we have seen that the oper-
ations concerning creation, assignment and reading of references are not built into the
language; instead, they are modeled using the function constants ref , !, := and :=r,l,τ .
And just as we had to give additional information concerning the semantics and the
types of these constants, we now have to explain the meaning of these functions in the
logic. We do so by defining the pre- and postconditions for each of these functions.
Actually, all four preconditions are equal to True, so let us just fix the postconditions.
For the four functions, we use state names s and s′ to refer to the current (final) state
and the initial state, and r to refer to the result.

post ref v s′ s r ⇔ r /∈ s ∧ s = set r v s′

post ! x s′ s r ⇔ r =!!x s′ ∧ s = s′

The postcondition of ref states that the new state is equivalent to the old state, except
that the location denoted by r is fresh, and is set to the value v. The postcondition of
! states that the initial and the final state are equal1 and that the result of the memory
access is precisely the content of the memory at the position described by the argument
x.
For the assignment functions, the case of :=r,l,τ is similar to the one of ref :

post :=r,l,τ v s′ s r ⇔ s = set l v s′

For the assignment function :=, things are a bit more complicated, because the return
value is a function.

post := x s′ s g ⇔ g = (True, λv.λs′.λs.λr.s = set x v s′)
1We show in section Section 3.4.2 that a simple extension of our system, that distinguishes between
read and write effects, does not need equality between states.

80

3.1. The wp Predicate Transformer

Here we state that the return value of := applied to a reference x is a function with
precondition True and a postcondition that is identical to the one of :=r,l,τ .

Examples. Having given the specifications for the functions manipulating references,
we can show some examples of a computation of a wp formula. We first consider the
trivial example of an access to a reference. We read the reference x and we want to
guarantee that the result of this access is the integer 1. Of course, we would like to
obtain a precondition stating that x must contain 1 as well. We assume that x is an
integer reference in region %; stated otherwise, x has type ref% int. Here is the derivation,
that combines pure unfolding of the definition of wp with simplifications of the obtained
formula:

wps(!x, λs′ : 〈%〉.λr.r = 1) = correct(!) ∧ correct(x) ∧ pre ! s x ∧
∀s′ : 〈%〉.∀r.post ! x s s′ r ⇒ r = 1

⇔ ∀s′ : 〈%〉.∀r.r =!!x s ∧ s = s′ ⇒ r = 1
⇔ ∀r.r =!!x s⇒ r = 1
⇔!!x s = 1

From the first line to the second line, we remove the parts of the formula that evaluate to
True and unfold the formula post ! x s s′ r. In the second step, we simplify the formula by
removing the useless quantification over s′. Finally, we remove the quantification over
r that is immediately followed by an equation defining r. The obtained precondition
clearly states that in s, the state before executing the read, the reference x must contain
1 for the expected postcondition to be true.
Let us turn to a slightly more complicated case: assignment. We assign 1 to the

reference x and state that x now contains 1. Of course, we want to obtain a precondition
that is trivially true. Again, we combine unfolding of wp with logical simplifications.
Remember that programs in W are in A-normal form, so that x := 1 is actually a
short-cut for let f = (:= x) in f 1. We set q to be the desired postcondition:

q = λs′ : 〈%〉.λr : unit.!!x s′ = 1

We start with the unfolding of the definition of wp for let bindings:

wps(let f = (:= x) in f 1, q) = wps(:= x, λs′ : 〈%〉.λf.wps′(f 1, q))

We now set
p = λs′ : 〈%〉.λf.wps′(f 1, q)

and observe that := x actually has empty effect. Therefore, we have to use the
subeffecting rule, and we obtain

wp∅(:= x, λs′ : 〈〉.p (s⊕ s′))

As s′ is the empty state, we can simplify s ⊕ s′ to s and we obtain, unfolding the
application case for wp and omitting trivial parts,

∀s′ : 〈〉.∀f.post := x ∅ s′ r ⇒ p f s

81

3. A Weakest Precondition Calculus

Unfolding p again and applying the rule for application, we obtain

∀s′ : 〈〉.∀f.post := x ∅ s′ f ⇒ ∀s′′ : 〈%〉.∀r.post f 1 x s s′′ r ⇒!!x s′′ = 1

Replacing post := by its definition, we obtain that

f = (True, λv.λs′.λs.λr.s = set x v s′)

Rewriting this equation and dropping the useless quantification over s′, we obtain

∀s′′ : 〈%〉.∀r.s′′ = set x 1 s⇒!!x s′′ = 1

and this formula is valid.
This second example also shows that our wp calculus is similar to Dijkstra’s (Dijkstra,

1975), even though it is not exactly the same rule, due to the indirection of the treatment
of assignment, passing through state objects. In the same manner, our wp calculus has
a similar form concerning other language constructs, such as the sequence and function
application.

3.2. Soundness of the wp Calculus
We now want to prove several properties of our calculus, most importantly soundness.
As stated in the introduction of this chapter, soundness states that if one establishes
the wp of a program e and a postcondition q, then q is indeed true after executing e.
The proof is very similar to the subject reduction proof in Chapter 2; we prove that
each reduction step preserves the validity of the weakest precondition.
We recall that the letter ϑ stands for “the current state” and its domain depends on

the store typing Σ. We also recall the notation ϑϕ which stands for the restriction of ϑ
to the domain ϕ. However, we will often omit this restriction when it is obvious from
the context. At a few points in the proof, we annotate ϑ correctly to emphasize that
the effect restriction changes.
We start by stating the obvious, namely that the wp calculus is stable with respect

to type, effect and region substitutions.

Lemma 3.1 (Type Substitution Lemma). The weakest precondition calculus and type,
effect and region substitutions commute. Stated more formally, for any substitution φ,

wps(e, q)φ⇔ wps(eφ, qφ).

Proof. We omit this very simple and mechanical proof.

The next step basically corresponds to the Substitution Lemma for type soundness
(Lemma 2.19). We prove that if a value v is correct, then one can either compute the
wp on e, and substitute dve for x in the result, or substitute v for x in e, and compute
the wp.

82

3.2. Soundness of the wp Calculus

Lemma 3.2 (Substitution Lemma for the wp calculus). The weakest precondition calcu-
lus and value substitutions commute for correct values. The same is true for correctness
assertions for values. Stated more formally, if ∀χ.correct(v) is true, then

wps(e, q)[x 7→ Λχ.dve] ⇔ wps(e[x 7→ Λχ.v], q[x 7→ Λχ.dve]).

and
correct(v′)[x 7→ Λχ.dve] ⇔ correct(v′[x 7→ Λχ.v])

Note how the substitution of dve becomes a substitution of v in program expressions.

Proof. We first prove the claim about expressions, assuming the one about values. We
proceed by induction over the structure of e. We set φ = [x 7→ Λχ.dve], but we will use
it for substitution in logic terms and program expressions, where it actually substitutes
Λχ.v. It should always be clear which type of substitution is intended.

Case v Let e = v′. We derive

wps(v′, q)φ = (correct(v′) ∧ q s dv′e)φ
= correct(v′)φ ∧ qφ s dv′eφ
= correct(v′φ) ∧ qφ s dv′φe
= wps(v′φ, qφ)

We have used the claim about correctness and Proposition 2.32 to obtain the
third line from the second.

Case v v Similarly, we have to unfold the definition of wp, push the substitution down,
apply the claim about correctness and Proposition 2.32 and fold the definition of
wp again.

Case polymorphic let, letregion, region, if, subeffecting Again, unfold the definition of wp,
push the substitution down, and apply, as necessary, the claim about correctness,
Proposition 2.32 and the induction hypothesis on subexpressions.

Case monomorphic let Let e = let y = e1 in e2. We derive

wps(e, q)φ = wps(e1, λs : 〈ϕ〉.λy : dτe.wps(e2, q))φ
= wps(e1φ, λs : 〈ϕ〉.λy : dτe.wps(e2, q)φ)
= wps(e1φ, λs : 〈ϕ〉.λy : dτe.wps(e2φ, qφ))
= wps(eφ, qφ)

We have used the induction hypotheses for e1 (second line) and e2 (third line).

Now let us turn to the claim concerning correctness formulas for values. The claim is
trivial for variables different from x, constants and memory locations, because they are
not subject to the substitution, and they are trivially correct. Two cases remain.

83

3. A Weakest Precondition Calculus

Case v′ = x [κ] We have

correct(v′φ) = correct(v[χ 7→ κ])
⇔ correct(v)[χ 7→ κ]
⇔ True
⇔ correct(v)φ

We have used Lemma 3.1 to obtain the second line. We can state that the sec-
ond line is equivalent to True because we additionally have the hypothesis that
∀χ.correct(v) holds.

Case of anonymous functions For recursive functions, the proof is similar to the cases
showed above: unfold the definition of correct, push the substitution down, apply
the claim for wp and finally fold back the definition of correct.

The next lemma states the quite intuitive fact that if we want to prove a stronger
postcondition of our program, we need to prove a stronger precondition.

Lemma 3.3 (Weakening Lemma for the wp calculus). For any expression eτ,ϕ, and for
any q1 and q2 of type 〈ϕ〉 → dτe → prop, if q1 is stronger than q2:

∀s : 〈ϕ〉.∀r : dτe.q1 s r ⇒ q2 s r

then the weakest precondition of e and q1 is stronger than the weakest precondition of e
and q2:

∀s : 〈ϕ〉.wps(e, q1)⇒ wps(e, q2)

Proof. We proceed by induction over the structure of e. This lemma is simple to prove
in most cases.

Cases v and v v In this case, no recursive call takes place; the claim stems from the fact
that the postcondition q is only used in positive position.

Cases letregion, region, polymorphic let, if and subeffecting In these cases, the claim can
be established using the induction hypothesis for the recursive call, which appears
in positive position.

Case monomorphic let This case is not more difficult, but more interesting than the
others. We conduct the proof in more detail. We set e = let x = e1 in e2 and we
have

wps(e, q1) = wps(e1, λs
′ : 〈ϕ〉.λx : dτe.wps′(e2, q1)).

Using the induction hypothesis for e2, and setting f(q) = wps′(e2, q), we can prove
that

f(q1)⇒ f(q2)

84

3.2. Soundness of the wp Calculus

and also, setting g(q) = λs′ : 〈ϕ〉.λx : dτe.f(q), that

∀s : 〈ϕ〉.∀r : dτe.g(q1) s r ⇒ g(q2) s r

This is the required condition to apply the induction hypothesis for e1, which
gives us the required result.

Remark. Using Lemma 3.3, we can also prove that equivalent postconditions q1 and
q2 lead to equivalent formulas wps(e, q1) and wps(e, q2). We simply split the equivalence
between q1 and q2 into two implications, use the lemma on each implication, and obtain
two implications in opposite directions between the wp formulas.

After these preliminary lemmas, we now proceed to the actual soundness proof. We
want to show that if the weakest precondition of s, e and q is true, then the weakest
precondition is true for any s′, e′ that can be attained from the configuration s, e. As
we did already in Chapter 2, the first lemma deals with the (δ) rule. An additional
hypothesis states that every value in the store s is correct. This requirement is obviously
needed when proving the soundness of the specification of the dereferencing operator.

Definition 3.4. A store s is correct, noted correct(s), if all values in the store are correct (s)
correct. More formally, for all regions r and locations l, we can prove correct(s(r)(l)) if
s(r)(l) is defined.

Lemma 3.5. All three reduction relations ⇀, −→ and � preserve the correctness of
the store, if for the initial expression e, the formula wpϑ(e,True) holds.

Proof. We simply observe that in the only two kinds of expressions that alter the store,
namely ref v and :=l v, the correctness of v is implied by wps(ϑ, e)True. Of course, we
must again assume that δ does also have this property.

We now proceed to prove the correctness property for each of the reduction relations.
As in Section 2.1.4, we start by an assumption on the function δ.

Hypothesis 3.6. Let e = c[κ] v be a well-typed expression and s a correct state such
that δ(s, c[κ], v) = s′, v′ is defined. Then if s |= wpϑ(e, q), we also have s′ |= wpϑ(v′, q).

Proof for the constants of Definition 2.5. We proceed by case analysis on the form of
the constant c.

Case ! Let e =![τr] l. We have s = s′ and v′ = s(r)(l). The hypothesis can be unfolded:

s |= wpϑ(e, q)⇔ s |= ∀r.r =!! l ϑ⇒ q ϑ r.

Thanks to Definition 2.33 and Definition 2.34, we can simplify this to

s |= q ϑ ds(r)(l)e.

This corresponds to half of the claim, because we also need to prove correct(v′).
The assumption about the correctness of the store s guarantees this.

85

3. A Weakest Precondition Calculus

Case ref Let e = ref [τr] v. We have s′ = s[r 7→ s(r)[l 7→ v]] for some fresh l. We also
have v′ = l. Our hypothesis becomes

s |= wpϑ(e, q)⇔ s |= ∀s′r.r /∈ s ∧ s′ = set r dve ϑ⇒ q s′ r

⇔ s |= ∀r.r /∈ s⇒ q (set r dve ϑ) r
⇒ s |= q (set l dve ϑ) l

and we have to prove:
s′ |= wpϑ(l, q)⇔ s′ |= q ϑ l

Making the shift from s to s′, we see that the hypothesis implies the claim.

Case := This case is trivial.

Case :=r,l,τ This case is very similar to the one of ref .

We now prove the same claim for the reduction relation ⇀.

Lemma 3.7 (Soundness of Top Step). Let eτ,ϕ be a well-typed expression and s be a
correct store such that s, e ⇀ s′, e′. Then if s |= wpϑ(e, q), we also have s′ |= wpϑ(e′, q).

Proof. By case analysis over the last rule of the typing derivation of e. We do not need
to consider the Value rule, because e is not a value.

Case App We know that e = v1 v2. The value v1 is either a constant c, or an anonymous
function. In the first case, we can apply Hypothesis 3.6 and we are done. In the
other case, we have v1 = rec f (x : τ ′).{pf}ef{qf}.
Let us unfold the definition for wp on e:

s |= wpϑ(e, q)⇔ s |= pre dv1e dv2e ϑ ∧ ∀r : dτe.∀t : 〈ϕ〉.post dv1e dv2e ϑ t r ⇒ q t r

which is equivalent to

s |= pf [x 7→ dv2e] ϑ ∧ ∀r : dτe.∀t : 〈ϕ〉.qf [x 7→ dv2e] ϑ t r ⇒ q t r (3.1)

We have omitted the properties of correctness for v1 and v2. We have to show
that

s |= wpϑ(ef [x 7→ v2, f 7→ v1], q)

Now let us look more closely at the correctness statement for v1:

correct(v1) = ∀x : dτ ′e.∀f : dτ ′ →ϕ τe. f = dv1e ⇒ ∀s : 〈ϕ〉.pf s⇒ wps(ef , qf s)

Let us instantiate this formula with x = dv2e and f = dv1e. The first part f = dv1e
is trivially true and we have established

∀s : 〈ϕ〉.pf [x 7→ dv2e] s⇒ wps(ef , qf s)[x 7→ dv2e, f 7→ dv1e]

86

3.2. Soundness of the wp Calculus

If we again instantiate this formula with s = ϑ, we see that the premise of the
implication is true by (3.1), so we have

s |= wpϑ(ef , qf ϑ)[x 7→ dv2e, f 7→ dv1e].

Let us push the substitution inside the wp using Lemma 3.2 and the correctness
of both values:

s |= wpϑ(ef [x 7→ v2, f 7→ v1], qf [x 7→ dv2e] ϑ).

We have used the fact that the variable f cannot appear in qf . This last formula
looks almost the same as our goal, except the appearance of qf instead of q.
Fortunately, we know that qf [x 7→ dv2e] ϑ is stronger than q because of (3.1), so
we can conclude by Lemma 3.3.

Case LetPoly We know that e is of the form let x [χ] = v in e1. We also know that
e′ = e1[x 7→ Λχ.v]. Let us unfold the hypothesis:

s |= wpϑ(e, q) ⇔ s |= ∀χ.correct(v) ∧ let x [χ] = dve in wpϑ(e1, q)

In this case, the soundness result is trivial: we simply remark that in L, a let
statement is equivalent to the polymorphic substitution:

s |= wpϑ(e1, q)[x 7→ Λχ.v]

Using the correctness of v and Lemma 3.2, we can easily prove the goal:

s |= wpϑ(e1[x 7→ Λχ.v], q).

In particular, we have used the fact that q cannot contain x.

Case Let Our remark on the well-definedness of the wp calculus shows that this case
is identical to the previous one.

Case If We know that e = if v then e1 else e2. We also know that v = true or v = false,
depending on which reduction rule applies. Finally, we have s = s′. Let us only
consider the case where v = true, the other one is symmetric. We have

s |= wpϑ(e, q) ⇒ s |= dve = true⇒ wpϑ(e1, q).

As we have assumed that v = true, we can conclude.
In the following two cases we must be more careful about the domain of ϑ.

Case LetReg We know that e = letregion % in e1. Assume the effect of e1 to be ϕ′,
with ϕ = ϕ′ \ %. We unfold the hypothesis:

s |= wpϑϕ
(e, q) ⇔ s |= ∀%.% /∈ ϑϕ ⇒ ∀s : 〈%〉.wpϑϕ⊕s(e1, λt : 〈ϕ′〉.q t|ϕ) (3.2)

We also know that e′ = region r in e1[% 7→ r], where r is the fresh region created
by the reduction. Our goal is to prove

s′ |= wpϑϕ
(e′, q),

87

3. A Weakest Precondition Calculus

which is equivalent to

s′ |= wpϑϕ⊕ϑr
(e1[% 7→ r], λt : 〈ϕ′[% 7→ r]〉.q t|ϕ)

This can be rewritten to

s′ |= wpϑϕ⊕ϑr
(e1, λt : 〈ϕ′〉.q t|ϕ)[% 7→ r]

using Lemma 3.1 and the fact that q does not contain % (it is out of the scope
of the letregion binder). Finally, we argue that because r is fresh with respect to
s, the hypothesis cannot mention r.2 As s and s′ only differ by a new region in
r, we can carry over the hypothesis (3.2) from s to s′. The reformulated goal is
now only an instantiation of (3.2), substituting r for % and ϑr for s. The premise
r /∈ ϑϕ of (3.2) is of course true, because r is fresh.

Case Region We know that e = region r in v. Although we know that v can be typed
without any effect, it would be incorrect to assume that the effect of v is empty.
In particular, this would assume that no Sub rule has been applied before. We
therefore assume the effect of v to be ϕ′, with ϕ = ϕ′ \ r. Now let us unfold the
hypothesis:

s |= wpϑϕ
(e, q) ⇔ wpϑϕ⊕ϑr

(v, λt : 〈ϕ′〉.q t|ϕ) ⇔ q ϑϕ dve ∧ c(v)

We can conclude:

s′ |= wpϑϕ
(e′, q) ⇔ q ϑϕ dve ∧ c(v)

because e′ = v.

Case Sub We know that e = (e1 : ϕ′ <: ϕ) with s, e1 ⇀ s′, e′1. Let us unfold the
hypothesis:

s |= wpϑϕ
(e, q) ⇔ s |= wpϑϕ′ (e1, λs : 〈ϕ′〉.q (ϑϕ ⊕ s))

and the goal:

s′ |= wpϑϕ
(e′, q) ⇔ s′ |= wpϑϕ′ (e′1, λs : 〈ϕ′〉.q (ϑϕ ⊕ s))

The induction hypothesis is:

∀f.s |= wpϑϕ′ (e1, f) ⇒ s′ |= wpϑϕ′ (e′1, f)

and it allows us to conclude.

We now proceed to prove the same property for the reduction relation −→.
2Remember that we assume e and q to be well-typed in the same environment Γ and store typing Σ.
As we also have Σ ` s, and r is fresh with respect to s, r must also be fresh with respect to q.

88

3.2. Soundness of the wp Calculus

Lemma 3.8 (Soundness of One Step). Let eτ,ϕ be a well-typed expression and s a correct
store such that s, e −→ s′, e′. Then if s |= wpϑϕ

(e, q), we also have s′ |= wpϑϕ
(e′, q).

Proof. We prove this lemma by induction over the form of reduction contexts. If the
context is empty, i.e., of the form �, then the claim is already covered by Lemma 3.7.
There are two cases remaining.

Case region We have

s, region r in E[e] −→ s′, region r in E[e′],

and because of s, e ⇀ s′, e′, and because of the Context rule, we also have

s, E[e] −→ s′, E[e′].

We also denote by ϕ′ = ϕ ∪ r the effect of E[e]. The induction hypothesis is

∀f. s |= wpϑϕ′ (E[e], f) ⇒ s′ |= wpϑϕ′ (E[e′], f) (3.3)

Let us first unfold the hypothesis:

s |= wpϑϕ
(region r in E[e], q) ⇔ s |= wpϑϕ⊕ ϑr

(E[e], λt : 〈ϕ′〉.q t|ϕ)

and the claim:

s′ |= wpϑϕ
(region r in E[e′], q) ⇔ s′ |= wpϑϕ⊕ ϑr

(E[e′], λt : 〈ϕ′〉.q t|ϕ)

We use the fact that ϑϕ′ = ϑϕ ⊕ ϑr which follows from property (A7) of Section
2.2.3 and can conclude using (3.3).

Case let The term we are considering is of the form e = let x [χ] = E[e1] in e2 and we
have s, e1 ⇀ s′, e′1. Therefore we also have s, E[e1] −→ s′, E[e′1], E[e1] cannot be
a value and we know that the list χ is empty. Our induction hypothesis is

∀f.s |= wpϑ(E[e1], f) ⇒ s′ |= wpϑ(E[e′1], f).

Now let us unfold the hypothesis

s |= wpϑ(let x = E[e1] in e2, q) ⇔ s |= wpϑ(E[e1], λt : 〈ϕ〉.λx : dτe.wpt(e2, q))

and the claim

s′ |= wpϑ(let x = E[e′1] in e2, q) ⇔ s′ |= wpϑ(E[e′1], λt : 〈ϕ〉.λx : dτe.wpt(e2, q))

Then we can conclude by induction hypothesis.

Finally, we can state the theorem about �, the reflexive and transitive closure of
−→.

89

3. A Weakest Precondition Calculus

Theorem 3.9 (Soundness of wp). Let eτ,ϕ be an expression and s a correct store such
that s, e� s′, e′. Then if s |= wpϑ(e, q), we also have s′ |= wpϑ(e′, q).

Proof. We can now proceed by induction on the length n of the reduction sequence
of s, e � s′, e′. If n = 0, the claim is trivial because s = s′ and e = e′. In the
induction step, we have s, e � s′, e′ and s′, e′ −→ s′′, e′′ and we have s |= wpϑ(e, q).
We obtain, by the induction hypothesis, that s′ |= wpϑ(e′, q). We can conclude by
Lemma 3.8. Theorem 2.23 and the accompanying lemmas help to establish the necessary
well-typedness conditions and Lemma 3.5 guarantees the correctness of the store.

Corollary. For any well-typed expression such that ∅, e � s′, v and s |= wpϑ(e, q), we
also have s′ |= q ϑ dve ∧ correct(v).

Proof. This is a direct consequence of Theorem 3.9, the definition of wp and the fact
that the empty store is correct.

3.3. Completeness
In this section, we prove the completeness result of our wp calculus. Completeness states
a program e that is correct, i.e., that is capable of guaranteeing a certain postcondition
q under initial conditions described by p, can be annotated such that the wp of e and q
is implied by p. While soundness is clearly the most important result, completeness is
a close second. First, it guarantees to the user that he can prove his (correct) program
using the wp calculus. Second, during a proof development, when a user does not
manage to prove a program to be correct, then in principle four possibilities should be
considered:

• The program is incorrect;

• the specification is incorrect;

• the proof attempts to prove the formula obtained by wp have not been sufficient;

• the program is out of scope for the wp calculus.

The completeness result eliminates the last point and the user can concentrate on the
three other points.
A first particularity in this section is that we assume names of recursive functions

not to appear in any annotations. It is already guaranteed by the typing relation that
in a value v of the form rec f (x).{p}e{q}, the formulas p and q do not contain the
variable name f . Up to now, nothing did forbid annotations of local functions in e to
refer to f . We now specifically disallow this. However, this restriction does not reduce
the expressive power: if some formula g in e refers to f , we can simply replace f by
dve, namely by the pair (p, q). The wp calculus does something similar anyway, by
introducing the equation f = dve in the correctness formula, so this does not change
much. As another remark, we also assume all stores s to be correct.
The first lemma we want to prove is somewhat technical and deals with recursive

functions. Let us first give the intuition behind it. Say we have a recursive function f
defined as follows:

90

3.3. Completeness

let rec f x =
{ x = 0 }
if x = 0 then 1 else f (x − 1)
{r : r = 1}

The specification of function f is correct; when it terminates, it always returns 1. The
specification is unnecessarily restrictive, however; the postcondition is (partially) correct
for any input, and not only for x = 0.
A mechanical way to improve the precondition of f is to use the wp calculus. Let us

execute the wp calculus once over the body of f , assuming that f has the specification
we have given to it. We obtain:

(x = 0⇒ 1 = 1) ∧ (x 6= 0⇒ (x− 1 = 0 ∧ ∀r.r = 1⇒ r = 1))

We can simplify the left hand side of the conjunction to True and the right hand side
to:

x = 0 ∨ x = 1
and we have indeed improved the precondition of f ; it now accepts not only 0, but also
1 as argument for x.
It is however not immediately clear that we can use the newly computed formula as

precondition of f ; after all, f is recursive, so changing the specification of f changes
the wp of its body. This is the motivation for the next lemma.

Lemma 3.10 (Improving specifications of recursive functions). Let

v = rec f (x).{p}e{q}

be a correct value such that the variable f does not appear in annotations in e. Then,
setting

A = λs.wps(e, q s)[f 7→ dve],
the value

v′ = rec f (x).{A}e{q}
is also correct.

Remark. Before we give the proof, let us observe that that the substitution [f 7→ dve]
can be either placed, in this form, outside the wp transformer, or in the form [f 7→ v]
inside, only applied to e. Lemma 3.2 guarantees that both are equivalent.

Proof. To establish the claim, we have to prove that v′ is correct, stated otherwise, we
need to prove that

∀f.f = dv′e ⇒ ∀xs.A s⇒ wps(e, q s).
Observing that A does not contain f , we unfold v′ and A and substitute f to obtain:

∀xs.wps(e, q s)[f 7→ dve]⇒ wps(e, q s)[f 7→ (A, q)].

We slightly generalize this claim by allowing different postconditions, as long as they
do not contain f and one implies the other. Our new claim is that for any pair q, q′
that do not contain f , if

∀s, x.q x s⇒ q′ x s

91

3. A Weakest Precondition Calculus

then
∀xs.wps(e, q)[f 7→ dve]⇒ wps(e, q′)[f 7→ (A, q)]. (3.4)

Formula (3.4) is the claim we have to prove; we add another claim about correctness:

∀v0.correct(v0)[f 7→ dve]⇒ correct(v0)[f 7→ (A, q)] (3.5)

We now proceed to prove claims (3.4) and (3.5) by mutual induction over the structure
of values and expressions. We start by (3.5).

Case of variables, constants and memory locations There is nothing to prove, correct(v0)
is always True in this case.

Case of recursive functions Set v0 = rec g (y).{p0}e0{q0}. We have

correct(v0) = ∀g.g = dv0e ⇒ ∀ys.p0 s⇒ wps(e0, q0 s)

As the specifications p0 and q0 do not contain f , the only place where the different
substitutions can change anything is the rightmost subformula. To prove that

wps(e0, q0 s)[f 7→ dve]⇒ wps(e0, q0 s)[f 7→ (A, q)],

we simply apply the induction hypothesis on e0.

We now go on to prove claim (3.4). We show the proof only for selected cases.

Case of values Set e = v0. Then

wps(e, q) = q s dv0e ∧ correct(v0)

Only the second part is subject to a substitution concerning f . But here we can
use the induction hypothesis concerning correctness of values.

Case of application Let e = v1 v2. Then

wps(e, q) = pre dv1e dv2e s ∧ ∀s′r.post dv1e dv2e s s′ r ⇒ q s′ r,

omitting correctness statements for v1 and v2 for which we can again apply the
induction hypothesis. We now remark that this formula does not contain any
occurrences of f , so the claim is trivial, using the implication between q and q′.

Case of let expressions We focus on the case where e = let y = e1 in e2. We have

wps(e, q) = wps(e1, λs
′λy.wps(e2, q))

We have to show that

wps(e, q)[f 7→ dve]⇒ wps(e, q′)[f 7→ (A, q)]

Let B be the formula representing the inner wp occurrence:

B = wps(e2, q)

92

3.3. Completeness

We can state by the induction hypothesis that B[f 7→ dve] ⇒ B[f 7→ (A, q)].
Again by the induction hypothesis, we obtain that

wps(e1, λs
′λy.B[f 7→ dve])[f 7→ dve]⇒ wps(e1, λs

′λy.B[f 7→ (A, q)])[f 7→ (A, q)]

Let us push the substitutions inside, eliminating the double substitutions in the
postconditions:

wps(e1[f 7→ dve], λs′λy.B[f 7→ dve])⇒ wps(e1[f 7→ (A, q)], λs′λy.B[f 7→ (A, q)])

We now can lift the substitutions back to obtain the claim:

wps(e1, λs
′λy.B)[f 7→ dve]⇒ wps(e1, λs

′λy.B)[f 7→ (A, q)]

The case where e = let x [χ] = v in e2 is very similar to the case of the (β) rule.

Case of if expressions Let e = if v then e1 else e2. We have

wps(e, q) = (dve = true⇒ wps(e1, q)) ∧ (dve = false⇒ wps(e2, q))

We see that the claim can be proved by applying the induction hypotheses on e1
and e2.

Case of letregion expressions Let e = letregion % in e1. We have

wps(e, q) = ∀%.∀s′ : 〈%〉.wps⊕s′(e1, λt : 〈ϕ ∪ %〉.q t|ϕ)

As q is stronger than q′, this is also true for the modified postconditions: set
g(q) = λt : 〈ϕ ∪ %〉.q t|ϕ, then g(q) is stronger than g(q′). This allows us to apply
the induction hypothesis and to conclude.

Case of region expressions This case is entirely analogous to the previous one.

We need another, less technical, proposition to prove completeness. This time, we
state that annotating an expression or value is always possible. This proposition is
useful when we need to annotate a value or expression that is actually not needed at
all.

Proposition 3.11. An unannotated value v can always be annotated such that correct(V)
is true.

Proof. It is important to remark that this proposition is only about finding an arbitrary
specification for expressions and values. This proposition does not try to find the
best or most suitable annotation. Therefore, this proposition is trivial: values other
than anonymous functions are trivially true. For anonymous functions, we can set its
precondition to False to obtain its correctness.

93

3. A Weakest Precondition Calculus

s′, e′

S′, E′S,E

s, e

S, E

S′ |= wpϑ(E′, q)S |= wpϑ(E, q)

R

existsexists
exists

Rverifies verifies

Figure 3.2: An illustration of the structure of the completeness claim.

We now can proceed to prove the completeness lemmas. Another way to express
completeness is to prove that the formula computed by wp is indeed the weakest pre-
condition. This is equivalent to saying that if a predicate p guarantees that a postcon-
dition q is true after executing e, then the formula computed by wp is weaker, e.g., it
is implied by p.
The technical difficulties and the relative heaviness of the statements of the following

lemmas stems from the annotations. In presence of annotations, wp clearly does not
compute the weakest precondition. As an example, consider the following definition:

let f x =
{ x > 0 }
x
{ r : r = x }

Function f is just the identity function for integers, but artificially restricted to positive
ones. Now, any precondition is sufficient to guarantee that the function call f 0 returns
0; but the wp of f 0 for the postcondition λsλr.r = 0 is equivalent to False, because of
f ’s precondition. So the annotations pose a problem for the statement of the lemmas.
But we cannot drop them, because wp cannot be computed without annotations.
Before we continue, we again need to introduce additional notation. In the com-

pleteness proof, we consider modifications of values and expressions where only the
annotations change. We therefore introduce the following convention, valid for the re-
mainder of this section: starting from values, expressions and states written in lower
case, such as v, e and s, derived annotated valus and expressions are written in upper-
case, such as V , E and S. The operation of removing annotations from an expression
is written [e]. We also introduce the convention that when a letter, such as e, is used
in lower case and upper case in the same context, then we have [e] = [E], i.e., the
expressions differ only by their annotations. Finally, if several annotations of the same
term are important in a proof, we may also use a typewriter font such as V or E, with
the same convention if the same letter is used in lower case as well.
The idea of the completeness proof is to consider executions (reductions) of expres-

sions in reverse. It is illustrated in Fig. 3.2. Let us first restrict our attention to
expressions that can reduce.

Definition 3.12. An configuration s, e is subject to a reduction relation R ∈ {δ,⇀subject to

94

3.3. Completeness

,−→,�} if there is a state s′ and an expression e′ such that

(s, e)R(s′, e′).

Now let us characterize the fact that, for a given configuration (s, e), all possible
images (s′, e′) w.r.t. the reduction relation R can be annotated to verify the weakest
precondition of e′ and some postcondition q.

Definition 3.13. For a relation R, an expression eτ,ϕ, a state s and a postcondition
q〈ϕ〉→dτe→prop, we define the predicate P (R, s, e, q) to be equivalent to the property that
for all s′ and e′, if

(s, e)R(s′, e′)
then there exist S′ and E′ such that

S′ |= wpϑ(E′, q) ∧ correct(S′).

Additionally, S′ and E′ must be coherent in the sense that there exist S and E such that

(S, E)R(S′, E′).

The property P is illustrated in Fig. 3.2 on the right hand side. This property is
the premise of our completeness lemmas and theorems. The claim of these lemmas and
theorems is simply the following: If P (R, s, e, q) is true, then there are annotations S
and E such that S |= wpϑ(E, q). It is illustrated on the left hand side of Fig. 3.2.
Let us illustrate on several examples why such complicated machinery is necessary

to prove completeness.

• We cannot prove s |= wpϑ(e, q) directly, because it is false in general. This claim
woul be: If (s, e) always reduces to (s′, e′) such that s′ |= wpe′(q,), then we also
have s |= wpϑ(e, q). This is false: consider the expression

e = (rec f (x).{x = 0}x{r : r = x}) 1

i.e., the identity function, requiring its argument to be zero, applied to 1. We
can easily prove that any reduction of this expression is equal to 1, but we cannot
prove it. We need to change the annotations of the anonymous function.

• We cannot require s′ |= wpϑ(e′, q) directly. In the theorem concerning the reduc-
tion relation �, we have to chain reasoning steps such as the one illustrated in
Fig. 3.2. Therefore, we cannot require more in the premise than we prove. We
only prove that a reannotation E of e verifies S |= wpϑ(E, q), so we can only
require that a reannotation E′ requires S′ |= wpϑ(E′, q).

• We do need to require the existence of S and E such that (S, E)R(S′, E′). This is
necessary because we only know that there exist S′ and E′. However, they should
be obtained consistently. As an example, consider the reduction relation δ and
the expression

e = e =![τr] l

95

3. A Weakest Precondition Calculus

so that e′ is of the form s(r)(l) and s′ = s. Now S′ and E′ are obtained from s′ and
e′ by changing the annotations, but nothing guarantees that we have E′ = S′(r)(l).
The requirement

δ(S, E) = (S′, E′)
provides a solution.

• We cannot expect S and E to be equal to S and E. This also means that we
cannot expect the relation

(S,E)R(S′, E′)
to hold in general. A counterexample has been discussed in preparation for
Lemma 3.10: the annotation of a recursive function can be incomplete (too re-
strictive) for, say, an integer argument n+1, but it can be sufficient for a reduced
expression, in which only smaller calls occur, say, with integer argument n. In
many parts of the proofs, however, we can and will set S = S and E = E.

To be more precise about the notations being used, we use typewriter font such as V
for the annotations that are given by the premise, for example in E. On the other hand,
we use italic letters such as V if we refer to annotations we have to find to establish the
claim, as in E.
As usual, we start with a hypothesis concerning δ, the function that deals with

reduction of constants.

Hypothesis 3.14. Let an expression e = c v and a correct state s form a configuration
subject to δ, and let q〈ϕ〉→dτe→prop be a predicate on a final state and the return value
of e. Then, the premise

P (δ, s, e, q)
implies that there are annotations E of e and S of s such that

S |= wpϑ(E, q).

Proof for the constants of Definition 2.5. As s, e is subject to δ, we can exhibit appro-
priate s′ and e′ with which we instantiate the premise. As e′ is necessarily a value, we
introduce e′ = v′. We exhibit annotations V ′ and S′, with the properties specified in
Definition 3.13, in particular

S′ |= wpϑ(E′, q)⇔ S′ |= q ϑ dV ′e ∧ correct(V ′)

In this proof, we can set S = S and E = E. Now we proceed by case analysis.

Case ! Let e =![τr] l. In fact, e cannot contain any annotations, so we have to prove:

S |= wpϑ(![τr] l, q)⇔ S |= pre ! l ϑ ∧ ∀s′r.post ! l ϑ s′ r ⇒ q s′ r

⇔ S |= ∀s′r.ϑ = s′ ∧ r =!! l s′ ⇒ q s′ r

⇔ S |= q ϑ (!! l ϑ)

As S = S and because of δ(S,E) = S′, E′, we have S′(r)(l) = V ′. Because of
Definitions 2.33 and 2.34, the claim is equivalent to the formula guaranteed by
the premise.

96

3.3. Completeness

Case ref Let e = ref [τr] v, and v′ = l, for some fresh l. Also, s′ = s[r 7→ s(r)[l 7→ v]].
Now let us unfold the claim:

S |= wpϑ(ref [τr] v, q)⇔ S |= correct(V) ∧ ∀s′r.post ref dV e ϑ s′ r ⇒ q s′ r

⇔ S |= correct(V) ∧ ∀r.r /∈ s⇒ q (set r dV e ϑ) r

Using our hypothesis that
S′ |= q ϑ l,

we can prove the right hand side of our claim. Indeed, the quantification over r
in the claim corresponds to the fact that the hypothesis is true for any fresh l
(because of the quantification over s′). We can now the hypothesis from S′ to S,
replacing ϑ by (set r dve ϑ). The left hand side of the claim stating the correctness
of V can be obtained from the correctness of S′.

Case := This case is trivial.

Case :=r,l,τ This case is very similar to the one of ref , but even simpler, because there
is no quantification over the memory location involved.

Lemma 3.15. Let an expression e and a correct state s form a configuration subject
to ⇀, and let q〈ϕ〉→dτe→prop be a predicate on a final state and the return value of e.
Then, the premise

P (⇀, s, e, q)

implies that there are annotations E of e and S of s such that

S |= wpϑ(E, q).

Proof. We want to show
S |= wpϑ(E, q)

for some annotation (S,E) of (s, e). As before, we exhibit appropriate s′ and e′ to
instantiate the premise, obtain S′ and E′ such that

S′ |= wpϑ(E′, q).

In this proof, we cannot always set E = E. We now proceed by case analysis over the
reduction using ⇀.

Case (β) Then e = v1 v2 with v1 = rec f (x).{px}ex{qx}. We have to find an annotated
version of e; we already introduce names for those annotated components: set
E = V1 V2, where V1 = rec f (x).{Px}Ex{Qx}. The V2, Px and Qx have to be
determined. Using these names, we have to show:

s |= correct(V1) ∧ correct(V2) ∧ Px[x 7→ dV2e] ϑ ∧ ∀sr.Qx[x 7→ dV2e] ϑ s r ⇒ q s r
(3.6)

97

3. A Weakest Precondition Calculus

Let us set S = S′, because the (β) rule does not change the state. The premised
guarantees

S |= wpϑ(E′, q). (3.7)

We know that E′ = Ex[f 7→ V1, x 7→ V2], where the values and expressions in
typewriter font are the ones taken from E. Our aim is now to find V1 and V2 such
that (3.6) becomes true.
Let us first set Ex = Ex. Now, we can find V2 as follows. If x occurs in ex, set
V2 = V2. The value V2 is correct because of (3.7) and the fact that it appears in E′.
If x does not occur in ex, we can find a suitable annotation using Proposition 3.11.
For V1, we have to find pre- and postconditions Px and Qx that make (3.6) true.
We simply set Qx to λ_.q and Px to λs.wps(Ex[f 7→ V1], qx s). By construction,
Qx implies q if applied to ϑ. For the claim concerning Px, we have:

s |= wpϑ(E′, q)⇔ s |= wpϑ(Ex[f 7→ V1, x 7→ V2], q)
⇔ s |= wpϑ(ex, q)[f 7→ dV1e, x 7→ dV2e]

and we want to prove:

s |= wpϑ(ex, q)[f 7→ dV1e, x 7→ dV2e]

Comparing to the available hypothesis, we see the difference in the substitution
for x, once it is substituted by dV2e, and once by dV2e. This is only a problem
when x ∈ ex, but in this case we have V2 = V2 by construction.
The correctness of V1 is guaranteed by Lemma 3.10.

Case (let) Now, e = let x [χ] = v in ex. We set S = S′. Our hypothesis becomes

S |= wpϑ(Ex[x 7→ Λχ.V], q). (3.8)

Defining E = let x [χ] = V in Ex, we have to prove:

S |= wpϑ(E, q)

which unfolds to

S |= ∀χ.correct(V) ∧ let x [χ] = dV e in wpϑ(Ex, q)

The proof is now similar to the previous case of (β), but much simpler. We
simply set Ex = Ex and, if x ∈ ex, we set V = V. Otherwise we simply make up
annotations for V using Proposition 3.11. We observe that (3.8) takes care of half
the claim. The correctness of V is guaranteed by construction.

Case (iftrue) Set e = if v then e1 else e2 and S = S.. Assume that v = true, the other
case is of course symmetric. Then e′ = e1, and we have

S |= wpϑ(E1, q).

98

3.3. Completeness

Defining E = if V then E1 else E2, we need to prove:

S |= (dV e = true⇒ wpϑ(E1, q)) ∧ (dV e = false⇒ wpϑ(E2, q))

Fortunately, v does not need any annotations (it is a variable or a constant),
so V = v. We can set E1 = E1. For E2, any annotation works, because the
hypothesis dV e = false is always false, according to our initial assumption.

Case (δ) This is covered by Hypothesis 3.14.

Case region We have e = region r in v. Then e′ = v and we set S = S′. The hypothesis
becomes

S |= wpϑ(V, q)⇔ q ϑ dVe ∧ correct(V)
We set V = V and unfold the claim:

S |= wpϑ(region r in V, q)⇔ s |= wpϑ⊕ϑr
(V, λt : 〈ϕ ∪ r〉.q t|ϕ)

⇔ S |= (λt : 〈ϕ ∪ r〉.q t|ϕ) ϑϕ∪ r dVe ∧ correct(V)
⇔ S |= q ϑϕ dVe ∧ correct(V)

The last line corresponds to the hypothesis.

Case letregion Let e = letregion % in e1. We have s′ = s[r 7→ ∅] for a fresh region name
r, and e′ = region r in e1[% 7→ r]. Our hypothesis is

S′ |= wpϑ(region r in e1[% 7→ r], q)⇔ S′ |= wpϑϕ∪r(e1[% 7→ r], λt : 〈ϕ ∪ r〉.q t|ϕ)
(3.9)

We have to prove that

S |= wpϑ(letregion % in e1, q),

for some S, which is equivalent to

S |= ∀%.% /∈ s⇒ ∀s′ : 〈%〉.wpϑ⊕s′(e1, λt : 〈ϕ ∪ %〉.q t|ϕ).

Note that (3.9) is correct for any fresh r and any S′ such S′ = S[r 7→ ∅]. This
quantification and the freshness condition can be translated to quantification in
the claim.

We now prove essentially the same lemma for the reduction relation −→.

Lemma 3.16. Let an expression e and a correct state s form a configuration subject
to ⇀, and let q〈ϕ〉→dτe→prop be a predicate on a final state and the return value of e.
Then, the premise

P (−→, s, e, q)
implies that there are annotations E of e and S of s such that

S |= wpϑ(E, q).

99

3. A Weakest Precondition Calculus

Proof. As in the preceeding proofs, we want to show

S |= wpϑ(E, q)

for some annotation (S,E) of (s, e). As before, we exhibit appropriate s′ and e′ to
instantiate the premise, obtain S′ and E′ such that

S′ |= wpϑ(E′, q).

We also obtain S and E such that S,E −→ S′, E′. In this proof, we cannot set E = E.
We proceed by induction over the form of the reduction context which we call F here
in order to avoid confusion.

Case F = [] This case is covered by Lemma 3.15.

Case let Here, e = let x = F [e1] in e2. The expression e′ is of the form

e′ = let x = F [e′1] in e2,

where s, e1 ⇀ s′, e′1. By hypothesis, we have

S′ |= wpϑ(let x = F [E′1] in E2, q)

Setting E2 = E2, we have to prove

S |= wpϑ(let x = F [E1] in E2, q)

for suitable E1. Unfolding this, we have to prove

S |= wpϑ(F [E1], λt.λx.wpt(E2, q)) (3.10)

Applying the induction hypothesis for F [e1], we can reduce this to proving P (−→
, s, F [e1], λt.λx.wpt(E2, q)), i.e., the premise of the lemma, where e has been re-
placed by F [e1] and q by λs′.λx.wps′(E2, q).
Therefore assume s, s′ and e′ (different from the previously introduced ones
for the sake of justifying the application of the induction hypothesis) such that
s, F [e1] −→ s′, e′. We immediately derive that

s, let x = F [e1] in e2 −→ s′, let x = e′ in e2,

which means that we can apply the premise on e and obtain

S′ |= wpϑ(let x = F [E′1] in E2, q)⇔ s′ |= wpϑ(F [E′1], λt.λx.wpt(E2, q))

This is exactly what we need (compare with the postcondition of (3.10)).

Case region similarly, using the induction hypothesis.

100

3.3. Completeness

The main result is now a similar claim concerning �. However, to avoid the theorem
to become trivial, we do not use the relation � directly in connection with the predicate
P . If we did, we could simply set e′ = e and s′ = s to obtain the claim. Instead, we
introduce the family of relations �n, that describe reduction sequences using −→ of
length n.

Theorem 3.17. Let e be an expression and s a correct state, and n an integer such
that (s, e) is subject to �n, and let q〈ϕ〉→dτe→prop be a predicate on a final state and the
return value of e. Then, the premise

P (�n, s, e, q)

implies that there are annotations E of e and S of s such that

S |= wpϑ(E, q).

Proof. By induction on n. As we have seen, the claim is trivial for n = 0, because then
s = s′ and e = e′. Now let us show the claim for n+ 1.
We exhibit s′, e′ such that s, e�n+1 s′, e′, and we cut this reduction sequence in two

parts, as follows:
s, e −→ s′′, e′′ �n s

′, e′

We now want to apply the induction hypothesis to the right side of the reduction
sequence, the reduction of length n. To do this, we first need to prove P (�n, s

′′, e′′, q),
but this follows from P (�n+1, s, e, q), because each sequence of length n starting from
(s′′, e′′) is a sequence of length n+ 1 starting from (s, e). We now have obtained S′′ and
E′′ such that

S′′ |= wpϑ(E′′, q).
We just have shown that this is true for any such s′′ and e′′. So we have shown

P (−→, s, e, q), and we can use Lemma 3.16 to obtain the final claim.

A corollary that more closely follows the the usual completeness result is now a simple
consequence of Theorem 3.17.

Corollary. Let eτ,ϕ be an expression and q〈ϕ〉→dτe→prop be a predicate. For all s and v,
if

∅, e� s, v

and if
correct(s) ∧ s |= q ϑ dve ∧ correct(v),

then we can find an annotation E of e such that

∅ |= wpϑ(E, q).

Proof. Let n be the the length of the reduction sequence. We apply Theorem 3.17 on
�n. We only need to prove P (�n, ∅, v, q). We simply set S′ = s and V = v. We also
set E = e and S = ∅. Then this predicate is trivially true.

101

3. A Weakest Precondition Calculus

3.4. Extensions

We now discuss a few possible extensions to the core system of W and L that make
writing programs or reasoning about programs easier. We are less rigorous in this
section and only sketch the arguments for the soundness proof for each extension. We
do not prove completeness for the extensions, but we believe that completeness would
still hold.

3.4.1. Logical Symbols in Programs

One aspect of the original Hoare logic (see Section 1.3.1) that makes it particularly
convenient to work with is the fact that arithmetic expressions are part of the program-
ming language as well as the logic. The advantage is that if a program uses logical
functions instead of program functions, one does not need to reason about pre- and
postconditions; one can directly use the same function symbol in the logic as well.
This is not possible in W and L as presented, because of the different structure of

types in both languages. This introduces some artificial difficulties. As an example,
consider the addition function +. If we cannot use logical symbols in programs, we first
have to decide if + is a logical function or a program function. In Chapter 2 we decided
that it is a program function of type int →∅ int →∅ int. The question is now, what is
the specification of +? We first need another symbol, say +̂, this time a logical symbol
representing integer addition. Now we can say that the postcondition of + states that
the result of the function call + x y is always equal to x+̂y.
However, there is a simple way out. The inclusion of logical terms into programs can

be easily achieved if one extends the types of programs τ to include logical functions of
type τ → τ . Syntactically, few things need to change: we only need to integrate pure
anonymous functions of the form

λ(x : τ).v

into the syntax of values in W. Note that an effectful function with empty effect, of
type τ →∅ τ ′, is different from a pure, logical function of type τ → τ ′. In particular,
an effectful function may not terminate, while logical functions are assumed to always
terminate.
Following these definitions, a new notion of value emerges. Syntactic values are what

we simply called values before; they are defined syntactically and the reduction stops
when encountering such a syntactic value. To adapt the semantics, we simply need
to extend the relation ⇀ with a rule (β′) to account for the reduction of anonymous
pure functions. The new notion of logical values describes expressions that are formed
only of syntactic values or pure applications, i.e., applications of functions whose type
is of the form τ → τ ′. These “values” continue to reduce during the execution of the
program, but from a logical point of view we do not need to decompose these function
calls. In particular, the lifting operation d·e is defined as follows for pure applications:

dvτ→τ ′ v′e = dve dv′e

We see that the application remains intact in the logic.

102

3.4. Extensions

As stated, from the point of view of the wp calculus, logical applications are values.
Therefore, they are subject to correctness formulas. They are computed as follows:

correct(v1 v2) = correct(v1) ∧ correct(v2)

In the definition of wp itself, these applications are treated in the case for values; they
are carried over unchanged (using d·e) to the logic side.
As a result, we now can decide that + is a logical function, but we can still use it in

programs. The reasoning about these function calls is greatly simplified.

3.4.2. Read-Write Effects
Currently, effects in W do not distinguish between read and write effects. In principle,
any function that reads some reference has to state in its postcondition that this region
remains unchanged. We have done this for example in the specification of !. In practice,
these specifications become rapidly tedious. A way to get rid of them is to distinguish
between read and write effects; any region that is mentioned in read effects and not
write effects is guaranteed to be unchanged.
More formally, we propose here to replace the effect ϕ, which is a simple list of region

and effect variables (also called basic effects), by a pair (ϕ1, ϕ2) of lists of basic effects.
The left component is intended to be the read effect, the right component is the write
effect. The effect operations ∪ and \ are redefined to work pointwise:

(ϕ1, ϕ2) ∪ (ϕa, ϕb) = (ϕ1 ∪ ϕa, ϕ2 ∪ ϕb)
(ϕ1, ϕ2) \ % = (ϕ1 \ %, ϕ2 \ %)

For the weakest precondition calculus to work, it is necessary to enforce that the write
effect is always contained in the read effect. Fortunately, this property is maintained
by both the union and the region removal operation, so we only need to verify that it
is true for function constants.
To obtain type soundness of the modified system, we simply use the generalized

results of Section 2.1.5. Indeed, both operations still are stable under substitution as
required. We therefore obtain type soundness for free.
It is important to note that the definition of logical types remains the same: the

domain of state types 〈ϕ〉 is still a flat list of basic effects. When lifting function types
to logical types using d·e, the effect that is retained for the state types is the read effect:

dτ1 →(ϕ1,ϕ2) τ2e = (dτ1e → 〈ϕ1〉 → prop)× (dτ1e → 〈ϕ1〉 → 〈ϕ1〉 → dτ2e → prop)

To exploit the more precise effect information, we need to modify the weakest precon-
dition calculus for function applications:

wps(vτ ′→(ϕ1,ϕ2)τ v
′, q) =

pre dve dv′e s ∧ ∀s′ : 〈ϕ2〉. ∀x : dτe. post dve dv′e s (s⊕ s′) x⇒ q (s⊕ s′) x

The idea is that we only need to quantify over the modified part of the store. We use
the expression s⊕ s′, the state after executing v, as the poststate. This expression uses

103

3. A Weakest Precondition Calculus

the initial state s containing all read and written regions, updated using s′, which only
contains the written regions.
To prove the correctness of this modification of the wp calculus, one modification

has to be applied. First, it is easy to see that Lemma 3.1 concerning type substitution
and Lemma 3.2 concerning value substitution are still correct. Lemma 3.3 has to be
modified so that the implication in the hypothesis quantifies only over written regions:

Lemma 3.18 (Weakening Lemma for the wp calculus). For any expression of type τ
and read-write effect (ϕ1, ϕ2), for a state t of type 〈ϕ1〉 and for any q1 and q2 of type
〈ϕ1〉 → dτe → prop, if q1 is stronger than q2:

∀s : 〈ϕ2〉.∀r : dτe.q1 (t⊕ s) r ⇒ q2 (t⊕ s) r

then the weakest precondition of e and q1 is stronger than the weakest precondition of e
and q2:

∀s : 〈ϕ1〉.wps(e, q1)⇒ wps(e, q2)

Proof. The proof is very similar to the one of Lemma 3.3.

Using this lemma, we can prove Lemma 3.7 for this calculus; the only difference in
the proof is that we use Lemma 3.18 to justify soundness in the case App.

3.4.3. Algebraic Data Types and Pattern Matching
Adding algebraic data types and pattern matching (see Section 1.3.2) to the language
W is quite simple and orthogonal to the features that are already present. First, we
need to add them to the language:

K constructor

e ::= · · · | match v with c
c ::= p→ e

p ::= x | K p

A pattern matching is introduced by the keyword match, followed by a value (recall
that we present W in A-normal form), the keyword with and finally a list of cases. A
case is a pattern, followed by an arrow, and the expression corresponding to the pattern.
Finally, a pattern is either a variable or a constructor applied to a list of patterns.
We do not give the semantics and typing rules here; they are standard and can be

found, for example, in the book by Pierce (2002).
Algebraic data types and pattern matching (see Section 1.3.2) are useful not only

in programming languages, but also in the logic. A few provers and interactive proof
assistants, for example Coq, propose these constructs. Thus, it is reasonable to assume
the existence of these features in the logic. Under this assumption, an integration of
these features in the weakest precondition calculus is very simple.

wps(match v with p→ e, q) = match dve with p→ wps(e, q)

104

3.4. Extensions

where the bar is used to denote lists of subexpressions, as usual.
If we assume that the semantics of the pattern matching in the programming language

and the logic are identical, then the soundness and completeness of this additional rule is
obvious. One can also see it as a generalization of the rule for the if-then-else construct.

105

4. A Language without Aliasing
We have presented the programming language W with its annotation language L in
Chapter 2. We also have presented a correct wp-calculus for annotated W programs.
However, this calculus is lacking a few important properties that help reasoning about
larger programs. In particular, the functions get, set, combine and restrict are central for
the manipulation of state, but the potential simplifications suggested by the properties
(A3), (A5) and (A6) in Section 2.2.3 are protected by premises on regions and domains.
For example, property (A5) requires that a certain region ρ be disjoint from some
domain described by an effect ϕ. But of course, if ρ is a region variable, or if ϕ contains
region or effect variables, we cannot know for sure, unless we have assumed them to be
disjoint.
In practice, this means that programs which manipulate many regions and effects

with effect variables need to be annotated with separation predicates about regions and
effects; this is very tedious in practice. So tedious that many mechanisms have been
developed to avoid writing these predicates, or to do so more succinctly. In Section
4.1, we present an extension to the type system of W that corresponds to the proposal
of Hubert and Marché (2007), but extended to a higher-order setting. Their idea was to
ensure that at all time, two different region variables always stand for different regions.
In our higher-order setting, we have to go one-step further and state that, additionally,
all effect variables stand for disjoint effects. We call this modified system W without
region aliasing.
In W, even without region aliasing, there is a second imprecision: a region may

contain several references. This means, from the point of view of the specification, that
when a single reference in a certain region is modified, all references in that region have
potentially been modified, and if they have not, this has to be stated explicitly. The
reason is that the precision of the type system is precisely captured by the notion of
region; statically, we do not know if two references of the same region are equal or
different, and we do not even know how many references are contained in a region.
Let us give a simple example that illustrates the difficulty. Consider the expression

if v then x else y (4.1)

where x and y are two references. In the type system of W, actually in most type
systems, both branches of an if-expression must be of the same type, and this is also
the type of the entire expression. As x and y are references, this means that the
expression is of type refρ τ for some type τ and some region ρ. Now it depends on the
boolean value of v if x or y is returned. Our type system cannot express that the exact
reference which is returned depends on v.
In a type system based on regions, there are two possible answers to the problem

posed in the previous paragraph. One solution is to accept that a region contains
several references. Then it is up to the Hoare logic specifications to deal with this fact,

107

4. A Language without Aliasing

and it should be possible to deduce which reference has been returned by expression
(4.1). This is what the unrestricted system W and the system W without region aliasing
do.
The other possibility is to enforce that each region contains only a single reference.

Such a region is called a singleton region. In this case, if we give the type refρ τ to
expression (4.1), its return value is necessarily the single reference contained in region
ρ, regardless of the truth value of v. This means that x and y are actually the same
reference, which can also be seen by the fact that both have the same type refρ τ . Of
course, if x and y have the same value, then the if-expression makes no sense. On
the other hand, if x and y are different references, they must have different region
annotations in their type, and expression (4.1) is ill-typed.
In Section 4.2, we present an extension of W without region aliasing that enforces

singleton regions. Again, the result is a restriction of the input language in exchange for
simpler proof obligations. It should be noted that the first restriction (W without region
aliasing) is not a very serious restriction. It often corresponds to good programming
style (avoiding aliasing of mutable objects) and can be circumvented when necessary.
W with singleton regions, however, represents a severe restriction and indeed rules
out an entire class of programs, notably those with shared mutable state. Indeed,
consider the type of lists, for example. In ML, lists are homogeneous, i.e., they contain
elements of the same type. In a system with singleton regions, this means that a list of
references can only contain a single reference, potentially several times. In this setting,
computations with shared mutable state, such as mutable lists or graph- and tree-like
mutable structures, are ill-typed.
W with singleton regions is an extension of W without region aliasing. In the presence

of region aliasing, the system of singleton regions would be unsound.

4.1. Excluding Aliasing of Regions

The problems described in the opening paragraph actually result from aliasing of re-
gions, a phenomenon similar to the aliasing of mutable variables described in Section
1.3.1. We briefly describe two solutions to this problem that are the source of inspiration
to our proposal.
In Why (Filliâtre, 2003), aliasing of mutable program variables is excluded using a

restriction of the application of functions to effectful variables. If f is a function with
latent effect ϕ, then the application f x is only allowed if x is immutable or if x does
not appear in ϕ (notice that in Why, effects are composed of variable names instead of
regions). The consequence is that different program variables always refer to different
memory locations. Another necessary restriction is that references cannot be stored in
data structures. Therefore, many algorithms based on sharing cannot be implemented
directly in Why.
Hubert and Marché (2007) use the same idea, but in a setting with regions. Now the

critical point is not the application of variables, but the instantiation with regions. In
their system, a region polymorphic variable f can only be instantiated with a region
ρ if the type of f does not already contain ρ before instantiation. If a variable is
polymorphic with respect to several regions, all those regions must be instantiated with

108

4.1. Excluding Aliasing of Regions

different region arguments. The consequence is that two different region variables always
refer to different memory locations. Two mutable variables of the same region may still
refer to the same memory location, though. Therefore, algorithms with sharing can be
implemented. This system does not contain effect variables, so generic reasoning about
higher-order functions is not possible.
We extend this basic idea (restricting the application/instantiation of effects) to pro-

grams with higher-order functions and effect polymorphism. The idea is that all effect
and region instantiations for a given variable f must be disjoint from each other and
from the effects already present in the type of f . Again, this guarantees that two dif-
ferent region variables point to different regions; in addition, it guarantees that in a
given context, a region or region variable must be disjoint from any effect variable. As
a consequence, simplifications of expressions using the functions restrict and combine
can be applied statically; they are not needed anymore in the logic.

Restriction of effect and region instantiations. By looking at properties (A5) and
(A6), the premise about the domain of s2 does not allow us to simplify state combining
expressions. To illustrate this, consider a state s of type 〈r〉 and a state s′ of type
〈%ε〉, where r is a concrete region, % is a region variable and ε an effect variable. Now
consider the expression

get (combine s s′) x
where x is a reference in region r. We cannot reduce this expression to get s x even
though it looks like we could; after all, the domain of s′ is %ε and does not seem to
contain r. However, we would like properties (A5) and (A6) to be true regardless of
substitutions. But of course, there are two cases of substitutions where the simplification
breaks down: the substitution [% 7→ r] and any substitution [ε 7→ ϕ] such that ϕ contains
r will render the assumption r /∈ %ε false.
On the other hand, this kind of simplification is actually one of the reason we used

regions in the first place. If two memory cells are from different regions, it is a huge
advantage to know that they are different; also, if a function effect does not mention a
certain region, it should not modify it, even by substitution of effect variables.
The solution is an extension of the region based separation analysis of Hubert and

Marché (2007): we simply disallow certain instantiations. More precisely, we disal-
low instantiations that would introduce region or effect names into types that already
contain them.

Definition 4.1. A region substitution [% 7→ ρ′] is compatible with any type that does compatible
not contain ρ′. Similarly, an effect substitution [ε 7→ ϕ] is compatible with any type that
does not contain any component of ϕ. A substitution [χ 7→ κ] or [χ 7→ κ] is compatible
with a type τ if all effect and region images of the substitution are disjoint of each other
and do not occur in τ . Compatibility is denoted using the ∼ symbol: [χ 7→ κ] ∼ τ .
Now, we modify both the typing rules of W programs and L terms containing instan-

tiation to be restricted to compatible instantiations. The new rules are represented in
Fig. 4.1.

Remark. By restricting the typing relation, we have reduced the set of typable pro-
grams, but do we keep the expressive power of W? The answer is two-fold.

109

4. A Language without Aliasing

PVar
Γ(x) = ∀χ.τ φ = [χ 7→ κ] φ ∼ τ

Γ; Σ `v x [κ] : τφ

PConst
Typeof (c) = ∀χ.τ φ = [χ 7→ κ] φ ∼ τ

Γ; Σ `v c [κ] : τφ

L-Var
∆(x) = ∀χ.σ φ = [χ 7→ κ] φ ∼ σ

∆; Σ `l x [κ] : σφ

L-Const
LogicTypeof (c) = ∀χ.σ φ = [χ 7→ κ] φ ∼ σ

∆; Σ `l c [κ] : σ[χ 7→ κ]

Figure 4.1: The modified rules for variables and constants in W and L.

If one has the whole program at ones disposal, then the answer is yes: Every ML
program, i.e., a program that does not contain region and effect annotations, letregion
and effect and region polymorphism, that is typable in W, i.e., by adding region and
effect annotations, is typable in W without region aliasing. One simply uses a single
region for any mutable state, and does not use effect or region polymorphism. Put
otherwise, whenever the instantiation restriction poses a problem, one can solve it by
merging regions, as long as one has the entire program available. On the other hand,
when part of the program has already been typed, using effect and region polymorphism
to define functions, then the instantiation restriction disallows certain uses of these
functions. The solution proposed by Hubert and Marché (2007) has the same restriction.

Type soundness. As we have modified the typing rules, a few modifications have to
be applied to the correctness proofs. It should be noted, however, that only statements
about values are concerned. We now go through the lemmas and theorems of Chapter 2
and prove that we still have type soundness for this restricted language.
The modified rules type strictly less programs and logical terms. This automatically

guarantees that Theorem 2.15 (Progress) is still true. Proposition 2.12 concerning
canonical values is obviously still true.
In our type soundness proof, Lemma 2.18 concerning type, region and effect substi-

tution, is used at two places, once for justifying the let reduction rule, which substitutes
polymorphic values for variables, and in the case concerning the letregion rule, because
we also need to perform a region substitution there. Using our new typing rules, both
substitutions must be compatible, while there was no such restriction before. The one
in the letregion case is compatible because it is of the form [% 7→ r] for a fresh r that
does not occur in any expression or type. The one in the let case is compatible because
all variable instantiations now must be compatible.
We can therefore restrict the statement of Lemma 2.18 concerning value typing to

substitutions that are compatible with the type of the value. To adapt the proof of

110

4.1. Excluding Aliasing of Regions

Lemma 2.18 to our new setting, it remains to prove that compatibility is “transitive”:

Proposition 4.2. if φ ∼ τ and φ′ ∼ τφ, then also φφ′ ∼ τ .

Proof. Let us first assume that φ = [% 7→ %1] and φ′ = [%2 7→ %3], i.e., that φ and φ′ are
simple region substitutions. We know that φ ∼ τ , which means that %1 /∈ τ . We also
know that %3 /∈ τφ. We have to prove that the image of φφ′, which is the set {%1, %3},
is not contained in τ . As we know this already for %1, it remains to prove the claim for
%3.
First we remark that substitutions in ML are always idempotent, even composed

ones. An idempotent substitution can be applied twice to a term or a type without any
further effect: τφφ = τφ. The reason is that the domain of a substitution in ML stems
from the generalization of type, effect and region variables. The names of these type
variables can be chosen freely (the Barendregt convention) and are always different from
free variables. Instantiation always happens outside the scope of this generalization.
Therefore, the image of a substitution in ML cannot contain variables from its domain.
Such substitutions are always idempotent. We can derive that %3 6= %.
To continue our proof, we know that %3 /∈ τφ and this implies that either %3 /∈ τ or

%3 = %. We have seen that we can disprove the latter and conclude with the former.
The proof can be done in a similar way when φ or φ′, or both, are effect substitutions

for a single effect variable.
Finally, we can generalize this argument to substitutions with a larger domain. Ac-

tually, an idempotent substitution φ = [χ1 7→ κ1 · · ·χn 7→ κn] can be decomposed into
n atomic substitutions φi of the form [χi 7→ κi], such that φ = φ1 · · ·φn. We now can
finish the proof by a straightforward induction over the length of the decomposition of
φ′.

This proposition is to be used in the case for the typing rule Var in the modified
proof of Lemma 2.18. The proofs of the substitution lemma (Lemma 2.19) and the
subject reduction lemmas can now remain unchanged; when evoking Lemma 2.18 in
the case for values, the additional hypothesis φ ∼ τ has to be used.

Soundness and completeness of the wp calculus. The soundness proof for the wp
calculus given in Section 3.2 remains correct; it applies to well-typed expressions, so the
additional restriction does not change this. The completeness proof basically computes
weakest specifications using the wp calculus. To obtain its validity even in presence of
the modifications introduced in this section, we simply observe that the wp predicate
contains the same effect and region instantiations as the expression e and postcondition
q it receives as input. Therefore, the completeness proof of Section 3.3 does not depend
on features that would be removed by activating these restriction.

Exploiting the absence of aliasing. The modifications of the type system that have
been introduced in the previous section restrict the set of well-typed programs so that
fewer programs are accepted. In exchange, we obtain an advantage: we now can apply
the properties (A5) and (A6) directly, because we can decide statically if a given region
is contained in an effect. To illustrate this more clearly, let us look at an instance of

111

4. A Language without Aliasing

property (A5), with full type, region and effect instantiations for some region ρ and
some effects ϕ1, ϕ2 and ϕ3:

get [ρ, ϕ1ϕ2ϕ3] (combine [ρϕ1, ϕ2, ϕ3] s1 s2) x = get[ρ, ϕ1ϕ2] s1 x

with the side condition that

region(x) /∈ domain(s2).

Looking at the types of x and s2, we can rewrite this side condition as

ρ /∈ ϕ2ϕ3.

The point is now that simply by choosing these particular region and effect instantia-
tions when writing down this instance of the axiom, we have fixed that only the effect
represented by ρϕ1 (the first instantiation of combine) can contain ρ; any other instan-
tiation of combine where ϕ2 or ϕ3 contain ρ would be ill-typed because the resulting
substitution would be incompatible with the type of combine. In this case, the side
condition is always true and we can statically simplify the expression to the one on the
right hand side.
A similar reasoning would have allowed us to use property (A6) to simplify the ex-

pression if we had used the instantiation [ϕ1, ϕ2, ρϕ3], for example, with the combine
function.
In practice, these results imply that we can simplify expressions of the form

get (combine s1 s2) x

statically, because we know which of s1 and s2 are relevant. The same is true for
expressions of the form

get (set s x v) y

if x and y are in different regions. This results in many simplifications in generated
proof obligations.

The Frame Rule
We now want to show that these additional properties, that simplify formulas in prac-
tice, also have a theoretical impact on our system. In particular, the so-called frame
rule, which is central to many Hoare logic systems, now becomes admissible in our
system. It states that the parts of the store that are not modified by a given program
remain the same. This sounds like a triviality, but it is a crucial property of any system
to guarantee this in a way that is the simplest possible for the user. In the original
Hoare logic (see Section 1.3.1), this property is expressed using the conjunction rule:

Conj
{ P } C { Q }

{ P ∧ R } C { Q ∧ R }

where R is a formula that does not mention variables that are modified by C. This
side condition is precisely the frame condition; it states that R and C live in different

112

4.1. Excluding Aliasing of Regions

frames or regions of the store. As a consequence, the Conj rule is able to state that
the validity of R is not modified by C.
An equivalent of the frame rule is crucial for any verification system. It guarantees

that the reasoning about any piece of code can be limited to the effects of that code,
and does not need to consider its context, as long as this context is not necessary for
correctness. Using the notation of the Conj rule, the specification of the program C
does not need to mention the logical context R of its usage, but only the formulas P
and Q that are relevant to C.
We now show that an equivalent of the frame or conjunction rule is provable in our

wp calculus. We start by showing that the validity of formulas that do not depend on
the state or the result of the expression, is left unchanged by the wp calculus.

Proposition 4.3. For an expression eτ,ϕ and two formulas pprop and q〈ϕ〉→dτe→prop, the
following formula holds:

wps(e, q) ∧ p⇒ wps(e, λs : 〈ϕ〉.λr : dτe.(q s r ∧ p))

Note that well-typedness conditions imply that p cannot contain occurrences of the bound
variables r and s.

Proof. The proof is somewhat similar to Lemma 3.3; we proceed by induction over the
structure of e.

Cases v and v v In this case, the claim follows from the fact that the postcondition of
wp is only used in positive position.

Cases letregion, region, polymorphic let, if and subeffecting In these cases, the claim can
be established using the induction hypothesis for the recursive call(s), which ap-
pear(s) in positive position.

Case monomorphic let Let us set f = λs : 〈ϕ〉.λr : dτe.q s r ∧ p. We also set e =
let x = e1 in e2 and we have

wps(e, f) = wps(e1, λs
′ : 〈ϕ〉.λx : dτ ′e.wps′(e2, f)).

We know that wps′(e2, q) ∧ p implies wps′(e2, f) by induction hypothesis. By
Lemma 3.3, we obtain that

wps(e1, λs
′ : 〈ϕ〉.λx : dτ ′e.wps′(e2, q) ∧ p) (4.2)

implies
wps(e1, λs

′ : 〈ϕ〉.λx : dτ ′e.wps′(e2, f)) (4.3)

Again by the induction hypothesis, we can also state that

wps(e1, λs : 〈ϕ〉.λx : dτ ′e.wps′(e2, q)) ∧ p (4.4)

implies (4.2). This closes the chain: (4.4) is equal to the left hand side of the
claim; it implies formula (4.2), which itself implies (4.3). This last term is equal
to the right hand side wps(e, f).

113

4. A Language without Aliasing

Comparing Proposition 4.3 with the Conj rule, we see that p in the proposition
already plays the rôle of R in the Conj rule. However, the condition on p is too strong:
Proposition 4.3 basically requires p to be independent of the current state.
The following lemma leverages this restriction. It has the same form as Proposi-

tion 4.3, but introduces a predicate p that may depend on a portion of the store that
is disjoint from the effect of the program e.

Theorem 4.4 (Frame Rule). Let ϕ1 and ϕ2 be two disjoint effects. Let eτ,ϕ1 be an
expression and p〈ϕ2〉→prop and q〈ϕ1〉→dτe→prop be formulas. Then

(wps|ϕ1
(e, q) ∧ p s|ϕ2)⇒ wps(e, λs : 〈ϕ1 ∪ ϕ2〉.λr : dτe.(q s|ϕ1 r ∧ p s|ϕ2)).

Proof. We simply unfold the definition of wp on the right. Setting

f = λs : 〈ϕ1 ∪ ϕ2〉.λr : dτe.q s|ϕ1 r ∧ p s|ϕ2

we derive:

wps(e, f) = wps|ϕ1
(e, λs′ : 〈ϕ1〉.f (s′ ⊕ s))

= wps|ϕ1
(e, λs′ : 〈ϕ1〉.λr : dτe.q (s⊕ s′)|ϕ1 r ∧ p (s⊕ s′)|ϕ2)

= wps|ϕ1
(e, λs′ : 〈ϕ1〉.λr : dτe.q s′ r ∧ p s|ϕ2)

= wps|ϕ1
(e, λs′ : 〈ϕ1〉.λr : dτe.q s′ r) ∧ p s|ϕ2

In the last line of the derivation, we can factor out the formula p s|ϕ2 using Proposi-
tion 4.3, because it does not contain s′ nor r.

Remark. It should be remarked that Theorem 4.4 is a theoretical result; it does not
get directly applied in a particular phase of the weakest precondition calculus. It is
simply a property that every Hoare logic system should possess.

An example. Let us study the consequences of the region aliasing restriction on an
example. Here is the code of the simple function apply_reset:

let apply_reset [%ε] (f : unit →ε unit) (x : ref% α) =
{ pre f () cur|ε }
x := 0;
f ()
{ post f () old|ε cur|ε () ∧ !!x = 0 }

The function takes a function f and a reference x as arguments, sets x to 0 and calls f .
We do not want to go into details about the specification of apply_reset here; we see
that the precondition states that we need to have the precondition of f on the current
state. The postcondition states that we have the postcondition of f of the initial and
the current state, and that x = 0. Is apply_reset specified correctly?

114

4.2. Singleton Regions

To answer this question, we need to compute the formula correct(apply_reset) and
see if it is valid. Let e be the body of the function and q its postcondition, then the
correctness of apply_reset can be unfolded as follows:

correct(apply_reset) = ∀s : 〈%ε〉.∀x.pre f () s|ε ⇒ wps(e, q s)

We continue to unfold the weakest precondition formula:

wps(e, q s)
⇔∀x.wps(e, λs′.post f () s|ε s′|ε () ∧ get s x=0)
⇔wps(x := 0, λs′ : 〈%ε〉.λ().pre f () s′|ε ∧ ∀s′′ : 〈ε〉.post f () s′|ε s′′ ()⇒q s (s′′ ⊕ s′))
⇔s′ = set x 0 s⇒ pre f () s′|ε ∧ ∀s′′ : 〈ε〉.post f () s′|ε s′′ ()⇒ q s (s′′ ⊕ s′)

Cutting the proof obligations into pieces, we have to prove that

pre f () s|ε ⇒ s′ = set x 0 s⇒ pre f () s′|ε

and
post f () s′|ε s′′ ()⇒ s′ = set x 0 s⇒ post f () s|ε (s′′ ⊕ s′)|ε ()

and finally
s′ = set x 0 s⇒ get (s′′ ⊕ s′) x = 0. (4.5)

In W without any restrictions, all these proof obligations are false, because the specifi-
cation of apply_reset assumes that the effect % does not belong to the effect described
by ε. But, depending on the effect instantiations, this assumption may be false.
The proof obligations become provable if we add to each of them the hypothesis that

% /∈ ε. Taking for example the obligation (4.5), the conclusion can be simplified to

get s′ x = 0

and the proof obligation becomes trivial. Similar considerations are true for the other
formulas.
If we activate the region aliasing exclusion, then the additional hypothesis % /∈ ε

comes for free. However, this comes at a cost, as one cannot use apply_reset with a
function f whose effect contains %. On the one hand, this restriction is a natural one
whenever higher-order functions and mutable state play together. The classical example
are iterators over mutable data structures. It is a common requirement (Krishnaswami,
2006) of such functions, often stated informally, that the iteration function does not
modify the structure to be iterated on. On the other hand, one could also explicitly
increase the effect of f when defining apply_reset, to %ε, for example.

4.2. Singleton Regions
As we have already discussed, it is necessary for reasoning about shared mutable state
to allow multiple reference cells per region. On the other hand, if the program at
hand does not exhibit this kind of behavior, it would be nice to obtain more precise
tracking of regions, at the cost of losing shared mutable state. A solution is to introduce

115

4. A Language without Aliasing

singleton regions, that only allow a single memory location in each region, in addition
to excluding region aliasing.
To see how this improves the precision of the region analysis, let us look at the type

of the identity function:
id : ∀α.α→ α

If we apply the identity function to a reference x of type refρ α, we obtain another
object, say r, of the same type. The postcondition of id probably states that the result
r is identical to the argument x, so we can prove that x and r are actually the same
reference.
On the other hand, if we only deal with singleton regions, we do not even need the

postcondition of id; both x and r are in the same region, so they necessarily denote the
same reference. In this setting, the variable names of references become irrelevant; the
only important information is the name of the region.
The idea presented here to obtain singleton regions is very simple: if for each region,

the function ref is called only once, there cannot be multiple memory locations in the
same region. As a consequence, regions and memory locations become equivalent.
To implement this restriction, we use once again our effect system, with a modified

representation (see Section 2.1.5) of effects. In particular, our effects now are pairs
(ϕ, ω), where ϕ is a usual effect expression, and ω is a creation effect. This component
describes the set of regions in which an expression allocates a reference. The effect ω
has the same form as ϕ, i.e., it is composed of regions and effect variables.
The region removal operation (ϕ, ω) \ ρ is somewhat peculiar: for region variables %,

it works as expected, applying the corresponding operation on both components:

(ϕ, ω) \ % = (ϕ \ %, ω \ %)

But for region constants r, the operation does not erase a potential creation effect in r:

(ϕ, ω) \ r = (ϕ \ r, ω)

The idea behind this definition is that the letregion construct still entirely hides a region
from the outside, but the region construct only hides read and write effects, not creation
effects. This makes a soundness proof possible.
The effect union of these modified effects, denoted], is a partial function and is

defined as follows:

(ϕ1, ω1)] (ϕ2, ω2) = (ϕ1 ∪ ϕ2, ω1 ∪ ω2) if ω1 is disjoint from ω2

The idea is that we only have the right to build the union of effects if their creation
effects are disjoint. Looking at the typing rules of Fig. 2.5 (page 52), the only place
where effect unions appear is the Let rule:

Let
Γ; Σ ` e1 : τ ′, ϕ1 Γ, x : τ ′; Σ ` e2 : τ, ϕ2

Γ; Σ ` let x = e1 in e2 : τ, ϕ1 ∪ ϕ2

This means that our modified effect union operation disallows chaining expressions if
they have common creation effects. In turn, this means that no region can contain more
than one reference.

116

4.2. Singleton Regions

We need to apply another modification to the typing rules if we want to ensure this.
The ref function needs to actually produce a creation effect:

Typeof (ref) := ∀α%.α→(%,%) ref% α

All other previously introduced function constants have an empty creation effect.

Soundness of the Restriction to Singleton Regions
We want to prove the soundness of the extension, i.e., that each region contains only
one memory location. Of course, we also want to keep type soundness as stated in
Theorem 2.23. But this theorem does not hold with creation effects. Let us see why.
Consider the configuration

s, letregion % in e, (4.6)

where e has a creation effect in %. This effect is hidden because the region removal
operation for region variables indeed removes the variable % from the read/write effect
and the creation effect. Now, consider the reduction of configuration (4.6) using ⇀.
We obtain

s[r 7→ ∅], region r in e[% 7→ r]. (4.7)

Of course, e[% 7→ r] now has a creation effect in r. But this effect is no longer hidden:
the region removal operation for region constants leaves the creation effect unchanged.
Therefore, the effect has increased when reducing configuration (4.6) to (4.7).
We cannot expect to prove type soundness as stated in Theorem 2.23. Though, to

share as much as possible with the proof of that theorem, we exploit the generaliza-
tion detailed in Section 2.1.5. While we cannot use this generalization to obtain type
soundness directly, we can establish an equivalent to Lemma 2.19 easily, if we can
prove stability of the union operation and stability of region variable removal when the
substitution does not contain the variable in question.
When aliasing of regions is possible,] cannot be stable under region substitutions;

think of the creation effects {%1} and {%2} that are only disjoint if %1 and %2 are never
substituted for the same variable. However, if the substitution φ is compatible with
ϕ1] ϕ2, then

(ϕ1] ϕ2)φ = ϕ1φ] ϕ2φ

because, by definition of compatibility, distinct regions and effect variables cannot over-
lap after the substitution. Therefore, we obtain the stability of] by requiring the region
aliasing restriction.
The region removal operation ϕ\ρ is stable when ρ is a fresh region variable. In sum-

mary, we obtain a result equivalent to Lemma 2.19, where a simple effect ϕ is replaced
by a composed effect (ϕ, ω). We cannot obtain type soundness (subject reduction) like
this, because we do not have the property that

ϕ \ % = ϕ[% 7→ r] \ r

which is required in the proof of Chapter 2. This is not surprising as the corresponding
result is actually wrong. Given our definition of the effect operations, we cannot expect
to give the same effect to all expressions in a reduction chain. In particular, when

117

4. A Language without Aliasing

s, e −→ s′, e′ −→ · · ·︸ ︷︷ ︸
ω′︸ ︷︷ ︸

ω

Figure 4.2: A reduction sequence with creation effects.

a letregion construct reduces to a region construct, the creation effect of that region
becomes visible, and thus the overall effect of the expression increases. Our subject
reduction lemma has to reflect this fact. In particular, the creation effect ω of an
expression has to be in correspondence with the nonempty regions of the store.

Definition 4.5. For a store s, the set NE(s) is the set of nonempty regions in s.NE(s)

Let us look at the problem from another angle. The creation effect ω of an expression
e describes the set of regions in which the configuration (s, e), while reducing, can create
a reference. When (s, e) reduces to (s′, e′), e′ can be typed with another creation effect
ω′. Fig. 4.2 shows this situation. We have seen that ω′ is not necessarily smaller than
ω, because hidden creation effects may have been uncovered. However, the important
property is that no creation effect happens in a nonempty region. So the property to
be maintained by the reduction relation is that NE(s) ∩ ω = ∅ for any configuration
s, e, where e has creation effect ω. This means that, for any creation effect of e, the
corresponding region in s must be empty, so the region will become at most singleton.
If we can guarantee that for any configuration (s, e), any region in s will be singleton
or empty. Going back to Fig. 4.2, this means that

NE(s) ∩ ω = NE(s′) ∩ ω′ = ∅.

The second idea is that for any two configurations (s, e) and (s′, e′) where the first
one is related to the second one by one of the reduction relations ⇀ or −→, then we
want to guarantee that NE(s′) \ NE(s) is contained in the creation effect ω of e; said
otherwise, all regions that become nonempty between s and s′ are mentioned in ω.
We proceed just as in the proof of subject reduction; for each reduction rule, we

prove that for the new store s′, we can associate an appropriate creation effect ω′ that
also correctly describes the effect of the new expression. Because there are quite a few
hypotheses, let us introduce a predicate that groups these hypotheses together.

Definition 4.6. For a typing environment Γ, a store typing Σ, an expression e, a type τ ,
an effect ϕ, a creation effect ω and a store s, we define the predicate H(Γ,Σ, e, τ, ϕ, ω, s)
to mean the conjunction of the following properties:

1. Γ; Σ ` e : τ, (ϕ, ω),

2. Σ ` s,

3. s contains only empty or singleton regions,

4. NE(s) ∩ ω = ∅.

118

4.2. Singleton Regions

Our goal is to prove that predicate H is maintained during the reduction of an
expression, when going from creation effect ω to ω′. However, to be able to prove this
result by case analysis of the reduction sequence, we cannot accept any creation effect
ω′. In fact, only certain modifications of ω are permitted to obtain ω′.

Definition 4.7. For any store s, we define the relation Rs between two creation Rs(ω, ω′)
effects ω and ω′ to hold if one of the following conditions is true:

1. ω′ = ω;

2. ω′ = ω ∪ {r} where r is fresh with respect to s;

3. ω′ = ω \ {r} where r ∈ ω.

At each reduction step, we have to find a ω′ that is in relation with ω. In the following
proof, we only state that there exists such a ω′, but it could be defined depending on
the reduction rule applied. Whenever the store remains the same, or only read/write
effects occur, we can set ω′ = ω. When a creation effect happens, i.e., on a call to ref ,
we can remove it from the effect and set ω′ = ω \ {r}. When a hidden creation effect
is uncovered, i.e., on the reduction of a letregion expression, we need to add it to the
creation effect: ω′ ∪ {r}.
As we have already done in the previous chapters, we start with a hypothesis on the

constant reduction function δ.

Hypothesis 4.8. For each defined mapping (s, c, v 7→ s′, v′) in δ, if we set e = c v1...vn
and e′ = v′, then H(Γ,Σ, e, τ, ϕ, ω, s) implies H(Γ,Σ′, e′, τ, ϕ, ω′, s′) for some Σ′ and ω′
such that R(ω, ω′). Additionally, we have NE(s′) \NE(s) ⊆ ω.

Proof for the constants of Definition 2.5. As usual, we can only check these properties
for our partial definitions of δ and Typeof (). While the well-typing properties and the
store typing Σ′ can be obtained using Hypothesis 2.17, we need to give a new creation
effect ω′. Whenever the set of nonempty regions in s is unchanged, we can choose
ω′ = ω; this fulfills the properties of H and v′ can be given any effect including ω′. The
only special case, as expected, is the case of ref.
The function ref creates a reference in a region. In our proof, we must be sure that

this cannot happen in a region that already contains a memory location. But of course,
if the region instantiation of ref is r, then r ∈ ω, and as NE(s) ∩ ω = ∅, we know that
r /∈ NE(s), stated otherwise, s(r) is empty. If we choose ω′ = ω \ {r}, ω′ is of one of
the expected forms, and all the side conditions hold. In particular, NE(s′) ∩ ω′ = ∅
because basically r moved from ω to s′, and NE(s′) \NE(s) = r ⊆ ω as already stated.
Finally, we can type e′ with creation effect ω′ as the result is a value and can be typed
with any creation effect.

Remark. The hypothesis on δ basically states that there are no constants that do create
several references in a single region, and every constant that does create a reference has
to declare this in its creation effect.

We now prove the same property for the relation ⇀.

119

4. A Language without Aliasing

Lemma 4.9 (Top Level Subject Reduction for Singleton Regions). For any s, e and
s′, e′ such that s, e ⇀ s′, e′, then H(Γ,Σ, e, τ, ϕ, ω, s) implies H(Γ,Σ′, e′, τ, ϕ, ω′, s′) for
suitable Σ′ and ω′ such that Rs(ω, ω′) holds. Additionally, we have NE(s′)\NE(s) ⊆ ω.

Proof. We remark that, while the corresponding variant of Lemma 2.21 does not hold,
its proof is still useful here; we can use it to find an appropriate Σ′ to type e′. So, for
each possible reduction, we only need to find a ω′ that fulfills the necessary conditions.

Cases (β) and (let) The conclusion follows easily from the variant of Lemma 2.19 (Sub-
stitution). We can set ω′ = ω.

Case (δ) We can conclude by Hypothesis 4.8.

Cases (iftrue) and (iffalse) We obtain the statement Γ; Σ ` e′ : τ, (ϕ, ω) by inversion of
the typing derivation of e = if v then e1 else e2. We can set ω′ = ω because s is
unchanged.

Case (region) The value v can be typed with an empty effect; we can of course increase
this effect and set ω′ = ω; this works because s remains unchanged.

Case (letregion) Let e = letregion % in e1. In this case, a new empty region is created,
s′ = s[r 7→ ∅] for a fresh r. We therefore set ω′ = ω ∪ {r} so that this region can
be populated with a single memory location. The proof of Lemma 2.21 gives us
an appropriate store typing Σ′, and we can prove Γ; Σ′ ` region r in e1 : τ, (ϕ, ω′)
because we can always obtain that r is included in the creation effect of e1. As
s′(r) is empty, we still have NE(s′) ∩ ω′ = ∅, and NE(s′) \NE(s) = ∅.

Before we proceed to the next lemma, let us prove a little property on creation effects.

Proposition 4.10. For any creation effects ω1, ω′1 and ω2, and store s such that
Rs(ω1, ω′1), if ω1 and ω2 are disjoint, then ω′1 and ω2 are disjoint as well and we have
Rs(ω1 ∪ ω2, ω′1 ∪ ω2).

Proof. By case analysis on the three different ways to be related that are listed in
Definition 4.7.

Case ω1 = ω′1: In this case there is nothing to prove.

Case ω′1 = ω1 \ {r} with r ∈ ω1: Obviously, ω′1 and ω2 are disjoint. We also have r /∈ ω2,
and therefore ω′1 ∪ ω2 = (ω1 ∪ ω2) \ {r} with r ∈ ω1 ∪ ω2.

Case ω′1 = ω1 ∪ {r} with r fresh: The region constant r is fresh and cannot be contained
in ω2. Therefore, ω′1 and ω2 are still disjoint. We have the same relation between
the resulting sets.

We proceed to prove the required property for the relation −→.

120

4.2. Singleton Regions

Lemma 4.11 (One Step Subject Reduction for Singleton Regions). For any s, e and
s′, e′ such that s, e −→ s′, e′, then H(Γ,Σ, e, τ, ϕ, ω, s) implies H(Γ,Σ′, e′, τ, ϕ, ω′, s′) for
suitable Σ′ and ω′ such that Rs(ω, ω′). Additionally, we have NE(s′) \NE(s) ⊆ ω.

Proof. We proceed by structural induction over the reduction context E. In the case
of the empty context �, we can conclude by Lemma 4.9. Two cases remain.

Case let In this case, we have e = let x = E[e1] in e2 and we have s, e1 ⇀ s′, e′1. The
typing derivation for e looks like this:

Let
Γ; Σ ` E[e1] : τ ′, (ϕ1, ω1) Γ, x : τ ′; Σ ` e2 : τ, (ϕ2, ω2)

Γ; Σ ` let x = E[e1] in e2 : τ, (ϕ1, ω1)] (ϕ2, ω2)

We can derive that ω1 and ω2 are disjoint and we have NE(s)∩ (ω1∪ω2) = ∅. By
consequence, we also have NE(s) ∩ ω1 = ∅. By the induction hypothesis applied
to E[e1], we obtain

Γ; Σ ` E[e′1] : τ ′, (ϕ1, ω
′
1)

for some ω′1 with NE(s′) ∩ ω′1 = ∅ and NE(s′) \NE(s) ⊆ ω1. We know that ω′1 is
related to ω1 in one of the ways described in Definition 4.7. By Proposition 4.10,
ω1 ∪ ω2 and ω′1 ∪ ω2 are related in the same way and ω′1 and ω2 are disjoint. We
derive that e is well-typed with this creation effect. It is also easy to see that
NE(s′) ∩ (ω′1 ∪ ω2) = ∅ and NE(s) \ NE(s′) ⊆ ω′1 ∪ ω2. Finally, the fact that s′
contains only empty or singleton regions is derived from the induction hypothesis.

Case region We have e = region r in E[e1] and s, e1 ⇀ s′, e′1. The typing derivation
looks like this:

Region
Γ; Σ ` E[e1] : τ, (ϕ1, ω1)

Γ; Σ ` region r in E[e1] : τ, (ϕ1, ω1)\r

Looking at the definition of the region removal operation for region constants,
we can see that the region construct does not change the creation effect of an
expression. We therefore obtain that NE(s) ∩ ω1 = ∅ and we can apply the
induction hypothesis on E[e1], obtaining a creation effect ω′1 for E[e′1]. We can
set ω′1 = ω1 and are done.

We can now prove the main result for the reduction relation �:

Theorem 4.12 (Subject Reduction for Singleton Regions). For any reduction sequence
s, e � s′, e′, the hypothesis H(Γ,Σ, e, τ, ϕ, ω, s) implies H(Γ,Σ′, e, τ, ϕ, ω′, s′) for some
store typing Σ′ and some creation effect ω′.

Proof. By induction over the length of the reduction chain. Note that we can no longer
expect Rs(ω, ω′) because there can be a bigger difference between ω and ω′ than one
creation effect. However, this property is not required in the proof.

121

4. A Language without Aliasing

Corollary. For any expression e such that ∅; ∅ ` e : τ, (ϕ, ω) and ∅, e � s, v, the state
s contains only singleton regions and empty regions. The same is true for any store s′
that appears in this reduction sequence.

Proof. The first claim of this corollary is a special case of Theorem 4.12. The second
claim concerning intermediate stores can be obtained by the following reasoning. During
execution, the domain of the store, and the domain of each region of the store, only
grows and can never shrink. As a consequence, the region domain of an intermediate
store s′ must be contained in the domain of s, and for each region in s′, the domain
of that region in s′ must be contained in the domain of that region in s. Hence, any
region in s′ is at most singleton.

Exploiting singleton regions. There are many equivalent ways in which the fact that
all regions are singleton can be exploited. The simplest one would be to state with an
axiom that, when the region is fixed, get becomes a constant function:

∀α%ε.∀x, y : ref% α.∀s : 〈%ε〉.get x s = get y s

Another possibility is to apply this axiom whenever possible in terms; one might chose
a reference variable x as the canonical reference of a certain region %, and replace all
accesses to that region by accesses using x.
A simple example of a situation that leads to simpler proof obligations is the following

program:
let id [α] (a : α) = { . . . } a { . . . }
let idref [α%] (x : ref% α) =
{ }
let y = id x in
!y
{r : r = !!x}

Both x and y have type ref% α. In a setting with singleton regions, this information
is already enough to conclude that x and y are actually the same reference, and that
the access to x and to y must return the same value. We can derive this without any
annotations of the function id. In a setting with group regions, we would need an
annotation stating that the returned value is identical to the argument.

Mixing group regions and singleton regions. After the previous sections, the natural
question to ask is whether singleton regions and group regions can coexist in a single
system. A user could then decide to use singleton regions for the majority of the mutable
state of the program, and group regions when reasoning about shared mutable state is
necessary. Such a combination would combine the best of both worlds.
While we have not worked out the details, we believe that this is possible. When

designing such a system, one should take care that one never assumes a region to be
singleton when this is not the case, and one should not lose precision by “forgetting” that
a region is singleton. A simple solution would consist in letting the user specify which
regions are singleton and which are not. This would be verified on region instantiation,
for example. Effect union would be more complex, because now the disjointness of

122

4.2. Singleton Regions

creation effects must be checked, but only for singleton regions. The axiom for singleton
regions could then be added only for the regions that are indeed singleton regions.
Automatic transformation of proof obligations would be more complex, however.
Capabilities (Smith et al., 2000) also provide the coexistence of singleton and group

regions using mechanisms such as adoption and focus, at the cost of a slightly more
complex type system and more effect annotations. Compared to our hypothetical sys-
tem that combines singleton and group regions, the mechanisms of adoption and focus
permit to merge a singleton region with a group region, and to focus on a particular
reference in a group region to obtain, in fact, a singleton region. See also page 33 for a
more detailed discussion of capabilities.

123

5. Implementation and Case Studies

In the preceding chapters, we have described a theoretical system to prove properties of
higher-order programs with side effects. We now want to demonstrate that our system is
useful in practice. We therefore present our implementation of the system, called Who,
detail its internals, present practical aspects that have been eluded from the discussion
so far and give examples of programs that have been proved correct using Who.

5.1. The Who Tool
The Who tool (Kanig and Filliâtre, 2009; Kanig, 2010) is an implementation of the
techniques presented so far. Who consists of an implementation of the programming
language W and the specification language L, with syntactic sugar that has partly
been presented in Chapter 2. Who also contains an implementation of the weakest
precondition calculus presented in Chapter 3. Who programs have to respect the region
aliasing restriction from Section 4.1; the singleton region restriction of Section 4.2 is
optional, on a per-program basis.
The Who tool accepts W programs with specifications written in L, and outputs proof

obligations in a standard higher-order logic that we call L0, a logic that is identical to
L, with the exception of the absence of constructs related to effects, i.e., in particular
state types of the form 〈ϕ〉.

The Architecture of Who
Internally, Who consists of several intermediate languages, and functions that translate
expressions of one language to expressions of another. We now discuss each intermediate
language and each function briefly, and refer to the sections in which they are discussed
in more detail. Fig. 5.1 gives an overview of the architecture of the tool.

The input language. Who does accept programs in a language that is a bit richer
and more convenient than W. In particular, it accepts arbitrary application between
expressions, it does a limited form of type, region and effect inference and incorporates
a number of syntactic conveniences, such as the ones that have been discussed in Section
2.1.1. This includes fixing the names of the state variables in pre- and postconditions
to cur and old, permitting function definitions using let and let rec, for-loops and more.
Language features that are not present in W include algebraic data types and pattern
matching, inductive definitions of predicates, declarations of type constants, definitions
of type abbreviations and declarations of logic functions.
We call the inference mechanism limited, because in particular effect instantiations

have to be given for each use of an effect polymorphic variable, when several solutions

125

5. Implementation and Case Studies

W + sugar

let f x =
{. . .}
(g x) + 1
{. . .}

W
let f =
rec _ x.{. . .}
let z = g x in z+1
{. . .}

L
. . .
∀s : 〈%ε〉.pre g x s ∧
∀s′ : 〈%ε〉.∀r.post g x s s′ r ⇒ . . .

L0
. . .
∀s : (region %× ε).pre g x s ∧
∀s′ : (region %× ε).
∀r.post g x s s′ r ⇒ . . .

Anf wp

L→ L0

Figure 5.1: The Architecture of the Who tool.

exist. In these ambiguous cases, we choose to insist on a choice by the user, because
different effect instantiations can lead to proof obligations of varying difficulty.
Maybe the most important syntactic sugar that has not been discussed yet are Hoare

triples in the logic. In Who annotations, the following syntax is accepted:

{ p } e { q }

where p and q, as in function annotations, may refer to the state variables old and cur.
The meaning of this formula is that if p holds for some initial state, then q holds after
executing e in that state. Using our weakest precondition calculus, this is of course
equivalent to the formula

∀s.p s⇒ wps(e, q s). (5.1)

In the common case where e is the application between two variables f and x, this can
be translated (“desugared”) to the following conjunction:

∀s.p s⇒ pre f x s ∧ ∀s′r.post f x s s′ r ⇒ q s s′ r

We use Hoare triples extensively in Section 5.4, which discusses programs that have
been proved correct using Who.

A-normal form. The aim of the transformation that is called “Anf” in Fig. 5.1 is to
remove all the syntactic sugar and to put programs in A-normal form (see Section 2.1.1).
The output language of this transformation is very close to W, with the exception of
minor superficial differences and Hoare triples, which are removed in the next phase.
The A-normal form transformation itself is continuation-based and is an extension of
the one by Flanagan et al. (1993).

Weakest preconditions. The weakest precondition calculus, that we have described
in detail in Chapter 3, is used in Who to transform an expression in W into a formula in

126

5.1. The Who Tool

W +sugar

let f x =
{. . .}
(g x) + 1
{. . .}

L0

∀f : int→ int.
f x = 1⇒ . . .

Why

∀f : arrow(int, int).
app(f, x) = 1⇒ . . .

Coq

∀f : int→ int.
f x = 1⇒ . . .

Alt-Ergo

Z3

Simplify

Who Pangoline

Who
Why

Figure 5.2: Using Who, Pangoline, Why, Coq and automated provers to discharge proof
obligations.

L. The calculus implemented in Who is identical to the one in Chapter 3, including the
extensions concerning read/write effects and algebraic data types. During this phase,
Hoare triples of the form

{ p } e { q }

are replaced by the corresponding formula in L given by (5.1).

Obtaining formulas in L0. We have said that Who outputs formulas in the subset L0
of L that does not contain state types. We show in Section 5.2 how formulas in L can
be translated to formulas in L0.

What to do with the produced formulas. Who is only a verification condition gener-
ator, i.e., it simply takes an annotated program and outputs verification conditions, or
proof obligations, that imply the correctness of the input program with respect to its
specification. Who itself, however, does not do any attempt to prove them, except the
most trivial ones. If the formula to be proved is already contained in the hypotheses, or
is equal to True, or if False is contained in the hypotheses, and in very few other trivial
cases, Who can automatically discharge proof obligations.
In general, however, other tools are necessary to prove these obligations, given in

the language L0, a polymorphic higher-order logic. L0 is a subset of the logics of most
interactive theorem provers, which could be used to prove the obligations manually.
However, currently only Coq syntax is supported directly by Who.
Another desirable way to prove these obligations would be to use automated theorem

provers. There is a big problem however: most automated provers only support first-
order logic, while L0 is a higher-order logic. We therefore propose an encoding of L0
to polymorphic first-order logic; the logic of the Why tool is an example of a first-
order logic that contains everything we need. We have developed and implemented

127

5. Implementation and Case Studies

this encoding in collaboration with Yann Régis-Gianas in a tool called Pangoline. The
translation on which Pangoline is based is detailed in Section 5.3.
It is interesting for us to target the Why language, because Why is capable of gener-

ating files for many different automated and interactive provers, which can then all be
used to discharge proof obligations.
The connection between the different languages and tools is described in Fig. 5.2. In

practice, one does not need to execute all the different tools by hand. Instead, a script
permits to run automated provers on all the proof obligations generated from a Who
file, using the chain Who – Pangoline – Why. Selected proof obligations — usually
the ones no automated prover could prove — can then be generated in Coq format for
manual proof.

5.2. Translation from L to L0

As we have seen in the introduction, the first obstacle for proving the proof obligations of
a program is that such obligations are terms in the logic L which contains non-standard
state types. Automated or interactive provers, even the ones with higher-order logic, do
not deal with these types. In this section, we therefore describe a practical translation
from L to a sublanguage of L without state types. This sublanguage, called L0, is a
subset of common higher-order logics such as Coq’s or Isabelle’s. In this section, we
assume the aliasing regions restriction of Section 4.1 to be applied.

The logic L0. We do not give an explicit definition with semantics and typing rules
for L0. Instead, we say that L0 is the subset of L that does not contain state types of
the form 〈ϕ〉, nor region and effect polymorphism and region and effect instantiations.
We also remove the “current state” ϑ and memory locations l; they have only been
introduced into L to be able to carry out the soundness and completeness proofs of the
wp calculus, because in this proof we have to manipulate programs and annotations
that are partially evaluated. Here, we are only interested in annotated programs that
have not been evaluated yet. This means that the store s and the store typing Σ are
empty. The current state ϑ is therefore useless and memory locations l cannot appear
in a well-typed formula. As a result, L0 is very close to (subsets of) other logics, such
as Coq’s logic without dependent types, the logic of HOL (Gordon, 2000) and the logic
used in the work of Régis-Gianas and Pottier (2008).

n-ary tuples. In this section, we assume that L0 possesses n-ary tuple types or n-tuples,
of the form τ1 × τ2 × · · · × τn. This is not a very strong requirement; first, types of
this form are present in many provers. Second, n-ary tuples can of course be encoded
using pairs. Pairs are in L and L0, so adding n-tuples does not add any expressive
power to the language, but can be seen as syntactic sugar. We also assume that there
are constants mkn that construct tuples, for each n, and projection constants πni that
return the ith component of an n-tuple, where i is an integer between 1 and n.

mkn : ∀α1 · · ·αn.α1 → · · · → αn → α1 × · · · × αn
πni : ∀α1 · · ·αn.α1 × · · · × αn → αi

128

5.2. Translation from L to L0

We follow the common usage to write (t1, . . . , tn) instead of mkn t1 · · · tn. In most
cases, we omit the parameter n of both types of functions; usually, it can easily be
derived from the context, and plays no role in the proofs.

The idea of the translation. The aim of the translation we are about to describe is to
eliminate state types of the form 〈ϕ〉 from our formulas. There are other possibilities,
but we decide to represent state types 〈ϕ〉 in L by n-ary tuple types in L0, where n is the
number of elements in the effect expression ϕ, and objects of type 〈ϕ〉 are represented
by n-tuples. Le us denote the translation function from L to L0 by J·K. Then, as an
example,

J〈ρ1ρ2ε〉K = Jρ1K× Jρ2K× JεK,
where Jρ1K, Jρ2K and JεK are the types that result from the translation of the region and
effect variables.
Effect variables can simply be encoded using type variables. For the images of effect

variables, instead of maintaining an environment that keeps track of the mapping from
effect variables to type variables that represent them, we simply use the name of the
effect variable as the name of the corresponding type variable. Now, we can write

JεK = ε,

meaning that the effect variable ε is translated to the type variable ε. This is an abuse
of notation, but it should be clear what is meant by this equation.
Region names can be translated using the same trick, and region polymorphism can

be expressed using type polymorphism. However, we need to express regions, the parts
of the store, differently. For this, we use a unary type constructor region, such that
region % represents the region corresponding to %. We write:

J%K = region %

Again, on the right hand side, % is a type variable.
On our example, the state type 〈ρ1ρ2ε〉 in L becomes

J〈ρ1ρ2ε〉K = region ρ1 × region ρ2 × ε,

where ρ1, ρ2 and ε are now type variables.
There are two problems with our translation. The first one is that in the effect

calculus, the two types 〈ρ1ρ2〉 and 〈ρ2ρ1〉 are considered the same, because effects are
sets and both sets contain the same elements. However, in our translation based on
tuples, the order becomes crucial: The type region ρ1 × region ρ2 is different from the
type region ρ2 × region ρ1. In this form, the problem can be easily dealt with: simply
fix an arbitrary order, written <, on all basic effects, i.e., region variables and effect
variables, and always order the representation of effects based on this ordering. So,
assuming that ρ1 < ρ2, the effect expression ρ2ρ1 actually stands for ρ1ρ2, and both
state types are translated to the same tuple type.
But this resolves only half the issue. The more serious problem is that our translation

does not behave well in connection with effect substitutions. To see the problem,
consider our state type τ1 = 〈ρ1ρ2ε〉 and instantiate the effect variable ε with the effect

129

5. Implementation and Case Studies

ρ0ρ3. We assume the region variables to be ordered such that ρi < ρj whenever i < j.
Now, set

τ2 = τ1[ε 7→ ρ0ρ3] = 〈ρ0ρ1ρ2ρ3〉.
The translation of τ2 is the type

Jτ2K = region ρ0 × region ρ1 × region ρ2 × region ρ3,

while the translation of type τ1 is

Jτ1K = region ρ1 × region ρ2 × ε.
If we translate the effect substitution [ε 7→ ρ0ρ3] to a type substitution in L0, such as
φ = [ε 7→ region ρ0 × region ρ3], then

[τ1]φ = region ρ1 × region ρ2 × (region ρ0 × region ρ3).

It is important to note that the parentheses around the last tuple are necessary, and
that this type indeed describes a nested tuple, i.e., a tuple inside a tuple. So not only
has the problem of order reappeared, but also the structure of the types is not the same.
While the structure is not the same, both types “morally” represent the same objects,

namely the ones that consist of a component of type region ρi for each i between 0 and
3. And indeed, it is easy to find a conversion function between both types: The term

f = λs : [τ2].(π2 s, π3 s, (π1 s, π4 s))

is a function of type [τ2]→ [τ1]φ, and similarly we could construct a function of inverse
type.

Extending the conversion between state types to all types. Before we explain the
details of the translation, we want to show that the construction of bijections that we
just sketched can be carried over to terms of more complex types. In this paragraph, we
assume that we have a set of bijective conversion functions fa→b for a set of pairs (a, b)
of types. This can be, for example, the function f that converts between the different
tuple structures that we have described in the previous paragraph.
We can now define a conversion function that converts between types, say τ1 and τ2,

that differ only by types a and b, for which we have a conversion function fa→b. This
means that τ2 can be obtained from τ1 by substituting occurrences of a in τ1 by b.
Our approach is that we define a meta-function M that, given two such types τ1 and

τ2, and a term of type τ1, returns a term of type τ2:

M(τ, τ, t) = t

M(a, b, t) = fa→b if fa→b exists
M(ι σ, ι σ′, t) = mapσ (λx : σ.M(σ, σ′, s)) t

M(ref % σ, ref % σ, t) = mapref (λx : σ.M(σ, σ′, s)) t
M(τ1 → τ ′1, τ2 → τ ′2, t) = λx : τ2.M(τ ′1, τ ′2, t M(τ2, τ1, x))

For polymorphic constants and for reference types, we assume that a mapping function
has been given which takes the conversion function(s) in argument and returns an object
of the expected type.

130

5.2. Translation from L to L0

Jι σK = i JσK
JαK = α

Jσ → σK = JσK→ JσK
Jref% τK = ref % JτK

J〈%1 · · · %mε1 · · · εn〉K = region %1 × · · · × region %m × ε1 × · · · × εn

Figure 5.3: The translation of L types to L0 types

Translating types. The translation of types from L to L0 is very simple and is summa-
rized in Fig. 5.3. It is simply a traversal of the type structure until we encounter a type
of the form 〈ϕ〉. At this point, we apply the translation to tuples we have discussed
earlier. The translation of reference types merits a comment: the type ref% τ , a special
type in L, is translated to the application of a binary type constant ref to the type
variable % and the type JτK.

Translating state manipulations. As we are replacing state types by tuples, we must
also replace the functions manipulating state types by something else. Now, we can
concretely implement these functions, specialized for each application. The idea is very
simple, but is relatively cumbersome to write formally. We first define a metafunction
find that, given a region or effect variable, returns the corresponding projection in the
translation of a state object s. Let us write effects using a list of basic effects χ and let
us assume that s is a state object of type 〈χ1 · · ·χn〉. Then

find χi s〈χ1···χn〉 = πi JsK.

The function find is of course only defined when χi belongs to the domain of s; in the
following, we use find only in situations where this is the case. In the definition of find,
the translation function on terms, J·K, is used on s.
We now use this function to build tuples of the right form:

J(combine s1 s2)〈χ〉K = mk (if χ ∈ ϕ2 then find χ s1 else find χ s2)
Js|(χ)K = mk (find χ s)

We have again used χ to denote effect and region variables, and the list syntax using
an overline.
In L, the function get acts on the store directly and is of type

get : ∀α%ε.〈%ε〉 → ref% α→ α.

As, with the region aliasing restriction, we know statically which region of the store is
concerned, we replace this function in L0 by one that directly acts on regions:

get : ∀α%.region %→ ref % α→ α.

131

5. Implementation and Case Studies

To use this function, we simply have to pick the right component of a state tuple and
apply the function:

Jget s〈ϕ〉 xref% τ K = get (find % ϕ) JxK
Remark. We have presented the translation of state manipulating functions in their
fully applied form. However, only the instantiation of the function variables is important
and guides the translation process. Partial applications of get, restrict and set are
perfectly possible.

The actual translation. We now can define the translation from L to L0. It is actually
very simple and consists in translating all forms of polymorphism to type polymorphism
and translating all state types to tuple types. The only difficulty is that due to effect
instantiations, conversion functions have to be inserted to make the term well-typed.
In the definition of the translation, we expect all terms in L to be well-typed, and we
assume the variables and constants to be annotated with their type schemes.
Let us start with the most difficult case concerning variables (the one for constants

is identical). Let us try to translate the term t = x [κ], where x is a variable of type
scheme ∀χ.τx. A first try would be to simply translate the instantiations, to obtain the
term

t′ = x [JκK],
and if we assume that the type scheme of x has been translated to ∀χ.JτxK, the type of
this term is

τ ′ = JτxK[χ 7→ JκK].
The type of term t in L is τx[χ 7→ κ], and if we translate this type to L0, we obtain

τ = Jτx[χ 7→ κ]K.

So we have obtained a term of type τ ′, but to be able to build a correct typing derivation
which contains t′, we need to obtain a term of type τ . However, we have seen that there
are situations where τ is different from τ ′. We therefore insert a conversion:

JtK = M(τ ′, τ, t′).

And this term has the right type. The case of constants is identical.
All other cases are very simple, and consist of a simple traversal of the term structure,

converting polymorphic variables and variable instantiations on the way. We recall that
all polymorphic variables in L0 are type variables, so for example in the case

J∀χ.tK = ∀χ.JtK

we have effect variables, region variables and type variables on the left, but only type
variables on the right. Fig. 5.4 summarizes the translation for terms.

Remark. The reader may be worried that this translation clutters the formula with
tuples and projections everywhere. However, in practice, many simplifications can
apply. Projections applied to concrete tuples can be reduced as follows

πi (mkn t1 · · · tn) → ti.

132

5.3. Translation from Higher-Order Logic to First-Order Logic

Jc∀χ.τ [κ]K = M(JτK[χ 7→ JκK], Jτ [χ 7→ κ]K, c [JκK])
Jx∀χ.τ [κ]K = M(JτK[χ 7→ JκK], Jτ [χ 7→ κ]K, x [JκK])

Jt1 t2K = Jt1K Jt2K
Jλx : σ.tK = λx : JσK.JtK
J∀x : σ.tK = ∀x : JσK.JtK

J∀χ.tK = ∀χ.JtK
Jlet x [χ] = t1 in t2K = let x [χ] = Jt1K in Jt2K

Jget s〈ϕ〉 xref% τ K = get (πfind % ϕ JsK) JxK
J(combine s1 s2)〈χ〉K = mk (if χ ∈ ϕ2 then find χ s1 else find χ s2)

Js|(χ)K = mk (find χ s)

Figure 5.4: The translation of L terms to L0 terms.

To maximize the number of concrete tuples, one can replace quantifications over tuples
by quantifications over the components:

∀x : τ1 × · · · × τn.p(x) → ∀x1 : τ1. · · · .∀xn : τn.p((x1, . . . , xn)).

Using only these two transformations, the Who tool manages to eliminate all tuples due
to state types on first-order and second-order functions. Tuple types that cannot be
eliminated appear when proving properties about third-order functions or higher.

5.3. Translation from Higher-Order Logic to First-Order Logic
In this section, we present a translation from a higher-order logic to a first-order logic.
This translation has been implemented in a tool called Pangoline, in collaboration with
Yann Régis-Gianas.

5.3.1. Motivation
As we have seen, Who uses a higher-order logic to express annotations and proof obli-
gations. Given the state of the art of automated theorem proving, we cannot expect
to discharge all proof obligations of even moderately complex programs automatically.
Manual proofs can be done in interactive theorem provers such as Coq (The Coq De-
velopment Team, 2008), and this task is made easier by built-in decision procedures,
like congruence closure or the tactic omega (Crégut, 2001) to decide properties of lin-
ear arithmetic. On the other hand, these decision procedures combine very badly in
Coq and in practice the user has to progress step by step, preparing the goal manu-
ally for a certain decision procedure. Outside the world of interactive theorem provers,
solvers that efficiently combine such decision procedures exist. In program proof, a
large number of proof obligations are actually relatively easy, often requiring only a few
instantiations of lemmas or axioms, as well as a combination of arithmetic reasoning,

133

5. Implementation and Case Studies

congruence closure and propositional reasoning. We would like to discharge those easy
proof obligations automatically, so that the user can concentrate on the difficult ones.
There are two main families of automated theorem provers today.

• Resolution-based provers such as Vampire (Riazanov and Voronkov, 2002), Spass
(Weidenbach et al., 2009) or the E prover (Schulz, 2004). This is the class that is
usually referred to by the term automated theorem provers in the literature. These
tools are often refutationally complete and very powerful for logical reasoning.
However, they are considered less suited for equational reasoning and even less
suited for arithmetic reasoning. To our knowledge, with one notable exception
(see below), no resolution-based prover supports higher-order logic.

• SMT-solvers, which are usually implemented using a SAT-solver, built-in equality
and arithmetic reasoning and an instantiation mechanism to make use of lem-
mas and axioms. Well-known provers are Z3 (de Moura and Bjørner, 2009),
Yices (de Moura and Dutertre, 2009), Alt-Ergo (Conchon and Contejean, 2008)
Simplify (Detlefs et al., 2005) and CVC3 (Barrett and Tinelli, 2007). While these
provers often use complete decision procedures for ground terms and formulas,
these tools are generally incomplete in the presence of quantifiers. However, they
deal very well with arithmetic reasoning, and some provers also have other built-in
theories, such as the theory of arrays, which is very interesting for programs that
manipulate arrays. To our knowledge, there is no SMT-solver that deals with
higher-order logic.

For the sake of completeness, we need to mention that one automated prover has
limited support for higher-order logic: Otter, developed by Beeson (2006). Following
Meng and Paulson (2008), the connection of Otter’s logic with the one of Coq or Isabelle,
is not clear, however. Meng and Paulson also argue that they do not want to depend
on a single automated prover, and we do not want to either. To be able to use all the
other provers, we need some encoding of the higher-order features of our logic, to obtain
equivalent first-order formulas that can be sent to those automated provers.

Polymorphism. While the logic L0, the output format of Who and the input format
of Pangoline, is polymorphic, in this section we define a monomorphic higher-order
logic that only provides polymorphic constants. The user cannot define his own poly-
morphic functions. The same is true for the target first-order logic. The removal of
polymorphism from both languages is motivated by a simpler presentation of the en-
coding. With one exception (see page 139), the presence of polymorphism does not
add much complication, but the notations become much heavier. While the input and
target language provide polymorphic constants, we leave the instantiation implicit in
both languages.
Polymorphism in the input language requires polymorphism in the target language,

if no special encoding for polymorphism is applied. A polymorphic first-order logic as
target language could be considered to be problematic. After all, most of the previously
cited automated provers, with the exception of Alt-Ergo, accept only a simply-typed,
or even an untyped logic. However, the Why tool, which itself accepts formulas in poly-
morphic first-order logic, contains several different encodings for the different provers,

134

5.3. Translation from Higher-Order Logic to First-Order Logic

depending on whether they are simply typed or untyped (Couchot and Lescuyer, 2007).
We simply build on this capacity. Meng and Paulson (2008) and Hurd (2003) directly
translate from a monomorphic higher-order logic to untyped resolution-based provers.

5.3.2. An Overview of the Encoding

The input language we define in this section is slightly simpler than L0: in particular,
we remove tuple types and type polymorphism from the discussion. To differentiate
this language from L0, we call it “higher-order logic” (HOL).
There are two main differences between HOL and first-order logic (FOL, we will

define more precisely these two languages soon). The first one is obviously the “higher-
order” part of HOL. One can abstract and quantify over functions and predicates, one
can build anonymous functions, one can partially apply functions. As an example, in
HOL one can write

let apply (f : int → int) (x : int) = f x
∀f : int → int. apply f = (λ(x : int → int). x) f

to express that apply is the identity function for one-argument integer functions.1 One
cannot express this kind of properties in FOL.
The second difficulty is the usage of the type prop, the type of propositions. In HOL,

prop is just a type like any other. In most definitions of FOL, there is no such type.
However, in FOL one syntactically distinguishes between terms, which have a certain
type, and formulas, which do not have a type. In a way, formulas are like terms of type
prop, but formulas may also contain logical connectives and quantifiers, while terms
cannot. Similarly, one has to distinguish between function symbols, which have a list
of argument types and a return type, and predicate symbols, which have only a list of
argument types, because their return type prop is understood. A natural translation
from HOL to FOL maps functions whose return type is prop to predicates. As there
are syntactic restrictions on the occurrences of functions and predicates, an encoding
has to take them into account.
First, let us make clear that we do not claim our encoding to be original. The general

concept of using a binary function symbol app to encode higher-order application goes
at least back to Reynolds (1998). The other main ideas come from the work of Meng
and Paulson (2008) and Pottier and Gauthier (2006). Our contribution here is the
effort to obtain very natural first-order formulas and the observation that the encoding
can be ad-hoc justified simply by evaluation of the function symbols that have been
introduced by the encoding.
The coding process can be divided into three parts. The first one prepares the HOL

term for the actual encoding by eliminating quantifiers and anonymous λ-abstractions,
using λ-lifting. The second part consists of the actual encoding, translating from HOL
to FOL. The third part applies a number of simple optimizations to the FOL formula,
to obtain a reasonably natural formula.

1Actually, this property is only true if one assumes the so-called axiom of functional extensionality,
which states that two functions are equal if and only if they yield the same result when applied to
the same arguments.

135

5. Implementation and Case Studies

A central concept of our encoding, as of the previous encodings by others, is the usage
of a predefined first-order function app, which simulates higher-order application using
first-order application. The function app takes a function object f as first argument and
the function’s argument x as second argument, and returns an object which corresponds
to the higher-order application f x. As an example, the HOL term f x y could be
encoded as app(app(f, x), y). However, if f has a natural first-order signature, then
this term is not well-typed; one cannot use function symbols like this in FOL. This fact
forces f to have some type representing a function object. Therefore, we add another
twist, inspired by Pottier/Gauthier (Pottier and Gauthier, 2006). The symbol f gets a
natural first-order type; for example the addition function + has type int → int → int
in HOL, in FOL we give it its natural type int, int → int. Basically, we replace the
top-level arrows by commas, except the last arrow. Additionally, we declare a symbol
f̂ which has the function object type we mentioned. And whenever the function f is
applied to all its argument in the HOL formula, we can use directly f in FOL. Only
when it is partially applied, or when f itself is a function argument, we use f̂ . Now, to
establish the connection between the two symbols, we have to state as an axiom that
f̂ , when applied to all its arguments, gives the same result as f .
Concerning the second difficulty of prop, we use a second type tprop, which represents

prop at places where prop cannot appear in FOL. We also have to add a predicate
symbol evalp which takes one argument of type tprop for the conversion in one direction.
For the conversion in the other direction, the aforementioned encoding of higher-order
application is actually sufficient.
As an example, consider the following theory in HOL:

let idprop (x : prop) = x
logic p : int→ prop
∀x : int.p x⇒ idprop p x

It would be translated to the following theory in FOL:

predicate idprop (x : tprop) = evalp(x)
. . .
predicate p : int
logic p̂ :< function object type >
∀x : int.p(x)⇒ idprop (app(p̂, x))

The idea here is that even though p̂ is applied to all its arguments in the last line, we
cannot reduce it to p(x), because p is a predicate symbol, and cannot appear in term
position. It is understood that app(p̂, x) has type tprop.
We now develop more formally the encoding.

5.3.3. The Source Language
Our source language is a standard higher-order logic, defined in Fig. 5.5.
A type τ is either prop, or a function type, or an instantiated type symbol. The

propositional constants as well as the logical connectives are represented as predefined
constants. An HOL term t is either such a constant, a variable, an application of two

136

5.3. Translation from Higher-Order Logic to First-Order Logic

τ ::= prop | τ → τ | ι [τ]
Q :: ∀ | ∃
t ::= c | x | f | t t | λ(x : τ).t | Q(x : τ).t
c ::= ∧ | ⇒ | true | false | ...

decl ::= let f (x : τ) : τ = t | axiom t

∆ ::= ∅ | ∆, x : τ | ∆, f : τ

Figure 5.5: Simplified HOL.

Const
Typeof (c) = τ

∆ ` c : τ
LocalVar

∆(x) = τ

∆ ` x : τ
GlobalVar

∆(f) = τ

∆ ` f : τ

App
∆ ` t1 : τ ′ → τ ∆ ` t2 : τ ′

∆ ` t1 t2 : τ
Abs

∆, x : τ ′ ` t : τ
∆ ` λ(x : τ ′).t : τ ′ → τ

Quant
∆, x : τ ′ ` t : prop

∆ ` Q(x : τ ′).t : prop
Let

∆, x : τ ` t : τ ′

∆ ` let f (x : τ) : τ ′ = t
Axiom

∆ ` t : prop
∆ ` axiom t

Decl-Let
∆ ` let y (xi : τi) : τ ′ = t ∆, y : τ1→· · ·→τn→τ ′ ` th

∆ ` let y (xi : τi) : τ ′ = t, th

Decl-Axiom
∆ ` axiom t ∆ ` th

∆ ` axiom t, th

Figure 5.6: Simplified HOL: the typing rules.

HOL terms, an abstraction or a quantification. We syntactically distinguish between
global and local variables; a local variable x is introduced by λ-abstractions, quantifiers
or function arguments, while a global variable f can only be introduced using a top-level
definition. However, both kinds of variable have the same logical status. In addition
to these constructs, that are all already present in L0, we now explicitly add top-level
declarations. Such a top-level declaration decl is either a function definition or an
axiom. An HOL theory is simply a list of declarations. Finally, a typing context ∆ is
just a mapping from global and local variable names to types. As we have mentioned
already, HOL does not provide polymorphism, i.e., type variables or a generalization
or instantiation mechanism.
We give the typing rules for simplified HOL in Fig. 5.6. They are pretty standard,

with the exception that they reflect the syntactic distinction between global and local
variables. For HOL itself, this distinction is unnecessary; global and local variables
behave the same and have the same logical status. However, in FOL this is no longer

137

5. Implementation and Case Studies

true, and our encoding behaves differently for global and local variables. To be able to
formalize this behavior easily, the distinction must already appear in HOL.

5.3.4. Elimination of Quantifiers
The first simplification we apply is to eliminate the quantifiers and to replace them by
predefined constants forall and exists. This is so natural in the context of higher-order
logics that many developments define HOL with these constants and without explicit
quantifiers. The constant forall is of type (α→ prop)→ prop, and the term forall (λ(x :
τ).p(x)) is intended to represent the statement ∀x : τ.p(x). Our simplification simply
consists in replacing quantifiers by an application of the these constant:

∀x : τ.t→ forall (λ(x : τ).t)
∃x : τ.t→ exists (λ(x : τ).t)

To keep the meaning of the formula, we have to define both constants, for example with
an axiom:

∀f : τ → prop.forall f ⇔ ∀x : τ.f x
∀f : τ → prop.exists f ⇔ ∃x : τ.f x

5.3.5. Elimination of λ-Abstractions
In HOL, one can define anonymous functions using λ-abstractions. In FOL, the only
way to build functions is to define them at the top-level. A possible step towards FOL
is thus to replace λ-abstractions by top-level definitions. The process that achieves this
is called λ-lifting (Johnsson, 1985).
Our λ-lifting, written JtKd (see Fig. 5.7), expects a term t and a current list of decla-

rations d. It returns an abstraction-free term t′ and a possibly enriched context d′. In
the case of variables and constants, there is nothing to do; the term and the context are
left unchanged. When we encounter an application t1 t2, we would like to leave it as is,
because we only want to eliminate abstractions. But of course, both terms may contain
abstractions themselves so we have to apply the transformation to the two subterms
obtaining ta and tb, threading the context through these recursive calls. At the end, we
return the application ta tb and the richest environment d2.
When encountering an sequence of abstractions, we first compute the free variables of

the whole term, i.e., not counting the abstracted variables. We then call J·K recursively
on the body of the abstraction, obtaining an abstraction-free body t1. We now build a
new top-level definition, using a fresh name f , whose body is t1 and whose arguments
are the free variables we computed before and the variables of the abstraction. This new
top-level definition is appended to the context. The returned term is the application of
our new top-level function f to the free variables.
It is easy to see that this transformation is correct, i.e., that the obtained term is

logically equivalent to the original term. Simply observe that if JtKd = t′, d′, then t = t′

modulo δ-equivalence, that is definition unfolding. This is trivial for the case of variables
and constants, and very easy for the case of applications, by induction. In the case of a

138

5.3. Translation from Higher-Order Logic to First-Order Logic

JtKd = t′, d′

JdeclKd = decl′

JxKd = x, d

JcKd = c, d

Jt1 t2Kd = let ta, d1 = Jt1Kd in
let tb, d2 = Jt2Kd1 in
ta tb, d2

Jλ(x : τ).tKd = let (y : τ) = fv(λ(x : τ1).t) in
let t1, d1 = JtKd in
let d2 = d1; let f (y : τ) (x : τ1) = t1 in
f y, d2

Jlet y (x : τ) : τ = tKd = let t1, d1 = JtKd in
let d2 = d1; let y (x : τ) : τ = t1in
d2

Jaxiom tKd = let t1, d1 = JtKd in
let d2 = d1; axiom t1
d2

Figure 5.7: The λ-Lifting transformation.

lambda-abstraction, simply unfold the newly obtained definition and use the fact that
t and t1 are already equal modulo δ-equivalence.
The transformation also succeeds in removing every λ-expression, as can be easily

verified by induction and by observing that none of the result terms contains a λ-
expression.

λ-lifting and polymorphism. The λ-lifting algorithm is the only part of the encoding
where the presence of polymorphism leads to a more complex algorithm. Let us consider
as an example the following function skeleton:

let f [αβ] (x : α) =
. . . (λz : β. . . . x . . .) . . .

When lifting the anonymous function in f , to define a new top-level function g, we have
to add the variable x to the arguments of g. But there are also the type variables α
and β. In fact, g must be polymorphic, and in f , we must instantiate g with the right
type variables:

let g [αβ] (x : α) (z : β) = . . . x . . .
let f [αβ] (x : α) =
. . . g [αβ] x . . .

In a polymorphic system such as L0, we also have a quantifier over type variables of the

139

5. Implementation and Case Studies

κ ::= ι κ

σ ::= predicate κ | function κ→ κ

t ::= x(t)
◦ ::= ∧ | ⇒ | ...
p ::= x(t) | ∀x : κ.p | p ◦ p | ...

decl ::= function y (x : κ) : κ = t | predicate y (x : κ) = p | axiom p | f : σ
Γ ::= ∅ | Γ, x : σ

Figure 5.8: FOL: the syntax.

form

∀α.f

to bind local type variables. These binders can also interfere with λ-lifting, and some-
times a suitable quantification over local type variables must be added to the body of
the lifted function. In some cases, this also leads to the removal of a quantification over
types at the place where the lifted function comes from.

5.3.6. The Target Language: FOL

Before we turn to the actual encoding of HOL, we have to introduce the target language.
Its syntax is summarized in Fig. 5.8. First-order types are written κ; they are simply
type constructors of a given arity. Note that prop is not a first-order type. A first-
order signature σ is either a predicate signature, consisting of a list of argument types,
or a function signature which additionally contains a return type. A term t is an n-
ary application of a function symbol x to a list of terms. A formula p is either an
n-ary application of a predicate symbol x to a list of terms, or a quantification, or a
formula with a logical connective. There are now four different top-level definitions:
let-declarations in HOL are split in function declarations with a return type and a term
body and predicate definitions without return type and with a formula body. One can
also declare axioms and function symbols. Logically, an axiom corresponds to a new
premise, and a declaration of a function symbol to a universal quantification.
Fig. 5.9 summarizes the typing rules for FOL. A typing environment Γ is a mapping

from variables to either predicate or function signatures. In terms, one can only use
function symbols (variables whose signature in Γ is a function signature), and in for-
mulas one can only use predicate symbols. Variables of first-order type κ, introduced
by quantifiers and function or predicate arguments, are encoded as nullary function
symbols using the syntax function (→ κ).
The translation to FOL requires a few predefined type constructors and function

140

5.3. Translation from Higher-Order Logic to First-Order Logic

T-App
Γ(x) = function κ→ κ′ Γ `t ti : κi

Γ `t x(t) : κ′

P-App
Γ(x) = predicate κ Γ `t ti : κi

Γ `p x(t)
FQuant

Γ, x : function (→ κ) `p p
Γ `p ∀x : κ.p

FLop
Γ `p p1 Γ `p p2

Γ `p p1 ◦ p2
FEmpty

Γ `d ∅

FSeqFun
Γ, x : function (→ κ) `t t : κ′ Γ, y : function κ→ κ′ `d decl

Γ `d function y (x : κ) : κ′ = t; decl

FSeqPred
Γ, x : function (→ κ) `p p Γ, y : predicate κ `d decl

Γ `d predicate y (x : κ) = p; decl

FSeqAxiom
Γ `p p Γ `d decl
Γ `d axiom p; decl

FSeqDecl
Γ, f : σ `d decl
Γ `d f : σ; decl

Figure 5.9: FOL : the typing rules.

symbols. Here they are:

type term α
type tprop
type arrow (α, β)
app : function term arrow (α, β), term α→ term β
eval : function term α→ α
reflect : function α→ term α
evalp : predicate term tprop

The intuition behind these symbols is the following. The type constructor term repre-
sents reified higher-order terms, i.e., objects of type term κ are intended to represent
higher-order objects of a type corresponding to κ. Every form of types in HOL that
does not exist in FOL is represented by a FOL type constructor: prop corresponds to
tprop, and the type arrow → corresponds to arrow. So this means that the objects
of type term tprop are reified versions of higher-order predicates, and objects of type
term arrow (κ1, κ2) are reified functions. To use such functions, we dispose of a symbol
app, which takes a reified function and a reified object of the expected type and returns
a reified object of the return type of the function. Finally, we have two functions eval
and reflect, converting to and from reified objects. We assume the equation

eval(reflect(t)) = t

141

5. Implementation and Case Studies

to be true for all instances. There is a special case in the case of reified predicates; in
this case we can use the predicate symbol evalp to obtain a first-order predicate.

5.3.7. The Encoding
The language we have obtained after λ-lifting does not contain quantifiers nor λ-abstrac-
tions, but it still contains higher-order types and partial application. Also, the HOL-
type prop may be used at places where it cannot be used in FOL, for example as
argument type. We now define the encoding which takes care of these features.
The first definition concerns types. As indicated before, we use first-order type con-

structors to handle the problematic cases:

JpropK = tprop
Jι τK = ι JτK

Jτ → τ ′K = arrow (JτK, Jτ ′K)

Here, prop is dealt with by tprop, and the arrow → by arrow. Other type constructors
are taken over unchanged.
Given the syntactical distinction between local and global variables, the encoding of

terms is very simple:
JfK = f̂
JxK = reflect(x)

Jt1 t2K = app(Jt1K, Jt2K)
An application is encoded using the first-order function app. Local variables are re-
flected. For global variables f , we directly use the reflection f̂ to represent them. We
will see in a minute how the name f̂ is introduced. An important property of this
encoding is that if t is of type τ in HOL, then JtK is of type term JτK. This property
will be useful to prove the well-typedness of the overall encoding.
Finally let’s look at how contexts are encoded:

Jlet f (x : τ) : τ ′ = tK = function f x : JτK : Jτ ′K = eval(JtK)
function f̂ : term Jτ1 → · · · → τn → τ ′K

Jaxiom A : tK = axiom A : evalp(JtK)

Axioms are simply translated to axioms; however as JtK is of type term tprop, we must
add an application of evalp. Top-level definitions are similarly translated to top-level
definitions, where an application of eval is added. However, this is not sufficient, as in
FOL the symbol f cannot be partially applied anymore, nor be passed to other func-
tions. The reflect function is of no use, as it can only be applied to local variables. We
therefore directly introduce the reified version of f , called f̂ . Its type is the reification
of the higher-order type of f .

5.3.8. Optimizations of the Encoding
The encoding we have shown up to now is very simple and easy to prove correct.
However, it produces unnecessarily large terms, and it contains unnecessarily contrived
formulations of first-order concepts. For example, up to now, we have made no use of the

142

5.3. Translation from Higher-Order Logic to First-Order Logic

formula constructs of FOL; even if the HOL formula contained logical connectors, well-
known predicates like equality or quantifiers, these have been encoded as any other HOL
function or predicate. This is a problem, as automated provers deal in an optimized
way with these constructs. Any form of encoding for these constructs severely slows
down their performance. Our job in this section is to undo as much as possible of the
encoding so that we gain the original structure of the formula. In the best case, we
would like to obtain the original HOL formula, whenever it was a first-order formula.

Introducing predicates. A first step consists in transforming function declarations of
return type tprop into predicates:

function f : (τ1, . . . , τn)→ tprop

becomes
predicate f : (τ1, . . . , τn).

We can do this because the encoding process has eliminated all occurrences of f in
the remaining list of declarations, only occurrences of f̂ can appear. So changing the
signature of f cannot change the well-typedness of the rest of the theory. We do not
need to change the type in the declaration of f̂ .

Recovering the logical structure of the formula. If we want to obtain a relatively
natural looking first-order formula, we need to re-obtain the logical connectives and the
quantifiers. The following rewriting rules take care of this:

evalp(app(app(◦̂, f1), f2)) → evalp(f1) ◦ evalp(f2)
evalp(app(ˆforall, f)) → ∀x.evalp(app(f, reflect(x)))
evalp(app(ˆexists, f)) → ∃x.evalp(app(f, reflect(x)))

We simply rewrite full applications of ∧̂ to the connective ∧ and so on. It is however
important to note that these rewriting steps can only be applied under an application
of evalp. Otherwise we would be trying to build formulas where a formula cannot
syntactically occur.

Reestablishing full applications. An occurrence of a reified global function symbol f̂
is fully applied when it appears in a term such as

app(. . . (app(f̂ , x1), . . .), xn)

where n is also the arity of f . In this case, it is possible to replace the whole term by the
first-order application of f to the arguments x1 to xn. The same is obviously possible
for predicate symbols. However, for the term to be well-typed, we need to inject calls
to reflect, so that the rewriting rules look like this:

eval(app(. . . (app(f̂ , x1), . . .), xn)) → f(reflect(x1), . . . , reflect(xn)) arity(f) = n
evalp(app(. . . (app(p̂, x1), . . .), xn)) → p(reflect(x1), . . . , reflect(xn)) arity(f) = n

143

5. Implementation and Case Studies

Rewriting. In this and the previous paragraph, we have essentially defined a rewriting
system on first-order terms. A rewriting system is a set of rules, just as the ones we
have given here, that can be applied in an arbitrary order at arbitrary places in a term.
To be useful, a term rewriting system must be terminating and confluent. A rewriting
system is terminating if for any given term, only a finite number of rules can be applied,
one after the other, to obtain a term which does not permit applications of the rules
anymore. Such a term is called a normal form. A rewriting system is confluent if, when
a term t permits applications of several rules to obtain, say, t1 and t2, then t1 and t2
permit a sequence of applications of rewriting rules to obtain the same normal form,
say t′.
The property of termination guarantees that one obtains a normal form after a finite

number of steps. The property of confluence guarantees that the order of application
of the rewriting rules is not important. Together, they imply that we can apply the
rewriting rules in any order in the term, and will find the normal form eventually.
The CiME tool (Contejean et al., 2007) can prove termination and confluence for

rewriting system. We have entered the above rewriting rules in this tool and were able
to prove both properties. Due to limitations of the CiME tool, we had to simplify the
problem a bit, but we believe that this does not change the termination and confluence
proofs. First, we have limited ourselves to a single pair of function f and corresponding
constant f̂ , of binary arity. Second, and maybe more seriously, we have replaced the
quantification in the rewriting rules concerning the constants ˆforall and ˆexists by unary
functions forall and exists, and the variable x by a constant.

Inlining function symbols that have been created by the translation. Each quan-
tification of the form

∀x.p

is transformed at the beginning to

forall (λx.p)

, and then, by λ-lifting, to

let f x = p
forall f

After the encoding and the simplifications, we obtain the formula

predicate f x = JpK
∀x.f x

The result is relatively clear, but the additional predicate symbol is superfluous and
may hinder the proof process. We therefore decide to inline predicate symbols that
originate from λ-lifted abstractions, when possible. In our example, we obtain (almost)
the original formula:

∀x.JpK

144

5.3. Translation from Higher-Order Logic to First-Order Logic

Adding the necessary axioms. A last item is missing; up to now, we have never linked
the reified symbols f̂ to the original symbols f . We do that now. We simply have to
state that the n-ary application of f̂ using app corresponds to the n-ary first-order
application of f . To do this, for every declaration of a function symbol:

function f : (τ1, . . . , τn)→ τ

we have to add an axiom

∀x1 : τ1. . . .∀xn : τn.eval(app(. . . (app(f̂ , reflect(x1)), . . .), reflect(xn))) = f(x1, . . . , xn)

and for every declaration of a predicate symbol:

predicate p : (τ1, . . . , τn)

we have to add an axiom:

∀x1 : τ1. . . .∀xn : τn.evalp(app(. . . (app(p̂, reflect(x1), . . .), reflect(xn)))⇔ p(x1, . . . , xn)

It is important to add these axioms only add the end of the encoding process. Oth-
erwise, the right-hand sides of the axioms would be simplified by the rewriting rules
we have given in the previous paragraphs. To be useful, the axioms have to be left
untouched.

5.3.9. An Example
Let us show the encoding on the example that has been discussed at the beginning of
Section 5.3.2, on page 135:

let apply (f : int → int) (x : int) = f x
goal : ∀f : int → int. apply f = (λ(x : int → int). x) f

The second line is the goal to prove. Introducing the quantifier constant, we obtain

let apply (f : int → int) (x : int) = f x
goal forall (fun (f : int → int). apply f = (λ(x : int → int). x) f)

After λ-lifting, we obtain

let apply (f : int → int) (x : int) = f x
let id (x : int) = x
let p (f : int → int) = apply f = id f
goal : forall p

We have given the names id and p to the lifted abstractions. Now the actual encoding
is applied, to obtain the following FOL theory:

function apply (f : arrow (int, int)) (x : int) = eval(app(f , reflect(x)))
ˆapply : term arrow (arrow (int, int), arrow (int, int))

function id (x : int) = x
îd : term arrow (int, int)
function p (f : arrow (int, int)) =

145

5. Implementation and Case Studies

eval(app(app(=̂, app(ˆapply, reflect(f)))), app(îd, reflect f))
p̂ : term arrow (arrow (int, int), tprop)
goal : evalp(app(ˆforall, p̂))

In the body of the identity function id, the application of eval to the term reflect(x) has
been simplified to x. We assume that the context contains constants =̂ and ˆforall, that
represent the reified versions of the equality predicate and the quantification constant,
respectively.
We can now apply the simplifications and obtain a much cleaner formula:

function apply (f : arrow (int, int)) (x : int) = eval(app(f , reflect(x)))
ˆapply : term arrow (arrow (int, int), arrow (int, int))

function id (x : int) = x
îd : term arrow (int, int)
predicate p (f : arrow (int, int)) = apply(f) = id(f)
p̂ : term arrow (arrow (int, int), tprop)
goal : ∀(f : arrow (int, int)).p f

A useful heuristics to obtain a more natural formula is then to inline predicates that
originated from quantifications:

function apply (f : arrow (int, int)) (x : int) = eval(app(f , reflect(x)))
ˆapply : term arrow (arrow (int, int), arrow (int, int))

function id (x : int) = x
îd : term arrow (int, int)
goal : ∀(f : arrow (int, int)).apply(f) = id(f)

We finally can add the axioms that link reified symbols to the original ones, to obtain
the final result:

function apply (f : arrow (int, int)) (x : int) = eval(app(f , reflect(x)))
ˆapply : term arrow (arrow (int, int), arrow (int, int))

axiom apply_equiv :
∀ (f : arrow (int, int)) (x : intml).

eval(app(app(ˆappml, reflect(f)), reflect(x))) = apply(f , x)
function id (x : int) = x
îd : term arrow (int, int)
axiom id_equiv : ∀ (id : int). eval(app(îd, reflect(x))) = id(x)
goal : ∀(f : arrow (int, int)).apply(f) = id(f)

Note that this goal is only provable using functional extensionality, but this was already
the case in the HOL theory.

5.3.10. Justifying the Encoding
Proving the different transformations correct is not very difficult. An interesting chal-
lenge, however is to generate a machine-checkable proof that the obtained list of FOL
declarations is indeed equivalent to the initial formula in HOL. Our translation mecha-
nism is designed to easily obtain machine-checkable proofs. We want to show this using
the proof assistant Coq. We do so by embedding the input logic HOL and the output

146

5.3. Translation from Higher-Order Logic to First-Order Logic

logic FOL in Coq. To avoid introducing yet another syntax, we use the syntax of HOL
to describe Coq terms.
We have seen that HOL is a subset of Coq, so we can directly type HOL terms in

Coq. For FOL, this is less obvious, but still easily definable. We simply define the
following embedding:

Lfunction κ1 · · ·κn, κM = κ1 → · · · → κn → κ

Lpredicate κ1 · · ·κnM = κ1 → · · · → κn → prop
Lx (t1, . . . , tn)M = x t1 · · · tn

Lp1 ◦ p2M = ◦ p1 p2

L∀x : κ.pM = ∀x : LκMLpM
Lfunction f (x : κ) : τ ′ = tM = let f (x : κ) : τ ′ = LtM

Lpredicate f (x : κ) = tM = let f (x : κ) : prop = LtM

This definition is really straightforward; it simply encodes the n-ary function and pred-
icate types by n type arrows and n-ary first-order application by n unary higher-order
applications. Type constants, even polymorphic ones, are directly embeddable in Coq.
There are a number of symbols in FOL for which we need to give a definition in Coq.

These are the type constants term, tprop, arrow and the function constants app, eval,
reflect and evalp, but also the function symbols f̂ introduced by the encoding itself. We
could postulate their existence, with corresponding Coq types, and in this way obtain
well-typed terms in Coq. But to obtain a machine-checkable proof of the correctness of
the encoding, we give a definition of these functions. The aim is that an evaluation of
the term obtained by the encoding returns a term that is identical to the initial term in
Coq. As, in Coq, a proof of equality can in particular be carried out by evaluation, the
correctness proof becomes trivial. When we speak of evaluation, we mean in particular
the β and δ rules in the calculus of Coq.
We now give definitions in Coq for the missing constants; we use the syntax of HOL

that we have already introduced.

type term α = α
type tprop = prop
type arrow α β = α→ β
let app f x = f x
let eval x = x
let reflect x = x
let evalp x = x

Finally, for every function symbol f̂ that has been introduced by the encoding, we add
the definition

let f̂ = f.

First of all, let us convince us that the given implementation is indeed correct. For
this, we need to check the axioms of the form

∀x1 : τ1. . . .∀xn : τn.eval(app(. . . (app(f̂ , x1), . . .), xn)) = f(x1, . . . , xn)

147

5. Implementation and Case Studies

for functions, and the equivalent axioms using evalp for predicates. Actually, we need
to check their equivalent in Coq:

∀x1 : τ1. . . .∀xn : τn.eval (app (. . . (app f̂x1) . . .)xn)) = f x1 . . . xn

where we have simply changed the n-ary applications into unary ones. Looking at the
definitions of app and eval, and the definition of f̂ , the axiom is entirely trivial. Not
only it is trivial for a human, but the equality can be proved simply by unfolding the
definitions on the left hand side of eval, app and f̂ . In Coq, this is called proof by reflec-
tion and is built-in in the core calculus. It also becomes clear that the “optimizations”
in Section 5.3.8 are simply unfoldings of evalp, eval, app and f̂ .
The encoding in Section 5.3.7 concerning types and terms is basically the inverse of

the definitions we have given to the FOL constants; the correctness can thus be proved
once again by unfolding. The same is true for function definitions. If the initial term
in HOL was

let f (x : τ) : τ ′ = t

then its encoding in FOL, again rendered in HOL, gives

let f(x : JtK) : Jτ ′K = eval JtK

We have already established the equality by evaluation of the encodings of types and
terms, and eval evaluates to the identity function.
The only missing steps now are the elimination of anonymous functions using λ-

lifting and the elimination of quantifiers. Both are simple to justify, and in both cases
the justification is again definition unfolding. λ-lifting simply introduces additional
definitions in the context; it can be justified by unfolding them. In our translation,
quantifiers are replaced by application of the constant forall. If we define this constant
in this way:

let forall f = ∀x.f x
this quantifier elimination is again justified by unfolding of a definition. Defining a
constant in this way is entirely legitimate in Coq.
In summary, we have seen that with the given definitions for the symbols that are

introduced by the encoding, we can justify the equation

f = JfK

in Coq, simply by evaluating the encoded term, and this for any given input theory f .
Note, however, that this is not a machine-checkable proof of the encoding itself. It only
represents a machine-checkable proof for each instance or execution of the encoding on
a particular input.
The deep reason for this limitation is that here we only consider a shallow embedding

of HOL and FOL formulas, i.e., we directly use Coq syntax to represent terms of these
languages. A much heavier, but more powerful possibility would consist in representing
the formulas of HOL and FOL by objects of a Coq data type, for example an algebraic
data type, or inductive type in Coq. One could then implement the encoding we just
have presented in Coq and prove that it always preserves the validity of the input for-
mula. We do not follow this approach. Instead we propose to use a shallow embedding

148

5.4. Case Studies

to generate a proof for each execution of the encoding that shows that input and result
are equivalent.
This result could be used to obtain more confidence in the answers of automated

theorem provers, that in most cases are limited to “yes” or “no”. If there were a first-
order prover for first-order logic that answered with a machine-checkable proof, then
this approach could lift the proof of the first-order theorem to the original problem
in higher-order logic. Currently, very few first-order provers output proof traces. A
notable exception is Zenon (Bonichon et al., 2007), that is able to output Coq proofs.
Another work in this direction is the work by Paulson and Susanto (2007). They call
powerful resolution-based provers to obtain a list of used lemmas in the proof. This list
does not represent a machine-checkable proof because of the lack of details. However,
they use this list to call a home-made, slower prover called Metis, initially developed
by Hurd (2003). Metis has been programmed with proof traces in mind; it lacks many
optimizations of state-of-the-art theorem provers, but it is capable of generating a
checkable proof trace in Isabelle/HOL syntax. Because Metis knows the list of used
lemmas, it can ignore all other lemmas and does in effect solve a much smaller problem.
Therefore, despite the fact that Metis is slower than other automated provers, it can
construct a proof in reasonable time.
A long term objective of Pangoline is to use Zenon or an approach similar to the

one followed by Paulson and Susanto (2007) to obtain proof traces for higher-order
theorems.

Formulas that are already first-order formulas. It is easy to see that our encoding
leaves (almost) unchanged functions and formulas that are already in first-order form.
To realize this, we first need to define what it means to be first-order for a term in the
higher-order logic HOL. But this is easy; we simply declare a term to be first-order if it
is the image of a first-order term under the embedding defined in the previous section.
It is easy to see that in all cases, the encoding will be undone by the simplification
phase: all function and predicate symbols are fully applied in FOL, quantified formulas
are re-obtained by application of the rewrite rules and inlining the corresponding pred-
icate symbols. Still, we cannot say that the embedding L·M to HOL, together with the
encoding J·K to FOL, is the identity function on FOL theories, because of the hatted
function symbols and the corresponding axioms. They can still lead to more work for
an automated prover.
The presented encoding is implemented in the tool Pangoline. The implementation

is very close to the described process, and as presented, it consists of a sequence of
relatively small encoding and rewriting steps.

5.4. Case Studies

In this section, we show a few examples, with increasing difficulty, of proofs that can be
carried out in our calculus. The examples are first given in ML-like syntax, i.e., without
annotations of any kind, such as pre- and postconditions, regions or effects, to ease the
understanding of the code. Then, a fully annotated version is presented and explained.

149

5. Implementation and Case Studies

All programs have actually been proved correct using our tool Who and several au-
tomatic provers, as well as the interactive proof assistant Coq, when necessary.

5.4.1. Introductory Examples
We first start with a few simple examples that do not need any additional type and
function constants.

The function apply. One of the simplest higher-order functions is the identity function
on functions:

let apply f x = f x

It simply takes the function f and its argument x and applies f to x.
In Who, we have to account for several difficulties: apply has to be effect polymorphic

to allow its application to functions of any effect, and it has to use the specification of
f to be as generic as possible. Here is the code in Who:

let apply [αβε] (f : α →ε β) (x : α) =
{pre f x cur}
f x
{r : post f x old cur r}

As required, apply not only generalizes over the argument and return types of f , but
also over the effect ε. Its overall type is:

apply : ∀αβε.(α→ε β)→∅ α→ε β

For such a simple function, the pre- and postcondition are trivial: we simply require
the precondition of f to hold in the initial state, and we guarantee the postcondition
of f to be true for the two relevant states and the returned value. This very simple
example is proved by automated provers.

The for loop. The for-loop is a very useful tool, especially in connection with arrays,
present in almost any practical programming language. However, the core syntax of
W does not contain such a construct. But it is easy to define something very similar
to a for-loop: a higher-order function taking the limits of the loop and a function to
be executed between these limits. Here is the implementation (without annotations) of
this idea:

let forfun s e f =
let rec aux i =

if i ≤ e then begin f i; aux (i + 1) end
else ()

in
aux s

The function forfun takes two integers s and e (for “start” and “end”) and executes the
function call f i for each integer i between s and e, in increasing order. We use a local

150

5.4. Case Studies

let forfun [ε] (inv : < ε > → int → prop)
(s : int) (e : int) (f : int →ε unit) =
{ inv cur s ∧ ∀ i. s ≤ i ≤ e → {inv cur i} f i {inv cur (i + 1)} }
let rec aux (i : int) =
{s ≤ i ∧ inv cur i}
if i ≤ e then begin f i; aux (i + 1) end
{ (i ≤ e + 1 → inv cur (e + 1)) ∧ (i > e → inv cur i) }

in
aux s
{ inv cur (max s (e + 1))}

Figure 5.10: The implementation of forfun in Who.

recursive function aux to obtain the looping behavior. Note that the function forfun
can be used to simplify the syntactic sugar introduced in Section 2.1.
Contrary to the example of apply, it is not sufficient to require the precondition of

f to be true initially. Indeed, f may be called many times, in different states, with
different integer arguments. Actually, it is quite clear that, as we are implementing a
loop, f must maintain some kind of invariant. The exact invariant to be maintained
depends of course on the body of the for-loop, i.e., the function f . We solve this problem
here by taking an additional, logical argument inv, a predicate that precisely states the
invariant maintained by f . It has to be given when calling forfun, just as an invariant
has to be given for for-loops in Hoare logic. The invariant is of type < ε >→ int→ prop;
it depends on the current state and current count of the loop. The annotated version
of forfun is presented in Fig. 5.10. Once we have that additional argument representing
the invariant, everything becomes quite simple. The precondition simply states that
the invariant must be initially true and that f must maintain the invariant: if it is
true for i before calling f , it is true for i + 1 after the call. In the postcondition, we
guarantee that the invariant is true for either s or e+ 1, whichever is larger.
Let us now explain the body of forfun in more detail, in particular the local function

aux. This function achieves the looping behavior: as long as i ≤ e, the recursive call
will be executed. However, aux is designed to work also when this condition is initially
false; in particular, it is not mentioned in the precondition of aux. The code does not
have to do anything in particular to make it work. However, the postcondition of aux
needs to consider both cases.
Finally, let us explain how one can obtain a correctly specified program starting from

a for-loop:
for i = s to e do { inv } body done

In Section 2.1.1, we explained how to desugar a for-loop without annotations into a W
program without annotations. Here, we follow a similar approach, with two modifica-
tions. First, we use the forfun function, and second, we need to insert specifications
into the desugared code. To simplify, let us assume that s and e are variables.

let f i = { p } body { q } in

151

5. Implementation and Case Studies

forfun inv s e f

We now only need to define p and q. The body is only executed when the counter i is
indeed between the bounds s and e; additionally, the invariant must be true:

p = s ≤ i ≤ e ∧ inv cur i

The postcondition establishes the invariant for the next value of i.

q = inv cur (i + 1)

All proof obligations are proved by automated provers.

Landin’s knot. The technique called Landin’s knot or backpatching is a technique to
obtain recursion without using a recursion mechanism built-in in the language. We
have already presented it in Section 2.1. The idea is, when defining a function f which
needs to be recursive, to replace each recursive call by a call to a function stored in
some reference, say x. Initially, x contains some dummy value, for example the identity
function. Once the function f has been defined, one replaces this dummy value in x by
f , and the recursion has been achieved. In Chapter 2, we gave the following code for
the factorial function implemented using this technique:

letregion %
let circfact =

let id n = n in
let x = ref [%] id in
let f n = if n = 0 then 1 else n × (!x) (n − 1) in
x := f ;
!x

It is possible to generalize this technique and to implement a generic fixed point com-
binator. Its unannotated code (omitting also region information) might look like this:

let backpatch (f : ref (α → α) → (α → α)) =
let id x = x in
let x = ref id in
x := f x;
!x

This “generic” backpatching function takes a higher-order function f as an argument.
This function f expects a reference to a function in argument; its return value is another
function of the same type, which is then affected to x. The argument of f needs to
be a reference so that the effect of reading x can be delayed until after the assignment
x := f x.
A problem of our function is that it is not entirely generic; we had to fix the type of

the obtained function to α → α because we need to have a dummy value of the right
type. We could also have asked the caller of backpatch to provide such a value.
Fully annotated, we obtain the code in Fig. 5.11. First of all, the interesting bits

happen in a region %, which has to be created outside of backpatch. A difference with
the ML version is that we need a predicate p in argument; it takes a function and a
state in argument. The precondition of backpatch is the most interesting part: it states

152

5.4. Case Studies

let backpatch [α%] (p : dα →% αe → 〈r〉 → prop)
(f : refr (α→% α) →∅ α →% α) =
{ ∀ x. {}f x { g : ∀ (s : 〈r〉). !!x s = g → p g s} }
let id (x : α) = {} x {} in
let x = ref [r] id in
x := f x;
!x
{r : p r cur}

Figure 5.11: The implementation in Who of backpatch.

that f must return a function g that, when x is equal to g, verifies p. This is the crucial
property; it allows us to establish the postcondition, stating that the return value r also
verifies p. This single non-trivial proof obligation of this third-order function is proved
automatically.
We have already emphasized the fact that the first argument of f is a reference to a

function. We could also replace the line
x := f x;

by the following line, where the partial application f x has been eta-expanded and x is
dereferenced instead to be passed to f directly.

x := (fun z → { . . . } f !x z{ . . . });
It would be an interesting challenge to find the specification for this anonymous function.
For the function be well-typed, we must change the type of f to

(α→% α)→∅ α→% α.

5.4.2. Memoization Functions
Let us now turn to the problem of memoization. The idea is to avoid repeated calls
of a (pure) function f applied to the same argument, say x. When first calling f with
argument x, the return value of f is stored in a table and looked up the next time we
call f with the same argument. The hope is that, if executing f is expensive, then these
table lookups are more efficient than a second call to f .
Implementing memoization requires some form of table that stores key-value pairs.

We do not detail the implementation of such a table here; instead, we simply give
an interface for a pure map from keys to values, accompanied by defining axioms, in
Fig. 5.12. The type map represents pure maps from keys α to values β. We have the
empty map, a function to test presence of a key, a function to get the value associated
to a key and finally a function to store a key with a given value. If the key was already
present, its value becomes overwritten with the new value. The access function returns
an option type, so it returns None when there is no value for a given key in the map.
We first define a predicate stores f m, which states that the map m stores key-value

pairs that correspond indeed to argument-result pairs of the function f .

153

5. Implementation and Case Studies

type map (α, β)
empty : ∀αβ. map (α, β)
get : ∀αβ. α → map (α, β) → β option
set : ∀αβ. α → β → map (α, β) → map (α, β)
axiom get_set_eq :
∀αβ.∀(k : α) (v : β) (map : map (α, β)).

get k (set k v map) = Some v
axiom get_set_neq :
∀αβ.∀k1 k2 v (map : map (α, β)).

k1 <> k2 → get k1 (set k2 v map) = get k2 map

Figure 5.12: The theory of maps in Who.

let memo [αβ%] (table : ref% map(α, β)) (f : α → β) (x : α) =
{stores f !!table}
match get x !table with
| Some r → r
| None →

let z = f x in
table := set x z !table;
z

{r : r = f x ∧ stores f !!table}

Figure 5.13: The implementation in Who of memo.

let stores [αβ] (f : α → β) (m : map(α, β)) =
∀ (x : α).

match get x m with
| None → True
| Some v → v = f x

Now we can give the code directly with its specification, in Fig. 5.13. The only pre-
condition of memo assures that the table is valid w.r.t. f . This function first checks if
the argument x is a key in the memo table; if it is, the corresponding value is returned.
If it is not, f is called, the result z is stored in the table (better: the updated table
is stored in the reference table), and finally z is returned. The postcondition clearly
states that the result is the same as if one had called f directly, and additionally, that
the invariant on the table is still valid. This last point is necessary if one wants to call
memo several times. The proof obligations of memo are proved automatically.

Memoization across recursive calls. Sometimes one wants to define a recursive func-
tion with memoization for recursive calls. The classic example is the function Fib(n),
computing the nth element of the well-known Fibonacci sequence. Implemented naively,

154

5.4. Case Studies

let ymemo table ff =
let rec f x =

match get x !table with
| Some r → r
| None →

let z = ff f x in
table := set x z !table;
z

in
f

Figure 5.14: An implementation of ymemo in ML.

the complexity of the recursive function is exponential. But if the recursive calls are
memoized, the process becomes linear. We show the implementation and the speci-
fication of a memoizing fixed point combinator which we call ymemo. The ML im-
plementation is shown in Fig. 5.14. Similarly to backpatch, the function ymemo is a
third-order function, expecting a functional (ff in this case) as argument. Indeed, both
are fixed-point combinators. Inside ymemo, we define a recursive function f , which is
somewhat similar to memo shown before. The main difference is the call to ff when
the key x is not yet in the table; the function f passes itself to ff to allow recursion.
We start by defining a predicate realizes table f0 f which is true when the effectful

function f has the same results as the pure function f0, as long as the table stores f
(see the memo example).

let realizes [αβ%] (table : ref% map(α, β)) (f0 : α → β) (f : α →% β) =
∀ (x : α). { stores f0 !!table} f x { r : r = f0 x ∧ stores f0 !!table}

We can now give the fully annotated code of ymemo, in Fig. 5.15. It has an ad-
ditional logical argument representing the computed mathematical function. Let us
look first at the specification of the local function f . It is obvious that the predicate
realizes table f0 f is true if the specification is correct. In the precondition of ymemo,
we precisely require that if k realizes f0, then ff k also realizes f0. We now want to
check that the specification of f is indeed correct. The critical point is the call to
ff , but by the discussion above we know that f validates the precondition of ff . We
therefore can conclude that the value z computed by the call ff f x is the value that
corresponds to the key x, and therefore the specification of f is correct. Note that we
have assumed the correctness of f for recursive appearances while proving its body. A
few proof obligations of ymemo are proved automatically, the more difficult ones have
to be proved manually in Coq, but the proofs are short.

Hiding effects is not possible inWho. An aspect is common to the functions backpatch,
memo, ymemo: an effect on a single reference is used locally to produce a certain result,
but from the outside, the functions behave as if they were pure. The backpatch func-
tion, for example, is simply an alternative implementation of the classical fixed-point

155

5. Implementation and Case Studies

let ymemo [αβ%] (f0 : α → β) (table : ref% map(α, β))
(ff : (α →% β) →∅ α →% β) =
{ ∀ (k : α →% β). { realizes table f0 k} ff k { r : realizes table f0 r } }
let rec f (x : int) =
{ stores f0 !!table }
match get x !table with
| Some r → r
| None →

let z = ff f x in
table := set x z (!table);
z

{r : r = f0 x ∧ stores f0 !!table} in
f
{ rf : realizes table f0 rf }

Figure 5.15: The implementation in Who of ymemo.

combinator, which has the same type is backpatch, but no effects. Is it possible to give
backpatch a type that does not mention any effect? The answer is no, at least in Who.
First of all, there is no technical device to do that in W. The only way to hide effects in
W is letregion, but it only permits to hide a region from an effect when the region does
not appear in the type of the expression. Also, because of the Barendregt convention,
it can never hide a region that appears in the typing environment — after all, letregion
is a binding construct, so the region % bound there is always different from free regions.
As in any of the cited functions, the region already appears in the argument types, it
is impossible to hide it in W. This is a drawback of our system compared to recent
work (Schwinghammer et al., 2010).

5.4.3. The Array Module
Arrays, i.e., contiguous blocks of memory, are central to imperative programming,
because they provide constant time random access. W does not provide arrays directly,
but it is easy to model them following same strategy that has been applied to the maps
in the previous section. It is also the same idea that is used to model arrays in the Why
system.

The theory of arrays. In our programs dealing with arrays, instead of using actual
arrays, which the language does not provide, we use references to pure arrays. A pure
array cannot be modified; the set operation simply returns a new array, leaving the
old unchanged. The theory of arrays is summarized in Fig. 5.16. If we compare this
signature with the one for maps given earlier, the main difference is that get now does
not return an object of option type, to be closer to the type of the access function of
arrays in ML. The other important difference is that pure arrays are only valid if the
index is between 0 and the length of the array. All the axioms are therefore protected

156

5.4. Case Studies

type array α
empty : ∀α. array α
create : ∀α. int → α → array α
get : ∀α. int → array α → α
set : ∀α. int → α → array α → array α
length : ∀α. array α → int
axiom getseteq :
∀α.∀(i : int) (v : α) (a : array α).

0 ≤ i < length a → get i (set i v a) = v
axiom getsetneq :
∀α.∀(i j : int) (v : α) (a : array α).

0 ≤ i < length a ∧ 0 ≤ j < length a ∧ i 6= j
→ get i (set j v a) = get i a

axiom length_set :
∀α.∀ (i : int) (v : α) (a : array α).

length (set i v a) = length a
axiom length_empty : ∀α.length (empty) = 0
axiom get_create :
∀α.∀(n : int) (v : α). 0 ≤ i < n → get (create n v) = v

Figure 5.16: The theory of arrays in Who.

by hypotheses over the indices in question. Finally, the function create allows to create
an array of a given length, filled with a value v.
The term create n v stands for an array of length n, filled with a value v (for any

integer i, get i (create n v) = v), while the term empty stands for the empty array, of
length 0.
Mutable arrays are now modeled by references to such pure arrays. Additionally, we

introduce program functions using get and set, that artificially introduce restrictions on
the indices to be used (Fig. 5.17). We see that modifying the array in place is modeled
by an assignment of the new array value to the reference. The preconditions are artificial
in the sense that the correctness of these functions could be proved without them; but
then our modelization would not reflect usual mutable arrays precisely. Finally, we can
introduce syntactic sugar: we write a.(i) instead of _get i a and a.(i) ← v instead of
_set i v a.

Iteration over arrays. Apart from accessing and modifying elements, other common
operations include appending (concatenating copies of two arrays to form a new, larger
array), filling (part of) the array with a certain value, extracting a sub array, copying
(part of) one array into another, sorting, and so on. These are all first-order operations
and have been dealt with in many systems, many times. The new possibilities provided
by W deal with higher-order functions. One such case is the higher-order iteration
function, commonly called iter:

157

5. Implementation and Case Studies

let _get [α%] (i : int) (a : ref% (array α)) =
{ 0 ≤ i < length a}
get i !a
{ r : r = get i !!a }

let _set [α%] (i : int) (v : α) (a : ref% (array α)) =
{ 0 ≤ i < length a}
a := set i v !a
{ !!a = set i v (!!a old) }

Figure 5.17: Wrappers for get and set.

let iter [α%ε] (inv : 〈%ε〉 → int → prop) (a : ref% (array α)) (f : α →%ε unit) =
{ inv cur 0 ∧

∀(i : int). 0 ≤ i < length !!a →
{ inv cur i } f (get i !a) { inv cur (i + 1) ∧ length !!a = length !!a|old}

}
for i = 0 to length !a − 1 do
{ inv cur i }
f a.(i)

done
{inv cur (length !!a) }

Figure 5.18: The implementation in Who of iter .

let iter f a =
for i = 0 to length a − 1 do

f a.(i)
done

In this particular case, the function is simply a for-loop; still, using iter instead of
directly writing the loop helps avoid programming errors on the two indices. Another
reason for the existence of this function is the uniformity of interfaces in a language;
iteration functions should exist for all data structures, and in most cases they are not
as simple as the one presented here.
Let us now go on to specify this function. Fig. 5.18 gives the annotated code. From

a typing point of view, we again use effect polymorphism to characterize the effect of
f . For simplicity, we say that f also potentially modifies the region of array a. From
a specification point of view, the main idea is again an additional logical argument
representing the invariant inv maintained by the iteration. It takes the current state
as well as the integer index up to which we have iterated as arguments. Conveniently,
we can simply put the predicate inv cur i as the for-loop invariant. The postcondition
is also very simple: it states that we obtain the invariant for the end of the array. The
precondition is slightly more complicated because of the presence of the Hoare triple: it

158

5.4. Case Studies

let map f a =
let l = length a in
if l = 0 then ref empty
else

let k = f a.(0) in
let r = ref (create l (f a.(0))) in
for i = 1 to l − 1 do

r .(i) ← f a.(i)
done ;
r

Figure 5.19: The map function for Arrays in ML.

states that f , applied to the ith element of the array, takes the invariant from one state
and index i to another state and index i+ 1. Finally, we have to require the invariant
for the index 0.
The reader has certainly noticed that we also require the function f in argument to

preserve the length of the input array a. This is a consequence of our modelization of
arrays; we cannot assume that set is the only function that is used to modify an array
that is stored in a reference. For example, a user might simply write

a := empty

to change the length of an array reference. The additional requirement in the post-
condition of f avoids such pathological cases. All proof obligations of iter are proved
automatically.

Mapping over arrays. Another usage of higher-order functions in combination with
arrays in ML-like languages is mapping. Entirely analogous to the map function for
lists, this map function accepts an array a and a function f and returns another array
of identical length whose ith element is the result of the call f a.(i). The function f
is called with cells in increasing order. The ML code is shown in Fig. 5.19. We first
remark that in the special case where the length of the array is 0, we simply return the
empty array. In the other case, we call f on the first cell of the input array, create a
new array r of the full length, filled with this value. We then iterate, starting from 1
and not from 0, till the end of the input array, and fill r with the right values. Finally,
we return the array r.
The difficulty of specifying map for arrays is the fact that during the entire function

call, except at the very end of the execution, the result array r contains invalid entries,
originating from the call to create, that have not been overwritten yet by the for-loop.
We call r.(i) when it not the result of a call of the form f a.(i). Initially, this is only
true for i = 0, and, as stated, it is only true for all values in r when the for-loop has
terminated.
It would therefore be wrong to blindly apply the previous trick, which consists in

stating that f maintains some invariant inv. Let us try for a moment to see the

159

5. Implementation and Case Studies

let map [αβ%1%2ε] (inv : 〈%1 ε〉 → array β → int → prop)
(f : α →%1ε β) (a : ref%1 (array α)) =
{ inv cur|%1ε empty 0 ∧
∀(k : β array) (i : int).0 ≤ i < length !!a →
{ inv cur (sub k i) i } f (get i !a) { r : inv cur (sub (set i r k) (i +1)) (i +1) }

}
let l = length !a in
if l = 0 then ref %2 empty
else

let k = f a.(0) in
let r = ref %2 (create l k) in
for i = 1 to l − 1 do
{ inv cur|ρ1ε (sub !!r i) i }
r .(i) ← f a.(i)

done ;
r
{r : inv cur|ρ1ε !!r (length !!a) }

Figure 5.20: The implementation in Who of map.

problem. The result of map is an array, so at the very least, inv takes an array and
an integer (the index up to which the array is valid) as arguments. However, nothing
prevents the invariant to depend on invalid parts. We need some way to provide the
invariant with only the valid part of the array, which has already been filled with return
values of f .
A straightforward solution is the introduction of a logical function sub, of type

∀α.array α→ int→ array α,

such that sub a n returns an array of length n such that for all indices smaller than n,
the access to the sub-array returns the same result as an access to a. If we pass such a
shortened array to the invariant, it cannot access any invalid parts. Fig. 5.20 shows the
(relatively complex) specification. First, the precondition requires the invariant to be
true for the empty array; this is required when the input array is already empty: the
postcondition and the first part of the precondition are identical in this case. The second
part of the precondition expresses that the call f (get i !a) maintains the invariant. As
stated above, we cannot simply pass the array k to the invariant, because k may contain
garbage. Instead, we pass the smaller array sub k i; now, this array only contains
relevant fields.
Notice that we have assumed extensionality for pure arrays: pure arrays that contain

the same elements are equal. For example, to prove the above function, we must have
the equality

sub a 0 = empty

for any array a. All proof obligations of the map function are proved automatically.

160

5.4. Case Studies

let rec mapinv f l =
match l with
| Nil → Nil
| Cons (x, rl) →

let tl = mapinv f rl in
let hd = f x in
Cons hd tl

Figure 5.21: The function mapinv in ML.

5.4.4. The List Module

The other container data type that exists in all ML-like languages is the list. We have
already seen the definition in ML of this data type in Chapter 1, let us repeat it here:

type list α =
| Nil
| Cons of α ∗ list α

So, a list in ML is either empty, or a head element “consed” (attached) to a list tail.
Many operations on lists are naturally expressed higher-order functions, because of

the high genericity of the type definition. This includes iteration (similar to iteration
on arrays) and filtering, i.e., building a new list that contains only the elements of a
given list that verify a certain predicate, among others.
A very common operation on lists is the map function. This function takes a function

f and a list l as argument and calls f on each element of the list. It returns a list r
that contains all the return values of the calls to f , in the same order as the elements
in l. In other words, if l contains the elements x1, . . . , xn, map builds a new list of same
length, with the elements f x1, . . . , f xn. Let us consider an implementation this idea in
a function that we call mapinv (Fig. 5.21) for reasons that will become clear soon. The
code is quite simple: mapinv simply traverses the list and calls f on each node, building
the output list using the results of f . The important detail of this implementation is
that the recursive call happens before the call to f . In practice, this means that f is
called on the last element of the input list first.
Let us specify mapinv. It is quite simple to specify because the construction of the

output list and the calls to f are synchronized. Fig. 5.22 shows the specification. We
again generalize over the invariant to be maintained; it is a predicate over a state and
two lists. In the case of a non-empty list, it is easy to see that if the recursive call
establishes inv s rl tl, where s is the state after the recursive call, then the precondition
on f guarantees the postcondition.
A problem of mapinv is that f is called on the last element of the input list first.

It would be easier to understand map f l as the list f x1, f x2, · · · , f xn, where the
function f is called in that order. The actual implementation of map in the standard
library achieves this by forcing the recursive call to happen after the call to f . The
implementation of map in ML is given in Fig. 5.24.

161

5. Implementation and Case Studies

let rec mapinv [αβε] (inv : 〈ε〉 → α list → β list → prop)
(f : α →ε β) (l : α list) =
{ (∀ s. inv s Nil Nil) ∧
∀ x l l2. { inv cur l l2 }f x { r : inv cur (Cons x l) (Cons r l2)} }

match l with
| Nil → Nil
| Cons (x, rl) →

let tl = mapinv inv f rl in
let hd = f x in
Cons hd tl

{r : inv cur l r }

Figure 5.22: The implementation in Who of mapinv.

let rec map [αβε] (ia : 〈ε〉 → α list → prop)
(ib : 〈ε〉 → 〈ε〉 → β list → prop)
(f : α →ε β) (l : α list) =
{ ia cur l ∧ (∀s s′. ib s s′ Nil) ∧

(∀s1 s2 s3 x r l . ib s2 s3 l ∧ post f x s1 s2 r → ib s1 s3 (Cons r l)) ∧
∀x l. { ia cur (Cons x l)} f x { r : ia cur l}
}
match l with
| Nil → Nil
| Cons (x, rl) →

let hd = f x in
Cons hd (map ia ib f rl)

{r : ia cur Nil ∧ ib old cur r}

Figure 5.23: The implementation in Who of map for lists.

162

5.4. Case Studies

let rec map f l =
match l with
| Nil → Nil
| Cons (x, rl) →

let hd = f x in
Cons hd (map f rl)

Figure 5.24: The implementation of map in ML.

The specification of map is more complicated, because now the effect of f and the
effect of the recursive call are mixed. We give its specification in Fig. 5.23. The main
difficulty is that now three states are involved in the case of a non-empty list. The initial
state, the state after calling f and the state after the recursive call. We decide here to
split the invariant into two parts. The part of the invariant maintained by f is called ia.
This becomes clear in the precondition, where we state that f maintains ia. The same
condition also makes it clear that the list argument of ia is intended to be the input
list, because it becomes smaller after the call to f . The second part of the invariant is
represented by ib and corresponds to the recursive call. The ib predicate is intended to
relate the initial state s1 and the final state s3 of the call to map. However that the
recursive call only establishes this predicate for the intermediate state s2 and s3. The
precondition now establishes the necessary link, if s1 and s2 are pre- and poststate of a
call to f , respectively.
The only difference between the functions mapinv and map is the order in which the

effects happen. If the function f does not have any side effects, the functions are of
course equivalent. All proof obligations are discharged automatically.

5.4.5. Koda and Ruskey’s Algorithm
The development presented in this section has been published (Kanig and Filliâtre,
2009).
The algorithm considered in this section is due to Koda and Ruskey (1993) — Knuth

(2001) has given a very efficient implementation. From a mathematical point of view,
the algorithm enumerates the ideals of certain finite partially ordered sets — namely,
those whose Hasse diagram is a forest—as a Gray code. Expressed in different terms,
the task is to enumerate all colorings of a given, arbitrary forest. A coloring con-
sists in marking every node as either black or white, with the only constraint that all
descendants of a white node be white as well. For instance, the following forest:

(5.2)

admits exactly 15 distinct colorings, all of which are given in Fig. 5.25. By definition,
a sequence of colorings forms a Gray code if and only if every coloring of the forest
appears exactly once in it and two consecutive colorings differ by the color of exactly
one node.

163

5. Implementation and Case Studies

Figure 5.25: Koda and Ruskey’s algorithm applied to the forest (5.2).

Let us illustrate the algorithm’s functioning on the forest (5.2). The main idea is to
interleave the sequences of colorings which correspond to each of the trees that form
the forest. Here, one must interlace the sequence of the three colorings of the left-hand
tree, namely:

(5.3)

with the sequence of the five colorings of the right-hand tree, given below:

(5.4)

Thus, the first line of Fig. 5.25 exhibits the first coloring of the left-hand tree, combined
successively with all colorings of the right-hand tree. The second line shows the second
coloring of the left-hand tree, again combined with all colorings of the right-hand tree,
but this time in reverse order — indeed, it is clear that the mirror image of a Gray code
remains a Gray code. Finally, the third line exhibits the third coloring of the left-hand
tree and all colorings of the right-hand tree, this time again in their initial order.
There remains to explain how to enumerate all colorings of a tree. Let the first

coloring be uniformly white. Then, to obtain the remainder of the sequence, color
the root node black and enumerate all colorings of the forest formed by its children.
The sequence thus obtained is indeed a Gray code, because (i) the first and second
colorings differ only by the color of the root node and (ii) from then on, the root node
remains unaffected, and the sequence of the colorings of the children forms a Gray code
by construction. This process is illustrated by (5.3) and (5.4) above. Note that the
coloring where every node is black does not necessarily appear last in a sequence.

Functional implementation. We consider an OCaml implementation of Koda and
Ruskey’s algorithm which makes use of higher-order functions (Filliâtre and Pottier,
2003). First, we introduce the types for trees, forests and colors as follows:

type tree = Node of int ∗ forest
and forest = tree list
type color = White | Black

A tree is thus a term Node(i, f) where i is the index of its root and f the forest of its
sub-trees. A forest is simply a list of trees. The current coloring of the considered
forest will be materialized in a global array bits, which is assumed to be large enough
to contain all indices of the forest.

164

5.4. Case Studies

let rec enumforest k f =
match f with
| [] →

k ()
| Node (i, f ′) :: f →

let k () = enumforest k f in
if bits.(i) = White then begin k (); bits.(i) ← Black; enumforest k f ′
end else begin enumforest k f ′; bits.(i) ← White; k ()
end

Figure 5.26: An OCaml implementation of Koda and Ruskey’s algorithm.

A nice way to implement Koda and Ruskey’s algorithm is to use a continuation-based
approach, using a recursive function enumforest with the following type:

enumforest : (unit → unit) → forest → unit

It takes a continuation k and a forest f as arguments. Then it enumerates all colorings
of f , applying continuation k once for each different coloring of f .
The code for enumforest is given in Fig. 5.26 and proceeds as follows. If the forest

is empty, we simply call the continuation k. Otherwise, the forest contains at least one
tree, say Node(i, f ′), next to a sub-forest f . We first build a new continuation k which
enumerates the colorings of f , using the old continuation k. Then we consider the tree
itself. The function must be able to enumerate the colorings in both directions (as
explained in the next section). To determine which, we look up the color of the tree’s
root, that is bits.(i). If it is currently white, then the whole tree must be white. We
have a complete coloring, so we signal the continuation k; then, we color the root black
and enumerate its children’s colorings using enumforest. If, on the other hand, the root
is currently black, we do the converse. That is, we first use enumforest to enumerate
the children’s colorings in reverse order, which leaves all of the children entirely white;
then, we color the root white, and signal the continuation k.

Formal specification. We are now going to give a formal specification to this functional
implementation. In particular, we should characterize what is the effect of continuation
k. Obviously, it modifies the contents of array bits, since it is precisely used to do so
in recursive calls. But k may have other effects, if for instance the initial continuation
is used to print the current coloring or to record it in some array2. Therefore, we use
effect polymorphism to indicate that k may have some effect ε, disjoint from bits:

enumforest :
∀ε. (unit →bits, ε unit) → forest →bits ε unit

To specify the behavior of enumforest, we must also exhibit the forest whose colorings
2For the purpose of drawing pictures such as the one in Fig. 5.25, enumforest can be used with a
continuation k producing pictures.

165

5. Implementation and Case Studies

let rec enumforest [ε] (f0 : forest) (k : unit →bits ε unit) (f : forest) =
{ validf (append f f0) ∧ anyf bits (append f f0) ∧
{validf f0 ∧ anyf bits f0 } k () {mirrorf bits|old bits f0 ∧ eqout bits|old bits f0}
}
match f with
| [] → k ()
| Node (i, f ′) :: f →

let k () =
{ validf (append f f0) ∧ anyf bits (append f f0) }
enumforest f0 k f
{ mirrorf bits|old bits (append f f0) ∧ eqout bits|old bits (append f f0) }

in
if iswhite (get !bits i) then

(k (); bits := set !bits i Black ; enumforest (append f f0) k f ′)
else

(enumforest (append f f0) k f ′; bits := set !bits i White; k ())
{ mirrorf bits|old bits (append f f0) ∧ eqout bits|old bits (append f f0) }

Figure 5.27: Who implementation of Koda and Ruskey’s algorithm.

are enumerated by the continuation, as an additional argument, say f0. Thus the Who
implementation of Koda and Ruskey’s algorithm has three parameters, and looks like

let rec enumforest [ε] (f0 : forest) (k : unit →bits, ε unit)
(f : forest) = ...

The additional argument f0 is logical, since it only participates to the specification and
not to the computation.
We now turn to the specification itself. Here, we focus on the behavior of enumforest

with respect to the current coloring, i.e., we characterize the conditions under which the
function can be called and its effect on the contents of array bits. We do not prove that
the set of all colorings form a Gray code, but this could be deduced without too much
effort. The Who code for function enumforest is given in Fig. 5.27 and its annotations
are detailed in the remaining of this section.
The first requirement is a sanity condition over forests f and f0, which says that

they do not contain duplicate indices. We write i ∈ t (resp. i ∈ f) when i is an
index occurring in tree t (resp. in forest f). We also write valid t (resp. valid f)
to characterize a tree t (resp. a forest f) where all indices are different. These two
notions of occurrence and validity are easily defined inductively over trees and forests3.
If append denotes the concatenation of forests, we thus require

valid (append f f0)
3In the formal development, we distinguish validt for trees and validf for forests, since there is no
overloading; in this description, we simply write valid for greater clarity. We proceed similarly for
other predicates defined on trees and forests.

166

5.4. Case Studies

as a precondition.
The next requirement is a condition over the current coloring, i.e., the state of bits,

for enumforest to execute correctly. Requiring the nodes to be all colored in white is a
too strong condition, since recursive calls are going to be used to “decolor” some trees,
as in the second row of Fig. 5.25. We must thus characterize the final coloring of a tree
or a forest. Obviously, the parity of the number of colorings plays a role. Indeed, in a
forest containing two trees, say t1 and t2 in that order, the final coloring of t2 will be all
white if t1 admits an even number of colorings, and will be itself a final coloring of t2
otherwise. We introduce the predicates even and odd, over trees and forests, to indicate
an even (resp. odd) number of colorings. They are inductively defined as follows:

even t
even (t :: f)

even f
even (t :: f)

odd f
even (Node(i, f))

odd []
odd t odd f
odd (t :: f)

even f
odd (Node(i, f))

We can now define the notions of initial and final colorings. In the following, s stands for
a possible state of array bits, that is an array of colors. The predicate I s f characterizes
an initial state s for a given forest f , as being all-white:

I s f def= ∀i, i ∈ f ⇒ s(i) = White

Similarly, the predicate F s t (resp. F s f) characterizes a final state s for a tree t (resp.
a forest f):

F s t even t I s f
F s (t :: f)

F s t odd t F s f
F s (t :: f)

F s []
s(i) = Black F s f

F s (Node(i, f))

The precondition of enumforest requires each tree of the forest to be either in an initial
or final state, which can be defined as follows:

any s [f1; . . . ; fn] def= ∀i, I s fi ∨ F s fi

More precisely, the precondition requires that any holds on the concatenated forest
append f f0. We also require that valid and any are sufficient conditions to ensure
the precondition of k. Finally, the new continuation k which is built in enumforest is
given the same requirement.
We now turn to the postcondition of enumforest. Simply speaking, we want to state

that it switches the coloring of the forest from initial to final and conversely. As for
the precondition, it would be a too strong requirement and we need to characterize the
effect of enumforest more subtly. Again, the parity of the number of colorings is playing
a role, since an even number of colorings for the first tree would result in an unchanged
coloring for the remaining of the forest and, conversely, an odd number for the first tree

167

5. Implementation and Case Studies

would result in a switch for the remaining of the forest. To denote unchanged colorings,
we introduce the following predicate over two different states s1 and s2:

same s1 s2 f
def= ∀i, i ∈ f ⇒ s1(i) = s2(i)

Then we can define the effect of enumforest between pre-state s1 and post-state s2, as
the following, inductively defined predicate mirror:

I s1 t F s2 t

mirror s1 s2 t

F s1 t I s2 t

mirror s1 s2 t

mirror s1 s2 []
mirror s1 s2 t odd t mirror s1 s2 f

mirror s1 s2 (t :: f)
mirror s1 s2 t even t same s1 s2 f

mirror s1 s2 (t :: f)
This is the expected postcondition for enumforest, and thus also a requirement over
continuation k.
As such, the specification of enumforest is incomplete, as it does not say anything

about the colors for the indices which are not in f . Since the state of bits is considered
as a whole, these colors could have been changed. But for the correctness proof of
enumforest, it is necessary to know that recursive calls will not modify the color of
node i. Thus we need a stronger postcondition, which “frames” the effects on array
bits. For that purpose, we introduce the predicate

eqout s1 s2 f
def= ∀i, i 6∈ f ⇒ s1(i) = s2(i)

and use it in the postcondition of enumforest and k.

Formal proof. When processed with Who, the code in Fig. 5.27 results in 17 proof
obligations. They have been discharged using the Coq proof assistant, with the use
of several auxiliary lemmas over predicates even, any, mirror, etc., which have been
proved in Coq as well. Proving that the obtained enumeration is indeed a Gray code
would be interesting future work.

5.4.6. A Challenge for the Who Tool
We have succeeded in proving a number of programs where higher-order features and
effects are intricately connected. It is a long-term objective to prove larger programs,
where also other aspects play a rôle, such as being able to modularly organize a proof.
We believe that our system and tool does have all the necessary properties that permit
modular reasoning, even on a larger scale. The ingredients that render this possible are
effect and region polymorphism, the possibility to express properties about functional
values, and the effect analysis. From a theoretical point of view, the frame rule (The-
orem 4.4) guarantees that one can concentrate on the part of the state that has been
modified by a given expression.

168

5.4. Case Studies

Still, a larger example than the ones we have presented would be rewarding to prove
correct. A possible candidate is the lazy fixed-point computation proposed by Pottier
(2009). The goal of this program is to compute the least fixed-point of a set of recur-
sive equations between variables. The interesting point of the algorithm is that these
equations are not given syntactically, i.e., by a representation as a data type in ML, but
semantically, i.e., simply by ML expressions. One could also say that Pottier proposes
a shallow embedding instead of the usual deep embedding (see also the discussion on
page 148).
Usually, a system of equations is given in the following syntactic form:

x1 = E1(x)
x2 = E2(x)
· · ·
xn = En(x)

where the xi are variables and the right-hand sides Ei are expressions containing these
variables. A fixed-point of such a system is a assignment of all variables such that the
equations hold.
Pottier now takes a semantic approach, i.e., the user can give the equations directly

in ML syntax. He achieves this by defining a valuation to be a function from variables
to values:

type valuation = variable → value

A right-hand side rhs is a function from a valuation to a value:

type rhs = valuation → value

And finally, a set of equations is a mapping from a variable to an rhs.

type equations = variable → rhs

The advantage of this approach is that the user can define an rhs as an ML function

let rhsi (v : valuation) =
Ei(v y1, . . . , v yn)

where he only has to replace occurrences of the variables yi by calls to the valuation v,
with the variable as argument.
Now, Pottier provides a function

lfp : equations → valuation

that computes the least fixed-point of the list of equations. Unfolding all the type
definitions, we see that lfp is a function of third order. Internally, the function does a
certain number of side effects to minimize the number of computations.
A central aspect of the implementation of lfp is how it detects that a right-hand

side depends on a certain variable. We do not explain the exact implementation here,
instead we give the intuition. Imagine that we have a function

f : int→ int,

169

5. Implementation and Case Studies

but we do not have its definition, and we want to know if the function f uses its
argument. If it does not, it must be a constant function. The problem, stated as-is,
cannot be solved in ML, but by slightly modifying it we can propose a solution. Let us
change the type of f :

f : (unit→ int)→ int

where we have modified the type of the argument of f from int to unit → int. The
integer 1 would be represented as the constant function

λ().1

Now, whenever f wants to access the value of f , it needs to execute its argument. This
gives us a way to detect if f uses its argument. By passing an effectful function to f ,
we can observe if f executes its argument, for example as follows:

let b = ref false in
let x () = b := true; 1 in
f x

Now, if b is true after executing f , it must have read x; otherwise it hasn’t.
Pottier presents his program as a challenge to the program verification community.

We firmly believe that it is possible to prove that lfp computes a fixed point of the
initial set of equations.

170

6. Conclusion and Outlook
It is time to recapitulate the achievements, see what they can be used for and finally
sketch possible improvements and future work. In this last chapter of the thesis, we first
summarize briefly our contributions. We then discuss how close we have come to the
initial goal of the thesis, namely to be able to prove realistic programs in an existing
ML dialect; here, we focus on OCaml. Finally, we discuss remaining challenges and
possible improvements.

6.1. A Summary of the Contributions of this Thesis
The two central contributions of this thesis are

• a theoretical system that allows to specify effectful higher-order programs and to
generate proof obligations that imply the correctness of the program w.r.t. its
specifications,

• and an implementation of this system calledWho, that allows to actually prove the
generated obligations using standard automated and interactive theorem provers.

The theoretical system comprises

• an ML-like programming language called W with type and effect system very close
to the one by Talpin and Jouvelot (1994),

• a new specification language called L that extends a standard higher-order logic,

• a new weakest precondition calculus that combines features of the Why sys-
tem (Filliâtre, 2003) and the Pangolin system (Régis-Gianas and Pottier, 2008),
accompanied by a soundness and completeness proof,

• two restrictions of the initial system, namely the exclusion of region aliasing and
the restriction to singleton regions, that generalize ideas by Hubert and Marché
(2007) and Filliâtre (2003), respectively.

The system allows a modular specification of higher-order functions in the presence
of side effects. This modularity is achieved by using a higher-order logic as annotation
language and by providing effect polymorphism, which allows to abstract over the effect
of a functional argument.
The Who tool contains

• an implementation of all parts of the theoretical system,

• an encoding of the non-standard parts of L to a standard higher-order logic, and
a means to export proof obligations to Coq (The Coq Development Team, 2008),

171

6. Conclusion and Outlook

• an encoding of standard higher-order logic to first-order logic, more precisely the
logic of the Why tool (Filliâtre and Marché, 2007), to be able to use all automated
and interactive provers that are supported by the Why tool, to discharge proof
obligations.

Using this tool, a number of programs, that mix higher-order functions and effects
in interesting ways, have been proved correct:

• higher-order functions on arrays and lists, such as iter and map, applied to func-
tions that produce side effects,

• third-order functions such as ymemo and backpatch (Landin’s knot) that are
known to be difficult to reason about,

• Koda and Ruskey’s algorithm, in a continuation-based variant.

Higher-order iterators in presence of effects have already been discussed by others,
for example in the Ynot system (Nanevski et al., 2008), in a less general way by Honda
et al. (2005), and more recently by Borgström et al. (2010). Only in Ynot, there is
an actual implementation and an associated proof. Honda et al. (2005) also discuss
Landin’s knot, but only in a concrete case (the factorial function), not in its general
implementation as a fixed-point combinator. To our knowledge, Koda and Ruskey’s
algorithm has not been subject to program verification before.

6.2. Using Who to Verify OCaml Programs
A natural question to ask is whether we can directly apply the results of this thesis to
prove programs in a concrete implementation of ML, such as OCaml, for example. In
theory, the answer is mostly yes, but in practice a few more obstacles are to overcome.
Let us elaborate.

Language features that are already supported or easy to add. Many of the language
constructs of OCaml are also present inW, or can be easily added or encoded. W already
contains the functional core of ML, recursive functions and references, and higher-order
functions. We have also briefly discussed that algebraic data types and pattern matching
are easy to add, and both are present in the Who tool. The same is true for tuple types.
In Section 5.4.3, we have shown that the arrays of OCaml can be easily modeled in
Who.
OCaml also provides records. A record type definition looks like this:

type t = { f1 : τ1 ; · · · ; fn : τn }
A value that belongs to this type is called a record, and is a mapping from the fields fi
to a value of type τi. The names fi of the fields are also used for accessor functions to
the corresponding value of a field.
In principle, records can be easily dealt with by Who. Simply replace the record type

definition by a declaration of an algebraic data type with a single constructor and an
argument for each field of the record type:

172

6.2. Using Who to Verify OCaml Programs

type t = TRec of τ1 × · · · × τn

The accessor functions can now be defined by pattern matching.
Other features of OCaml require a bit more work, but seem to be easy to add. We do

not deal directly with other effects such as exceptions and input/output. However, the
effect mechanisms in the literature (effects, monads, capabilities) have all been shown
to address these effects easily, and Filliâtre (2003) has shown this in the context of
program verification. We believe that similar adjustments can be easily applied to W
and Who. The challenge of OCaml’s polymorphic variants (Garrigue, 1998) seems to
lie only in their complex typing relation, but they can otherwise be treated much like
regular algebraic data types.

Mutable records. The encoding we just showed for OCaml’s record types does not
take into account the fact that record fields can be declared mutable, i.e., in-place
modifiable. A simple modification of our encoding consists of declaring a reference type
for such a field, i.e., the declaration

type t = { f1 : τ1 ; mutable f2 : τ2 }
is encoded to the region polymorphic type

type t [%] = TRec of τ1 × ref% τ2

This encoding works, but it does not reflect an important fact of records: the mutable
fields of two different records, of same type or not, can never be aliased, while in the
encoding, we can easily store the same reference of the right type in many different
records.
A possible solution is to change the point of view and encode references using records

instead of the other way around. The type declaration
type ref [α] = { mutable contents : α }

is the definition in OCaml of the reference type. A slight generalization of our system
could deal with mutable records directly, instead of references, and associate regions to
mutable record fields. All regions that are associated to the field contents correspond
to references, while other regions may correspond to mutable fields of other records. In
this model, which corresponds to the Burstall-Bornat memory model (Burstall, 1972;
Bornat, 2000), it is impossible for two different mutable fields (of the same or of different
records) to exist in the same region.

Modules. Another central feature of existing ML programming languages is the mod-
ule system. Modules are simply groups of type definitions, values and functions. Ad-
ditionally, modules can be parameterized w.r.t. other modules; such parameterized
modules are called functors. Functors can be instantiated with concrete modules, and
such instantiations, just as function applications, can have side effects.
The fact that our proof system is very modular, thanks to higher-order logic and

effect polymorphism, implies that in principle, there should be no major obstacle to the
support of modules in Who. After all, a module is barely more than a record of values
and functions, and functor application is very similar to function application. So, from
a purely technical point of view, modules could be supported.

173

6. Conclusion and Outlook

However, the notion of module also comes with the notion of encapsulation. Often,
types in modules are rendered abstract, i.e., outside of the module, the definition of the
type is unknown. One would like to hide effects that are only needed for the internal
implementation of the module, but are not observable outside of it. Often, one would
like to attach an invariant to an abstract type, stating that all values of that type, seen
from the outside of the module, verify the invariant — for example, that a list is sorted.
Finally, one would like to present the specifications of the module’s functions using a
model. For example, if a module M implements a type t representing sets of integers,
a value empty that represents the empty set and functions add and remove with the
obvious meaning, one would like to say that add adds an element to a set, without
saying how this is exactly achieved. In the implementation, this can correspond to
adding a node to a tree or flipping a bit in some array, but these details are irrelevant
outside of the module.
So, in practice, the addition of a module system to Who would require mechanisms

that allow to

• hide effects,

• define a model that corresponds to a type,

• attach invariants to types.

We have seen in Section 5.4.2 that effect hiding is not possible; recent work by Schwing-
hammer et al. (2010) presents theoretical systems in which effect hiding is possible.

The object system of OCaml. OCaml contains another language feature, namely
a sophisticated object system (Rémy and Vouillon, 1997). A complete treatment of
this feature would certainly require other features of the logic and/or the type system.
There is a large body of literature concerning object-oriented programming and formal
verification. It would be interesting to see whether it can be applied to the object
system of OCaml. A paper where the notion of type invariant is applied to verification
of object-oriented programs is the one of Barnett et al. (2004a).

Surface syntax and annotation inference. Another obstacle is of more practical na-
ture. The Who tool uses its own input syntax for the W language, even though it is
relatively similar to the OCaml syntax. The differences between W and the subset of
OCaml that corresponds to the features in W essentially concern effect annotations and
specifications, both of which do not exist in OCaml. A first step towards proof of OCaml
programs would be to put effect annotations and specifications in special comments, as
is the case for the JML and Krakatoa specification languages. This would permit to
treat the file with the proof tool, but also with a regular OCaml compiler. However, to
be as convenient as possible for the programmer, one should strive to infer as much in-
formation as possible, just as type inference does for types. Effect and region inference,
just as type inference, is possible and is implemented in Who. However, region and
effect annotations can change the way a program must be annotated, and can change
proofs. Currently, effect generalization and instantiation is therefore explicit in Who,

174

6.2. Using Who to Verify OCaml Programs

while type and region annotations are unnecessary. An adaptation of the work by Hu-
bert and Marché (2007), that finds the “best” region instantiation for a given program,
to effect polymorphism would be helpful. Finally, there are many techniques capable
of discovering program specifications such as loop invariants automatically. There are
incomplete because the problem is undecidable, but in practice they can be of great
help.

Other Extensions and Ideas for Future Work
It would be challenging to specify and prove correct larger programs involving higher-
order functions and effects. One such example is the fixed point computation detailed
in Section 5.4.6. Other interesting applications are iterator functions and folds over
more complex data structures — hash tables, trees, trees with invariants — than the
ones we have presented (arrays and lists).
The type and effect system of W can be improved. We have already briefly discussed

that extending it to deal with exceptions and input/output would be useful. But also
the part of effects dealing with references could be improved. At the end of Section 4.2,
we already sketched a system in which singleton regions and group regions can be used
simultaneously, but do not interact. The realization of such a system, its improvement it
to be able to mix singleton and group regions freely, is still future work. Currently, Who
implements the system of Section 4.1, and the restriction Section 4.2 can be switched
on only for the entire program.

175

A. Résumé en Français

A.1. Introduction
Depuis des décennies maintenant, l’informatique et le logiciel s’installent partout dans
notre vie. C’est de plus en plus le cas aussi pour les systèmes dits critiques, des systèmes
dont la défaillance peut mettre en péril une grande somme d’argent, la vie d’un être
humain, ou les deux. Des exemples de tels systèmes critiques sont les logiciels de contrôle
des satellites et avions, des centrales nucléaires, ou encore les logiciels utilisés sur les
marchés financiers.
Il devient donc impératif de s’assurer du bon fonctionnement de ces programmes.

Pour cela, il faut d’abord fixer dans quelles situations le programme doit opérer, et
quel est son comportement attendu. Le test est une manière simple de vérifier si un
programme correspond à ces attentes. Il s’agit de fixer un certain nombre d’entrées du
programme et de déterminer, par exemple manuellement, le résultat attendu. Le test va
simplement exécuter le programme avec chacune de ces entrées et vérifier si le résultat
du programme correspond au résultat attendu.
Le test, sous une de ses nombreuses formes, est certainement la méthode la plus adap-

tée dans l’industrie pour s’assurer du bon fonctionnement d’un programme. Cependant,
le test ne peut garantir la correction d’un programme que pour un nombre fini d’entrées.
Or, il y a généralement une infinité de situations possibles dans lesquelles peut se trou-
ver un programme, même dans des cas très simples. Ou, pour le dire comme Dijkstra,
le test ne peut montrer que la présence d’erreurs, pas leur absence. Il est également
difficile de prévoir les situations les plus critiques qui peuvent apparaître en pratique.

A.1.1. La logique de Hoare

La logique de Hoare (Hoare, 1969) est une approche qui fait parti des méthodes for-
melles (Monin, 2002), qui visent à prouver avec des méthodes mathématiques qu’un
programme est correct vis-à-vis de sa spécification, c’est-à-dire qu’il se comporte comme
attendu dans toutes les situations dans lesquelles le programme est censé fonctionner.
Cette approche est supérieure au test dans le sens qu’elle peut fournir des garanties
bien plus importantes. Cependant, elle exige un travail très important de la part du
programmeur ou d’un expert ; elle est donc plus coûteuse que le test.
La logique de Hoare établit ce qu’on appelle un triplet de Hoare : étant donné un

programme C et des formules logiques P et Q, on dit que le triplet de Hoare

{ P } C { Q }

est valide si, quand la formule P est vraie initialement, la formule Q est toujours vraie
après l’exécution du programme C. Dit autrement, si C est le programme à vérifier,

177

A. Résumé en Français

alors P exprime les conditions dans lesquelles le programme est censé fonctionner, et Q
exprime les propriétés des résultats de l’exécution du programme.

A.1.2. L’ordre supérieur

Dans les langages dits de premier ordre, seuls des objets simples comme les entiers,
les booléens ou encore les chaînes de caractères sont considérés comme des valeurs,
c’est-à-dire qu’ils peuvent être passés à une fonction, être renvoyés par une fonction,
ou encore être stockés dans une structure de données. On dit aussi que ce sont des
objets de première classe ; toute opération du langage peut s’appliquer à ces objets. En
particulier, dans un langage de premier ordre, les fonctions ne sont pas de première
classe ; souvent, on peut seulement les définir à des endroits bien précis du programme,
et les appeler ensuite.
Dans un langage d’ordre supérieur, les fonctions deviennent des objets de première

classe, on peut donc les manipuler comme n’importe quelle valeur. En particulier, une
fonction peut maintenant prendre une autre fonction en argument. Une telle fonction
est appelée une fonction d’ordre supérieur.

A.1.3. Le langage ML

Parmi les langages de programmation existants, le langage ML (Leroy et al., 2008;
Milner et al., 1997) occupe une position privilégiée. Ceci est dû d’abord à sa sûreté. En
effet, un système de types puissant garantit qu’un programme ML bien typé ne peut
s’arrêter à cause d’un accès invalide à la mémoire ou encore à cause d’erreurs de typage.
Néanmoins, ce système de types est suffisamment riche pour permettre la plupart des
applications qui sont possibles dans d’autres langages. En particulier, le polymorphisme
de types, les fonctions d’ordre supérieur, et enfin les effets de bords grâce aux références
sont possibles en ML. Enfin, ML est très simple dans sa définition, ce qui le rend attractif
pour une étude théorique.

A.1.4. Les systèmes à effets

Dans certains cas, il est utile de connaître l’effet d’une partie d’un programme c’est-à-
dire l’ensemble des emplacements de mémoire que celui-ci va modifier. Cette information
peut servir à un compilateur, qui peut ou non appliquer certaines optimisations au code
généré. Elle peut aussi servir à simplifier le raisonnement nécessaire dans la logique de
Hoare. Dans le langage initialement présenté par Hoare (1969), le calcul des effets d’une
instruction est trivial. Dans des langages plus complexes, en particulier en présence de
fonctions, il devient nécessaire d’intégrer la notion d’effet dans le système de types. On
parle alors de systèmes de types et effets. Enfin, si le langage de programmation permet
de l’ordre supérieur, un tel système nécessite une notion de polymorphisme d’effet. Le
système de types et effets dont nous nous inspirons a été publié par Talpin and Jouvelot
(1994).

178

A.2. Le langage de programmation W et la logique L

A.1.5. Cette thèse

Le sujet de cette thèse est la preuve de programmes d’ordre supérieur en présence d’effets
de bord. Nous avons choisi la méthode de la logique de Hoare comme cadre. Quant au
langage de programmation à retenir, ML semble représenter le choix idéal, d’une part
parce qu’il est le plus petit langage contenant à la fois de l’ordre supérieur et des effets
de bord, d’autre part parce que son typage fort garantit déjà une partie des propriétés
d’un programme. D’autres langages de programmation, comme C, nécessitent la preuve
de propriétés liées à la validité des pointeurs, par exemple.
Il reste à choisir un mécanisme permettant de tracer les effets de bord et l’état modifié

par le programme. Nous avons choisi un système de types et effets avec polymorphisme
d’effets. D’abord, cela semble être une extension naturelle des systèmes existants, basés
sur la logique de Hoare et une analyse d’effets, qui ne traitent que le premier ordre.
Ensuite, cette technique permet de raisonner de manière modulaire sur les programmes.
Enfin, la combinaison d’un système à effets comme celui que nous utilisons avec un
système de logique de Hoare n’a jamais été réalisée dans le cadre des programmes
d’ordre supérieur.

A.2. Le langage de programmation W et la logique L
Comme langage de programmation servant de base de discussion pour tout le docu-
ment, nous introduisons le langage W, avec un système de règles de typage et une
sémantique à petits pas. Le langage est très proche de ML, mais présente néanmoins
quelques particularités liées au fait que W contient un système à effets similaire à celui
de Talpin and Jouvelot (1994). Tout d’abord, la notion d’effet est centrale. Un effet est
un ensemble de régions, une région étant une notion statique correspondant à une ou
plusieurs adresses de mémoire, et décrit ce que peut modifier une expression. Les types
des fonctions sont également annotés par un effet : une fonction qui accepte un entier
et retourne un entier, tout en modifiant une cellule de mémoire dans une région ρ a
le type int →ρ int. Afin de pouvoir calculer l’effet de chaque expression, les références
(cellules de mémoire) doivent être annotées avec la région à laquelle elles appartiennent.
Un effet peut aussi contenir des variables d’effet ε et des variables de régions %.
Nous définissons un système de types et effets avec deux jugements de typage. Le

jugement :
Γ; Σ `v v : τ

décrit qu’une valeur v a le type τ sous l’environnement de typage Γ et le typage de l’état
Σ. Le typage de l’état sert à donner un type et une région aux adresses de mémoire
créées pendant l’exécution d’un programme. Le jugement :

Γ; Σ ` e : τ, ϕ

décrit qu’une expression e a le type τ et produit l’effet ϕ sous l’environnement de typage
Γ et le typage de l’état Σ. Nous prouvons la correction du typage : un programme bien
typé va boucler ou réduire vers une valeur de même type. L’effet de l’expression peut
également être maintenu lors de la réduction d’une expression.

179

A. Résumé en Français

Le langage W permet trois types de polymorphisme : le polymorphisme de types,
comme en ML, mais aussi le polymorphisme d’effets et de régions. Dans notre présen-
tation de W, nous avons choisi de rendre ce polymorphisme explicite : l’utilisateur doit
indiquer les variables de types, effets et régions qui doivent être généralisées, et aussi
indiquer l’instanciation des variables, lors de l’utilisation d’un symbole polymorphe.
Nous définissons également un langage de spécification pour les programmes écrits

en W. Ce langage est très proche de la logique d’ordre supérieur standard, avec essen-
tiellement deux différences, à savoir les types état paramétrés par un effet, notés 〈ϕ〉, et
le polymorphisme de régions et effets comme dans les programmes. Un objet de type
〈ϕ〉 représente un état qui contient toutes les régions contenues dans l’expression d’effet
ϕ. On peut accéder à ces états à l’aide de l’opération get, les modifier avec la fonction
set, les combiner avec la fonction combine, et restreindre leur domaine (l’effet ϕ) avec
la fonction restrict.
Une idée centrale, inspirée par le système Pangolin (Régis-Gianas and Pottier, 2008),

est de plonger les types et les valeurs des programmes vers des types et valeurs dans la
logique. Comme W est un langage d’ordre supérieur, les fonctions, potentiellement avec
effets de bord, sont aussi des valeurs. Nous traduisons un type τ →ϕ τ ′ par une paire
de prédicats de type

(τ → 〈ϕ〉 → prop)× (τ → 〈ϕ〉 → 〈ϕ〉 → τ ′ → prop),

où la première composante représente la précondition d’une fonction, c’est-à-dire un
prédicat concernant l’argument de la fonction et l’état initial. La deuxième composante
est la postcondition, reliant l’argument, l’état initial et l’état final et la valeur renvoyée
par la fonction. Les états ne contiennent que ce qui est significatif à l’exécution de la
fonction, donc ce qui apparaît dans son effet.
Les valeurs peuvent également être plongées dans la logique. Une fonction en W,

annotée avec une précondition p et une postcondition q, est traduite par le couple
(p, q).
Les types de références peuvent être plongés dans la logique sans modification, mais

bien sûr les fonctions de lecture et écriture par effet de bord, ! et :=, sont devenues inac-
cessibles ; leur traduction dans la logique est une paire, qui ne peut pas être appliquée.
Elles sont remplacées par les fonctions correspondantes qui manipulent des états.
Grâce à ce plongement des valeurs et types des programmes, l’utilisateur peut expri-

mer dans la logique des propriétés de n’importe quelle valeur d’un programme.

A.3. Le calcul de plus faible précondition
Jusqu’ici nous avons présenté le langage de programmation W et le langage de spécifica-
tions L, mais aucune vérification est faite. Cette vérification prend la forme d’un calcul
de plus faible précondition. Ce calcul prend une formule q et une expression e et calcule
une formule p qui garantit que si p est vraie initialement, q est vraie après l’exécution
de l’expression e. Nous écrivons

wps(e, q)
pour la plus faible précondition de e et q, qui peut mentionner l’état s. L’utilisateur doit
maintenant prouver la formule p pour obtenir la correction de son programme vis-à-vis

180

A.4. Les restrictions d’alias

de sa spécification.
Parallèlement à la notion de plus faible précondition, nous introduisons aussi la notion

de correction d’une valeur, qui exprime qu’une valeur ne contient que des spécifications
correctes. Cette notion est définie pour toutes les valeurs, cependant elle n’est non
triviale que pour les fonctions. Une fonction de pré- et postcondition p et q et de
corps e est correcte si, pour un état s, la précondition pour s implique la plus faible
précondition pour s, e et q :

∀s.p s⇒ wps(e, q s)
L’état initial de la postcondition est également l’état s.
Le calcul de plus faible précondition suit largement les définitions classiques, mais tire

avantage des informations d’effets des expressions. Par exemple, pour justifier qu’une
application d’une fonction f à un argument x garantit une condition q, il faut prouver
la précondition de f , appliquée à x et à l’état courant, et il faut prouver que la post-
condition de f implique la condition q dans l’état qui est établi par la fonction f . Cette
définition classique est raffinée par le fait que l’état initial et l’état final ne peuvent
différer qu’en les régions qui sont mentionnées dans l’effet de la fonction f .
Nous prouvons la correction du calcul de plus faible précondition, c’est-à-dire que

la formule obtenue par ce calcul implique en effet la correction du programme. Plus
précisément, nous prouvons que si wps(e, q) est valide, alors à partir de l’état s, e
boucle ou se réduit vers un état s′ et une valeur v qui vérifient la postcondition q. Nous
acceptons donc la non-terminaison du programme, c’est-à-dire nous nous intéressons
donc seulement à la correction partielle du calcul de plus faible précondition.
Nous prouvons également la complétude de ce calcul, c’est-à-dire la propriété qu’étant

donné un programme e et une condition q, si e se réduit toujours vers une valeur qui
vérifie q, alors on peut modifier les annotations contenues dans e, pour obtenir une
expression e′, identique d’un point de vue calculatoire, pour laquelle nous pouvons
prouver la plus faible précondition, exprimée par wps(e, q).

A.4. Les restrictions d’alias
Le système présenté dans les deux sections précédentes est simple d’un point de vue
théorique, et possède des propriétés souhaitables telles que la correction et la complé-
tude. Néanmoins, il n’est pas très agréable d’utilisation en pratique. Prenons comme
exemple une fonction f avec le type suivant :

f : ∀%1, %2.ref%1 int→∅ ref%2 int→%1%2 int

Si on veut raisonner sur une telle fonction, il faut considérer trois cas :

• les deux régions %1 et %2 sont distinctes, et par conséquence, les références le sont
aussi ;

• les deux régions %1 et %2 sont en fait les mêmes (sont aliasées), mais les deux
références sont distinctes ;

• les deux références sont identiques, et les régions %1 et %2 sont donc également
identiques.

181

A. Résumé en Français

Nous proposons ici deux simplifications du système initial qui restreignent l’ensemble
des programmes acceptés, mais réduisent le nombre de cas à considérer.

A.4.1. L’exclusion d’aliasing de régions
Une bonne intuition, adaptée dans un cadre sans polymorphisme d’effets par Hubert
and Marché (2007), consiste à dire que les variables de région et variables d’effets sont
toujours indépendantes. En pratique, cela veut dire que

• deux variables de régions différentes représentent des régions différentes ;

• deux variables d’effets représentent deux effets disjoints ;

• l’effet représenté par une variable d’effet ne peut contenir une région représentée
par une variable de région.

Prenons l’exemple d’une fonction qui a un schéma de type comme celui-ci :

∀%1%2ε. · · ·

Alors les variables de région %1 et %2 ne peuvent pas être instanciées par la même région,
et la variable d’effet ε ne peut pas être instanciée avec un effet qui contient les régions
qui ont servi à instancier %1 et %2. Pour obtenir ce comportement, seules deux règles de
typage doivent être légèrement modifiées.
D’un point de vue théorique, cette restriction permet la formulation de la règle de

frame, qui dit qu’un programme ne peut toucher que les régions qui sont mentionnées
dans son effet, et tout ce qui n’est pas mentionné reste inchangé. Ce théorème était vrai
sans la restriction, mais l’aliasing entre régions rendait délicat le test si une région était
mentionnée dans un effet ou pas. La condition % /∈ ϕ ne suffisait pas, parce que la variable
de région % pouvait être remplacée plus tard par une région contenue dans ϕ, ou une
éventuelle variable d’effet dans ϕ pouvait être remplacée par un effet qui contient %. Avec
la restriction d’aliasing de régions, cela n’est plus possible, et cette décision d’inclusion
peut être prise statiquement. La condition % /∈ ϕ est suffisante pour conclure que si ϕ
est l’effet d’une expression, alors la région % ne sera pas touchée par cette expression. En
pratique, ce résultat théorique permet de nombreuses simplifications des spécifications,
des obligations de preuves et des preuves elles-mêmes.
Cette restriction réduit le nombre de programmes acceptés, mais ne réduit pas l’ex-

pressivité du langage, dans le sens où, si un programme pouvait être typé dans le système
d’origine, une modification des annotations de régions et d’effets peut être trouvée telle
que le programme ainsi obtenu peut être typé dans le système avec restriction.
Pour résumer, et revenir à notre fonction f du début de la section, cette restriction

propose de distinguer statiquement le cas où les deux régions sont différentes des deux
autres cas. Si f a le type

∀%1, %2.ref%1 int→∅ ref%2 int→%1%2 int,

alors les deux régions sont différentes et les deux références le sont forcément aussi. Si
le programmeur donne le type

∀%.ref% int→∅ ref% int→% int

182

A.5. L’outil et des exemples

à f , alors les références sont dans la même région et donc potentiellement égales. Il
revient à l’utilisateur de différencier les deux situations à l’aide d’annotations.

A.4.2. Les régions singletons
Une deuxième restriction, qui s’ajoute à la première, est la restriction des régions à des
régions singleton. Une région singleton est une région qui contient au plus une référence.
La distinction entre région et référence disparaît alors d’un point de vue logique.
D’un point de vue technique, un simple changement de la notion d’effet permet

d’obtenir cette restriction. Nous introduisons la notion d’effet de création, c’est-à-dire
la création d’une référence dans une région. L’objectif est de ne permettre qu’un seul
effet de création par région ; ainsi chaque région ne peut contenir qu’une seule référence.
Cette restriction est obtenue en interdisant l’union d’effets dont les effets de création
ne sont pas disjoints.
Cette restriction ajoute encore une simplification ; on peut maintenant décider sta-

tiquement si deux références sont identiques, à savoir quand elles sont dans la même
région. Un certain nombre d’obligations de preuves deviennent encore plus simple dans
ce cadre.
Contrairement à la première restriction, celle-ci restreint fortement l’expressivité du

langage. Un certain nombre de programmes ne peuvent plus être traités par ce système
simplifié. Cela concerne tous les programmes qui nécessitent un traitement dynamique
des références. Ceci inclut les références qui contiennent des références, des références
dans les listes, les expressions qui renvoient une référence ou une autre selon la situation.
Tous ces programmes peuvent être écrits, mais leur comportement devient alors trivial.
Une référence sur une autre référence doit forcément contenir toujours la même, à tout
point de programme ; une liste de références ne peut contenir deux références distinctes,
et l’expression renvoie toujours la même référence.
Pour reprendre l’exemple de notre fonction f , si le programmeur donne le type suivant

pour f :
∀%1, %2.ref%1 int→∅ ref%2 int→%1%2 int

alors, comme avant, les deux références sont forcément distinctes. Si le programmeur
donne le type

∀%.ref% int→∅ ref% int→% int

à f , alors les deux références sont forcément identiques ; en conséquence, la fonction f
n’a plus besoin d’avoir deux arguments de type référence.
Il s’agit alors d’un choix entre expressivité du système et simplicité des obligations de

preuve. Il est imaginable de faire cohabiter les deux restrictions dans le même système,
permettant la création de plusieurs références dans la même région, si cela est nécessaire,
mais cette combinaison n’a pas été étudiée dans cette thèse.

A.5. L’outil et des exemples
Le système théorique et ses extensions ont été implantés dans un outil nommé Who,
écrit en OCaml. L’outil prend en entrée un programme dans le langage W, avec des
annotations en langage L. À l’aide du calcul de plus faible précondition, il engendre, à

183

A. Résumé en Français

partir de ce programme annoté, une formule en L, qui contient toutes les obligations de
preuve nécessaires. Ensuite, cette formule est traduite vers une logique d’ordre supérieur
standard, qui est acceptée par un certain nombre de prouveurs interactifs. L’utilisateur
peut maintenant prouver cette formule pour prouver la correction du programme de
départ vis-à-vis de sa spécification.

A.5.1. Traduction vers la logique du premier ordre
Il est souhaitable de pouvoir se servir des nombreux démonstrateurs automatiques afin
de décharger les obligations de preuve plus facilement. Or, la grande majorité des dé-
monstrateurs automatiques supportent seulement une logique du premier ordre. En
collaboration avec Yann Régis-Gianas, nous avons donc développé une traduction de la
logique d’ordre supérieur vers la logique du premier ordre. La cible de cette traduction
est l’outil Why (Filliâtre and Marché, 2007). Cet outil accepte des formules en logique
du premier ordre dans une syntaxe particulière, et peut traduire ces formules dans les
différentes syntaxes de nombreux démonstrateurs automatiques. Grâce à la traduction
vers le premier ordre, et grâce à l’outil Why, nous pouvons utiliser les démonstrateurs
du premier ordre pour décharger les obligations de preuve générées parWho. Le principe
de la traduction présentée n’est pas nouveau, mais nous y apportons quelques modifi-
cations qui réduisent cette traduction à l’identité si la formule de départ est déjà une
formule du premier ordre.

A.5.2. Études de cas
Pour démontrer la capacité de Who à prouver la correction de programmes d’ordre
supérieur avec effets, nous avons écrit et spécifié quelques programmes en W, et nous
les avons prouvés corrects :

• une implantation de la boucle for, utilisant une fonction d’ordre supérieur ;

• le nœud de Ladin, qui consiste à réaliser une fonction récursive sans utiliser le
mécanisme de récursion fourni par le langage ;

• deux fonctions de mémoïsation, qui utilisent un effet de bord sur une table pour
garder en mémoire le résultat d’une fonction pure et éviter de l’appeler de nouveau
avec le même argument ;

• deux fonctions d’ordre supérieur, iter et map, concernant les tableaux, et la fonc-
tion map pour les listes ;

• L’algorithme de Koda et Ruskey (Koda and Ruskey, 1993), qui énumère certaines
colorations d’une forêt.

Dans tous ces cas, nous présentons une implantation en ML, sans annotations, suivie
d’une implantation en W, avec annotations. La majorité des programmes peuvent être
prouvés corrects en utilisant uniquement les démonstrateurs automatiques. Les autres
programmes, comme l’algorithme de Koda et Ruskey, nécessitent des preuves manuelles,
qui ont été effectuées dans l’assistant de preuve Coq.

184

A.6. Conclusion

A.6. Conclusion
Les deux contributions centrales de cette thèse sont :

• un système théorique permettant de spécifier des programmes impératifs d’ordre
supérieur et de générer des obligations de preuve qui impliquent la correction du
programme par rapport à sa spécification ;

• une implantation de ce système, nomméeWho, qui permet, en pratique, de prouver
ces obligations générées à l’aide de prouveurs existants, automatiques et interac-
tifs.

Le système théorique inclut :

• un langage de programmation que nous appelons W, similaire à ML, avec un
système de types et effets qui ressemble celui de Talpin and Jouvelot (1994) ;

• un nouveau langage de spécifications que nous appelons L, qui étend la logique
d’ordre supérieur standard,

• un nouveau calcul de plus faible précondition, qui combine les capacités du sys-
tème de Why (Filliâtre, 2003) et du système de Pangolin (Régis-Gianas and Pot-
tier, 2008) ;

• des preuves de correction et complétude de ce calcul ;

• deux modifications du système initial, à savoir l’exclusion d’aliasing entre régions,
et la restriction à des régions singletons. Les deux modifications généralisent des
idées de Hubert and Marché (2007) et Filliâtre (2003), respectivement.

Ce système permet la spécification modulaire de fonctions d’ordre supérieur en pré-
sence d’effets de bord. Cette modularité est obtenue grâce à l’utilisation d’une logique
d’ordre supérieur en tant que langage de spécification, mais aussi grâce au polymor-
phisme d’effets présent en W, qui permet de s’abstraire de l’effet d’un argument fonc-
tionnel.
L’outil Who contient :

• une implantation de la majorité de ce qui a été présenté dans la partie théorique ;

• un encodage des parties non-standards de L vers la logique d’ordre supérieur
usuelle, et un moyen d’exporter les obligations de preuve vers Coq (The Coq
Development Team, 2008) ;

• un encodage de la logique d’ordre supérieur vers le premier ordre, plus précisément
la logique de l’outil Why (Filliâtre and Marché, 2007). Cet encodage permet de
décharger les obligations de preuve à l’aide des nombreux prouveurs automatiques
et interactifs dont Why connaît le format d’entrée.

À l’aide de l’outil Who, nous avons prouvé un certain nombre de programmes qui mé-
langent effets de bord et ordre supérieur pour obtenir de résultats intéressants, comme

185

A. Résumé en Français

des preuves de correction des fonctions d’ordre supérieur manipulant les tableaux, ou
encore la preuve de correction de l’algorithme de Koda et Ruskey.
Les itérateurs d’ordre supérieur, en combination avec des effets de bord, ont déjà été

discutés dans la littérature, par exemple dans le système Ynot (Nanevski et al., 2008), de
manière moins générale par Honda et al. (2005), et plus récemment par Borgström et al.
(2010). Seul le système Ynot, et le nôtre, peuvent présenter une implantation prouvée
de tels itérateurs. Honda et al. (2005) discutent le nœud de Landin, mais seulement
dans un cas concret d’application, et non pas dans sa forme générale de point fixe. À
notre connaissance, nous avons été les premiers à soumettre l’algorithme de Koda et
Ruskey à une vérification formelle.

186

Bibliography

Harold Abelson and Gerald J. Sussman. Structure and Interpretation of Computer
Programs. MIT Press, Cambridge, MA, USA, 1996. ISBN 0262011530.

Jean-Raymond Abrial. The B-Book, Assigning Programs to Meaning. Cambridge Uni-
versity Press, 1996.

Peter B. Andrews. An Introduction to Mathematical Logic and Type Theory: to Truth
through Proof. Academic Press, 1986.

Krzysztof R. Apt. Ten Years of Hoare’s Logic : A Survey. ACM Transactions on
Programming Languages and Systems, 3(4):431–483, October 1981.

Brian Aydemir, Arthur Charguéraud, Benjamin C. Pierce, Randy Pollack, and
Stephanie Weirich. Engineering Formal Metatheory. In POPL ’08: Proceedings of
the 35th annual ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 3–15, New York, NY, USA, 2008. ACM.

J. W. Backus, F. L. Bauer, J. Green, C. Katz, J. McCarthy, A. J. Perlis, H. Rutishauser,
K. Samelson, B. Vauquois, J. H. Wegstein, A. van Wijngaarden, and M. Woodger.
Report on the algorithmic language algol 60. Commun. ACM, 3(5):299–314, 1960.

H. P. Barendregt. The Lambda Calculus, its Syntax and Semantics. North Holland,
Amsterdam, 2nd ed., 1984. ISBN 0-444-87508-5.

Mike Barnett, Robert DeLine, Manuel Fähndrich, K. Rustan M. Leino, and Wolfram
Schulte. Verification of Object-Oriented Programs with Invariants. Journal of Object
Technology, 3:27–56, 2004a.

Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# Programming
System: An Overview. In Construction and Analysis of Safe, Secure, and Interoper-
able Smart Devices (CASSIS’04), volume 3362 of LNCS, pages 49–69, 2004b.

Sylvain Baro. Introduction to Paf!, a Proof Assistant for ML Programs Verification.
In Stefano Berardi, Mario Coppo, and Ferruccio Damiani, editors, TYPES, volume
3085 of Lecture Notes in Computer Science, pages 51–65. Springer, 2003.

Sylvain Baro and Pierre Manoury. Un Système à Raisonner Formellement sur les
Programmes ML. In Jean-Christophe Filliâtre, editor, JFLA, Collection Didactique,
pages 49–62. INRIA, 2003.

Clark Barrett and Cesare Tinelli. CVC3. In Damm and Hermanns (2007), pages 298–
302.

187

Bibliography

Kent Beck and Cynthia Andres. Extreme Programming Explained: Embrace Change
(2nd Edition). Addison-Wesley Professional, 2004. ISBN 0321278658.

Michael Beeson. Mathematical Induction in Otter-Lambda. J. Autom. Reason., 36(4):
311–344, 2006.

Patrick Behm, Paul Benoit, Alain Faivre, and Jean-Marc Meynadier. METEOR : A
Successful Application of B in a Large Project. In Jeannette M. Wing, JimWoodcock,
and Jim Davies, editors, Proceedings of FM’99: World Congress on Formal Methods,
Lecture Notes in Computer Science (Springer-Verlag), pages 369–387. Springer Ver-
lag, September 1999.

Martin Berger, Kohei Honda, and Nobuko Yoshida. A Logical Analysis of Aliasing in
Imperative Higher-order Functions. J. Funct. Program., 17(4-5):473–546, 2007.

Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne,
Antoine Miné, David Monniaux, and Xavier Rival. The Astrée Static Analyzer, 2003.
URL http://www.astree.ens.fr/.

Richard Bonichon, David Delahaye, and Damien Doligez. Zenon : An Extensible Au-
tomated Theorem Prover Producing Checkable Proofs. In Nachum Dershowitz and
Andrei Voronkov, editors, LPAR, volume 4790 of Lecture Notes in Computer Science,
pages 151–165. Springer, 2007.

Johannes Borgström, Juan Chen, and Nikhil Swamy. Verified Programming with an
Affinity for Hoare Types. Technical Report MSR-TR-2010-95, Microsoft Research,
July 2010.

Richard Bornat. Proving Pointer Programs in Hoare Logic. In Mathematics of Program
Construction, pages 102–126, 2000.

Rod Burstall. Some Techniques for Proving Correctness of Programs which Alter Data
Structures. Machine Intelligence, 7:23–50, 1972.

Cristiano Calcagno, Simon Helsen, and Peter Thiemann. Syntactic Type Soundness
Results for the Region Calculus. Inf. Comput., 173(2):199–221, 2002.

Robert Cartwright and Derek Oppen. The Logic of Aliasing. Acta Informatica, 15(4):
365–384, August 1981.

Arthur Charguéraud. Program Verification Through Characteristic Formulae. In ACM
SIGPLAN International Conference on Functional Programming, September 2010.

Arthur Charguéraud and François Pottier. Functional Translation of a Calculus of
Capabilities. In Hook and Thiemann (2008), pages 213–224.

Adam Chlipala. A Verified Compiler for an Impure Functional Language. In
Hermenegildo and Palsberg (2010), pages 93–106.

188

Bibliography

Adam Chlipala, Gregory Malecha, Greg Morrisett, Avraham Shinnar, and Ryan Wis-
nesky. Effective Interactive Proofs for Higher-order Imperative Programs. In Andrew
Tolmach, editor, 14th International Conference on Functional Programming, Edin-
burgh, Scotland, Proceedings. ACM Press, September 2009.

Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. MIT Press,
2000.

Edmund Melson Clarke, Jr. Programming Language Constructs for Which It Is Impos-
sible To Obtain Good Hoare Axiom Systems. J. ACM, 26(1):129–147, 1979.

Sylvain Conchon and Évelyne Contejean. The Alt-Ergo Automatic Theorem Prover,
2008. URL http://alt-ergo.lri.fr/.

Évelyne Contejean, Pierre Courtieu, Julien Forest, Olivier Pons, and Xavier Urbain.
CiME3, 2007. URL http://cime.lri.fr. http://cime.lri.fr.

Catarina Coquand and Thierry Coquand. Structured Type Theory. 1999.

Jean-François Couchot and Stéphane Lescuyer. Handling Polymorphism in Automated
Deduction. In 21th International Conference on Automated Deduction (CADE-21),
volume 4603 of LNCS (LNAI), pages 263–278, Bremen, Germany, July 2007.

Patrick Cousot and Radhia Cousot. Systematic Design of Program Analysis Frame-
works. In POPL ’79: Proceedings of the 6th ACM SIGACT-SIGPLAN symposium
on Principles of programming languages, pages 269–282, New York, NY, USA, 1979.
ACM.

Pierre Crégut. Une Procédure de Décision Réflexive pour l’Arithmétique de Presburger
en Coq. Deliverable, Projet RNRT Calife, 2001.

Haskell B. Curry. Combinatory logic / [by] Haskell B. Curry [and] Robert Feys. With
two sections by William Craig. North-Holland Pub. Co., Amsterdam, 1958.

Luis Damas. Type Assignment in Programming Languages. PhD thesis, University of
Edinburgh, April 1985. Technical report CST-33-85.

Luis Damas and Robin Milner. Principal Type-Schemes for Functional Programs. In
POPL ’82: Proceedings of the 9th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 207–212, New York, NY, USA, 1982. ACM Press.

Werner Damm and Holger Hermanns, editors. Computer Aided Verification, volume
4590 of LNCS, Berlin, Germany, July 2007. Springer Verlag.

Werner Damm and Bernhard Josko. A Sound and Relatively Complete Hoare-logic for
a Language with Higher Type Procedures. Acta Informatica, 20(1):59–101, October
1983.

Nikolas. G. de Bruijn. Lambda Calculus with Nameless Dummies, a Tool for Automatic
Formula Manipulation, with Application to the Church-Rosser Theorem. Proc. of
the Koninklijke Nederlands Akademie, 75(5):380–392, 1972.

189

Bibliography

Leonardo de Moura and Nikolaj Bjørner. Z3, an Efficient SMT Solver, 2009. http:
//research.microsoft.com/projects/z3/.

Leonardo de Moura and Bruno Dutertre. Yices: An SMT Solver, 2009. http://yices.
csl.sri.com/.

David Detlefs, Greg Nelson, and James B. Saxe. Simplify: a Theorem Prover for
Program Checking. J. ACM, 52(3):365–473, 2005.

Edsger W. Dijkstra. Guarded Commands, Nondeterminacy and Formal Derivation of
Programs. Commun. ACM, 18(8):453–457, 1975.

Manuel Fähndrich and Robert DeLine. Adoption and Focus: Practical Linear Types
for Imperative Programming. In PLDI, pages 13–24, 2002.

Jean-Christophe Filliâtre. Verification of Non-functional Programs using Interpretations
in Type Theory. Journal of Functional Programming, 13(4):709–745, July 2003.

Jean-Christophe Filliâtre and Claude Marché. The Why/Krakatoa/Caduceus Platform
for Deductive Program Verification. In Damm and Hermanns (2007), pages 173–177.

Jean-Christophe Filliâtre and François Pottier. Producing All Ideals of a Forest, Func-
tionally. Journal of Functional Programming, 13(5):945–956, September 2003.

Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The Essence of
Compiling with Continuations. In PLDI, pages 237–247, 1993.

Robert W. Floyd. Assigning Meanings to Programs. In J. T. Schwartz, editor, Mathe-
matical Aspects of Computer Science, volume 19 of Proceedings of Symposia in Applied
Mathematics, pages 19–32, Providence, Rhode Island, 1967. American Mathematical
Society.

Jacques Garrigue. Programming with Polymorphic Variants. In ACM SIGPLAN Work-
shop on ML, Baltimore, Maryland, USA, 1998.

J.-Y. Girard. Interprétation Fonctionelle et Élimination des Coupures dans l’Arithmé-
tique d’Ordre Supérieur. PhD thesis, Univ. Paris VII, France, 1972.

Mike Gordon. From LCF to HOL: A Short History. Proof, language, and interaction:
essays in honour of Robin Milner, pages 169–185, 2000.

Robert Harper. A Simplified Account of Polymorphic References. Information Process-
ing Letters, 51(4):201 – 206, 1994.

Leon Henkin. Completeness in the Theory of Types. Journal of Symbolic Logic, 15:81
– 91, 1950.

Manuel V. Hermenegildo and Jens Palsberg, editors. Proceedings of the 37th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2010, Madrid, Spain, January 17-23, 2010, 2010. ACM.

190

Bibliography

C. A. R. Hoare. An Axiomatic Basis for Computer Programming. Communications of
the ACM, 12(10):576–580 and 583, October 1969.

C. A. R. Hoare. An Axiomatic Definition of the Programming Language Pascal. In
Proceedings of the International Symposium on Theoretical Programming, pages 1–16,
London, UK, 1974. Springer-Verlag. ISBN 3-540-06720-5.

Kohei Honda, Nobuko Yoshida, and Martin Berger. An Observationally Complete
Program Logic for Imperative Higher-order Functions. In In Proc. LICS’05, pages
270–279, 2005.

James Hook and Peter Thiemann, editors. Proceeding of the 13th ACM SIGPLAN inter-
national conference on Functional programming, ICFP 2008, Victoria, BC, Canada,
September 20-28, 2008, 2008. ACM.

William A. Howard. The Formulas-as-Types Notion of Construction. In J. P. Seldin
and J. R. Hindley, editors, To H. B. Curry: Essays on Combinatory Logic, Lambda
Calculus, and Formalism, pages 479–490. Academic Press, 1980. Reprint of 1969
article.

Thierry Hubert and Claude Marché. Separation Analysis for Deductive Verification.
In Heap Analysis and Verification (HAV’07), pages 81–93, Braga, Portugal, March
2007.

Joe Hurd. First-order Proof Tactics in Higher-order Logic Theorem Provers. In Design
and Application of Strategies/Tactics in Higher Order Logics, number NASA/CP-
2003-212448 in NASA Technical Reports, pages 56–68, 2003.

Thomas Johnsson. Lambda Lifting: Transforming Programs to Recursive Equations.
In Proc. of a conference on Functional programming languages and computer archi-
tecture, pages 190–203, New York, NY, USA, 1985. Springer-Verlag New York, Inc.
ISBN 3-387-15975-4.

Cem Kaner, Hung Q. Nguyen, and Jack L. Falk. Testing Computer Software. John
Wiley & Sons, Inc., New York, NY, USA, 1993. ISBN 0442013612.

Johannes Kanig. Who - A Verification Condition Generator for Imperative Higher-order
Programs, 2010. URL http://www.lri.fr/~kanig/who.html.

Johannes Kanig and Jean-Christophe Filliâtre. Who: A Verifier for Effectful Higher-
order Programs. In ACM SIGPLAN Workshop on ML, Edinburgh, Scotland, UK,
August 2009.

C. Keller and B. Werner. Importing HOL Light into Coq. In M. Kaufmann and
L. Paulson, editors, LNCS, volume Proceedings of the Interactive Theorem Proving
conference, LNCS 2010, Edinburgh, UK, July 11-14, 2010, 2010.

B. W. Kernighan and D. M. Ritchie. The C Programming Language. Prentice-Hall,
Englewood Cliffs, New Jersey, 1978.

191

Bibliography

Donald E. Knuth. The Art of Computer Programming, Volume 1: Fundamental Al-
gorithms (3rd Edition). Addison-Wesley Professional, 3 edition, July 1997. ISBN
0201896834.

Donald E. Knuth. The Art of Computer Programming, volume 4, Pre-Fascicle 2a:
A Draft of Section 7.2.1.1: Generating all n-tuples. Addison-Wesley, Septem-
ber 2001. Circulated electronically. http://www-cs-staff.stanford.edu/~knuth/
news.html.

Yasunori Koda and Frank Ruskey. A Gray Code for the Ideals of a Forest Poset. Journal
of Algorithms, 15(2):324–340, September 1993.

Neelakantan R. Krishnaswami. Reasoning about iterators with separation logic. In
SAVCBS ’06: Proceedings of the 2006 conference on Specification and verification of
component-based systems, pages 83–86, New York, NY, USA, 2006. ACM.

Peter J. Landin. The Next 700 Programming Languages. Commun. ACM, 9(3):157–166,
1966.

Gary T. Leavens, Erik Poll, Curtis Clifton, Yoonsik Cheon, Clyde Ruby, David Cok,
Peter Müller, Joseph Kiniry, Patrice Chalin, and Daniel M. Zimmerman. JML Refer-
ence Manual, 2009. URL http://www.eecs.ucf.edu/~leavens/JML/jmlrefman/.

Xavier Leroy. Formal Verification of a Realistic Compiler. Communications of the
ACM, 52(7):107–115, 2009.

Xavier Leroy and François Pessaux. Type-based Analysis of Uncaught Exceptions.
ACM Trans. Program. Lang. Syst., 22(2):340–377, 2000.

Xavier Leroy, Damien Doligez, Jacques Garrigue, Didier Rémy, and Jérôme Vouillon.
The Objective Caml system release 3.11, Documentation and user’s manual, Novem-
ber 2008. http://caml.inria.fr/pub/docs/manual-ocaml/.

J. M. Lucassen and D. K. Gifford. Polymorphic Effect Systems. In POPL ’88: Proceed-
ings of the 15th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 47–57, New York, NY, USA, 1988. ACM.

Séverine Maingaud, Vincent Balat, Richard Bubel, Reiner Hähnle, and Alexandre
Miquel. Specifying Imperative ML-like Programs using Dynamic Logic. In Inter-
national Conference on Formal Verification of Object-Oriented Software, June 2010.

Gregory Malecha, Greg Morrisett, Avraham Shinnar, and Ryan Wisnesky. Toward a
Verified Relational Database Management System. In Hermenegildo and Palsberg
(2010), pages 237–248.

Daniel Marino and Todd D. Millstein. A Generic Type-and-effect System. In Andrew
Kennedy and Amal Ahmed, editors, TLDI, pages 39–50. ACM, 2009.

Conor McBride and James McKinna. The View from the Left. J. Funct. Program., 14
(1):69–111, 2004.

192

Bibliography

Jia Meng and Lawrence C. Paulson. Translating Higher-order Clauses to First-order
Clauses. J. Autom. Reasoning, 40(1):35–60, 2008.

Bertrand Meyer. Eiffel: The Language. Prentice Hall, Hemel Hempstead, 1992.

Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall PTR, March
2000. ISBN 0136291554.

Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition of
Standard ML (Revised). MIT, May 1997. ISBN 0-262-63181-4.

Jean-François Monin. Understanding Formal Methods. Springer Verlag, 2002. Foreword
by G. Huet, ISBN 1-85233-247-6.

Glenford J. Myers and Corey Sandler. The Art of Software Testing. John Wiley &
Sons, 2004. ISBN 0471469122.

Aleksandar Nanevski, Greg Morrisett, and Lars Birkedal. Polymorphism and Separa-
tion in Hoare Type Theory. In John Reppy and Julia Lawall, editors, 11th ACM
SIGPLAN International Conference on Functional Programming, ICFP 2006, pages
62–73, Portland, Oregon, USA, 2006. ACM.

Aleksandar Nanevski, Greg Morrisett, Avraham Shinnar, Paul Govereau, and Lars
Birkedal. Ynot: Reasoning with the Awkward Squad. In Hook and Thiemann (2008),
pages 229–240.

Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of Program Anal-
ysis. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1999. ISBN 3540654100.

Tobias Nipkow, Markus Wenzel, and Lawrence C. Paulson. Isabelle/HOL: A Proof
Assistant for Higher-order Logic. Springer-Verlag, Berlin, Heidelberg, 2002. ISBN
3-540-43376-7.

Lawrence C. Paulson and Kong Woei Susanto. Source-level Proof Reconstruction for
Interactive Theorem Proving. In TPHOLs’07: Proceedings of the 20th international
conference on Theorem proving in higher order logics, pages 232–245, Berlin, Heidel-
berg, 2007. Springer-Verlag.

Simon Peyton Jones et al. The Haskell 98 Language and Libraries: The Revised Report.
Journal of Functional Programming, 13(1):0–255, Jan 2003. http://www.haskell.
org/definition/.

Benjamin C. Pierce. Types and Programming Languages. MIT Press, Cambridge, MA,
USA, 2002. ISBN 0-262-16209-1.

Randy Pollack. Closure under Alpha-Conversion. In TYPES ’93: Proceedings of the
international workshop on Types for proofs and programs, pages 313–332, Secaucus,
NJ, USA, 1994. Springer-Verlag New York, Inc.

François Pottier. Lazy least fixed points in ML. Unpublished, December 2009. URL
http://gallium.inria.fr/~fpottier/publis/fpottier-fix.pdf.

193

Bibliography

François Pottier and Nadji Gauthier. Polymorphic Typed Defunctionalization and Con-
cretization. Higher-Order and Symbolic Computation, 19:125–162, March 2006.

Yann Régis-Gianas and François Pottier. A Hoare Logic for Call-by-value Functional
Programs. In Proceedings of the Ninth International Conference on Mathematics of
Program Construction (MPC’08), pages 305–335, July 2008.

Didier Rémy and Jérôme Vouillon. Objective ML: a Simple Object-Oriented Extension
of ML. In POPL ’97: Proceedings of the 24th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 40–53, New York, NY, USA, 1997.
ACM.

John C. Reynolds. Syntactic Control of Interference. In Conference Record of the Fifth
Annual ACM Symposium on Principles of Programming Languages, pages 39–46,
New York, 1978. ACM.

John C. Reynolds. Types, Abstraction and Parametric Polymorphism. In IFIP
Congress, pages 513–523, 1983.

John C. Reynolds. Definitional Interpreters for Higher-order Programming Languages.
Higher-Order and Symbolic Computation, 11:363–397, 1998. ISSN 1388-3690.

John C. Reynolds. Separation Logic: a Logic for Shared Mutable Data Structures. In
17h Annual IEEE Symposium on Logic in Computer Science. IEEECSP, 2002.

Alexandre Riazanov and Andrei Voronkov. The Design and Implementation of Vampire.
AI Commun., 15(2-3):91–110, 2002.

S. Schulz. System Description: E 0.81. In D. Basin and M. Rusinowitch, editors, Proc.
of the 2nd IJCAR, Cork, Ireland, volume 3097 of LNAI, pages 223–228. Springer,
2004.

Jan Schwinghammer, Hongseok Yang, Lars Birkedal, François Pottier, and Bernhard
Reus. A semantic foundation for hidden state. In C.-H. L. Ong, editor, Proceedings
of the 13th International Conference on Foundations of Software Science and Com-
putational Structures (FOSSACS 2010), volume 6014 of Lecture Notes in Computer
Science, pages 2–17. Springer, March 2010.

Frederick Smith, David Walker, and J. Gregory Morrisett. Alias Types. In ESOP
’00: Proceedings of the 9th European Symposium on Programming Languages and
Systems, pages 366–381, London, UK, 2000. Springer-Verlag. ISBN 3-540-67262-1.

Matthieu Sozeau. Program-ing Finger Trees in Coq. In Ralf Hinze and Norman Ramsey,
editors, 12th ACM SIGPLAN International Conference on Functional Programming,
ICFP 2007, pages 13–24, Freiburg, Germany, 2007. ACM.

Bjarne Stroustrup. The C++ Programming Language, Second Edition. Addison-Wesley,
1991. ISBN 0-201-53992-6.

Jean-Pierre Talpin and Pierre Jouvelot. The Type and Effect Discipline. Inf. Comput.,
111(2):245–296, 1994.

194

Bibliography

The Coq Development Team. The Coq Proof Assistant Reference Manual – Version
V8.2, 2008. URL http://coq.inria.fr.

Laurent Théry. A Tour of Formal Verification with Coq:Knuth’s Algorithm for Prime
Numbers. Technical Report RR-4600, INRIA, 10 2002.

Mads Tofte. Type Inference for Polymorphic References. Information and Computation,
89(1):1–34, 1990.

Mads Tofte and Jean-Pierre Talpin. Region-based Memory Management. Inf. Comput.,
132(2):109–176, 1997.

David Walker, Karl Crary, and Greg Morrisett. Typed Memory Management via Static
Capabilities. ACM Trans. Program. Lang. Syst., 22(4):701–771, 2000.

Christoph Weidenbach, Dilyana Dimova, Arnaud Fietzke, Rohit Kumar, Martin Suda,
and Patrick Wischnewski. Spass Version 3.5. In Renate A. Schmidt, editor, CADE,
volume 5663 of Lecture Notes in Computer Science, pages 140–145. Springer, 2009.

J. B. Wells. Typability and Type Checking in System F Are Equivalent and Undecid-
able. Annals of Pure and Applied Logic, 98:111–156, 1998.

Ryan Wisnesky, Gregory Malecha, and Greg Morrisett. Certified Web Services in Ynot.
In 5th International Workshop on Automated Specification and Verification of Web
Systems, July 2009.

Andrew K. Wright. Simple Imperative Polymorphism. LISP and symbolic computation,
8:343–355, 1995.

Andrew K. Wright and Matthias Felleisen. A Syntactic Approach to Type Soundness.
Inf. Comput., 115(1):38–94, 1994.

195

Notations

Metavariables
c Program or logic constant, page 40
e Expression in W , page 40
l Memory location, page 41
R Region in a store, page 45
r Region constant, page 39
s Store, page 45
v Value in W , page 41
Σ Store typing, page 51
α, β, γ Type variable, page 40
δ Function that defines the semantics of constants in W , page 45
ε Effect variable, page 39
ι Type constant, page 40
κ Instantiation metavariable in W , page 40
ρ Region metavariable, page 39
τ Type, page 40
ϕ Effect, page 39
χ Generalization metavariable, page 40
κ Instantiation Metavariable in L , page 63
% Region variable, page 39
Substitutions
[χ 7→ κ] Type, effect, or region substitution in W , page 40
[χ 7→ κ] Type, effect, or region substitution in L , page 40
[x 7→ Λχ.v] Polymorphic substitution of a value for a variable in W , page 46
Reduction relations
⇀ Top step reduction relation for W , page 46
−→ Single step reduction relation for W , page 47
� General reduction relation for W , page 47
Typing
Γ; Σ `v v : τ Typing relation for values in W , page 52
Γ; Σ ` e : τ, ϕ Typing relation for expressions in W , page 52
∆; Σ `l t : σ Typing relation for terms in L , page 65
Σ ` s Compatibility of store typing Σ and store s, page 55
[χ 7→ κ] ∼ τ The substitution [χ 7→ κ] is compatible with type τ , page 109
〈ϕ〉 State type, page 63
dve A value v lifted from W to L , page 72
dτe A type τ , lifted from W to L , page 65
LogicTypeof () Function to type constants in L , page 64
Typeof () Function to type constants in W , page 51

197

Bibliography

Notation in proofs
s|ϕ restrictϕ s, page 76
s1 ⊕ s2 combine s1 s2, page 76
ϑϕ restrictϕ ϑ, page 73
NE(s) The set of nonempty regions in store s, page 118
Rs(ω, ω′) Relation between two creation effects, page 119
Syntactic sugar in programs
cur Current state, in pre- and postconditions, page 70
old Initial state, in postconditions, page 70
{ p } e { q } Hoare triple in annotations in L , page 126

198

Index

Abstract interpretation, 4
Affine, 33
Agda, 8
Algebraic data type, 25, 104
Aliasing, 16, 107
Allocation, 6
Annotation, 69
Array, 156

iter , 157
map, 159
theory, 156

Arrow type, 22
Auxiliary Variable, 13
Axiom, 11

B method, 6
Barendregt convention, 12
Black box testing, 3
Bound Variable, 12
Bounded model checking, 4

Canonical values, 55
Capability, 33, 123
Cast, 7
Characteristic formula, 36
Compatible substitution, 109
Completeness, 5, 75, 90
Cons, 26
Constructor, 25
Contracts, 3
Copy rule, 19
Coq, 8, 35, 37
Correctness obligation, 78
Coverage, 3
Curry-Howard isomorphism, 8

de-Bruijn indices, 12
Dependent types, 8

Dynamic types, 7

Effect, 15, 29, 33, 39
Effect system, 29
Effect variable, 39
Epigram, 8
Evaluation context, 47
Expressions, 40

First-order logic, 133
Fixed-point combinator, 24, 154
Formal methods, 4
Frame rule, 112
Free variable, 12
Function type, 22
Functions as values, 19

Garbage collector, 7
Group region, 30, 122

Haskell, 8
Higher-order function, 19
Higher-order logic, 63, 133
Hoare logic, 5, 10
Hoare triple, 5, 20

Inference rule, 5
Integration testing, 3
Invariant, 12

Judgment, 11

Koda and Ruskey’s Algorithm, 163

L, 62
Label, 13
λ-lifting, 138
Landin’s Knot, 44
Landin’s knot, 53, 152

199

Index

Latent effect, 29
letregion, 41, 46
Lifting, 72
Linear, 33
List, 161
List type, 26
Locally nameless representation, 12
Location, 28, 48, 64
Logic type, 63

Memoization, 153, 154
Memory leaks, 6
Memory management, 6
Memory model, 17
Metavariable, 11
ML, 8
ML, 20
Model checking, 4
Monomorphic, 23
Multiple argument function, 70

Nil, 26
Nonempty region, 118

Object orientated programming, 7
Option type, 25

Paf, 37
Partial correctness, 12
Pattern matching, 25, 104
Polymorphic substitution, 46
Polymorphic type system, 23
Predicate transformer, 13
Preservation, 23, 54
Progress, 23, 54, 55
Proof trace, 146
Proof tree, 11

Read-Write effects, 103
Recursion, 24
Reduction Context, 21
ref , 28
Reference, 28
Refinement, 6
Region, 29, 39, 45
letregion, 77
region, 41, 46, 77

Region aliasing, 108
Region variable, 39
Regression testing, 3

Semantics, 21, 45, 66
Separating conjunction, 18
Separation logic, 18
Simple types, 22
Singleton region, 30, 108, 115, 122
Small step semantics, 21
Soundness, 75, 82, 117
State object, 63
State type, 63
Static analysis, 4
Static types, 7
Store, 45
Store typing, 51
Strong update, 33
Structural rule, 15
Stuck, 47
Subject reduction, 23, 54, 56, 61
Substitution, 21
Substructural system, 33, 38
Surface language, 48
Syntactic category, 11
Syntactic interference, 17
Syntax, 21, 39, 63
System F, 24

Test driven development, 3
Testing, 2
Type inference, 24
Type safety, 7
Type system, 7
Type theory, 8
Type variable, 23, 40
Typing, 50, 64
Typing environment, 22

Unit testing, 3

Validity, 72
Value, 40
Value restriction, 28
Variable binding, 11
Variant, 12
Void, 40

200

Index

W, 39
Weakening, 84, 104
Weakest precondition calculus, 6, 13, 75
WHILE language, 10
White box testing, 3

Ynot, 37

201

