test comment and the following |
This is the first documentation. |
First section |
Require
ZArith.
First sub-section |
Second sub-section |
First sub-sub-section
|
First sub-sub-sub-section. |
Definition of function f :
|
Definition
f [x:nat] : nat := Cases x of O => O | (S p) => p end.
The same on multiple lines with indentation |
Definition
g [x:nat] : nat :=
Cases x of
| O => O
| (S p) => p
end.
Implicits
g [1 2 3].
Pwd.
Here is a Coq term: [x:nat]x and some formatted piece of Coq
|
Definition
h :=
Cases O of _ => (S O) end
and the remaining of the documentation... |
Features tests |
Lists |
Here is a list:
|
Rule |
|
Verbatim |
Here is the corresponding caml code:
let rec fact n = if n <= 1 then 1 else n * fact (n-1) |
Escapings |
Escaping to Latex maths: |
Escaping to Latex: |
Escaping to HTML: home ∀ |
Gallina tests |
this is a doc with quotation x:nat
|
Lemma
l2: (A:Prop)A->A.
Intro.
Auto.
Save
.
Goal (A:Prop)A->A.
Auto.
Save
l3.
Theorem
l4: (A:Prop)A->A.
Auto.
Qed
.
Fact
l5: (A:Prop)A->A.
Idtac; Idtac. Exact l3. Defined
.
Theorem
foo: (a:Prop) a->~~a.
Qed
.
Local
l4 : (A:Set)A->A.
Intros A x. Exact x.
Defined
.
Pretty-printing tests |
balanced square brackets within escaped Coq: {A}+{B} and a
following comment...
|
printing / remove printing of symbol
|
->~
-->
∀
->~
x [+I*] y
UTF-8 symbols |
∀
∀
test in escape ∀ x:nat. x=x
|
greek letters |
α
α
letter-like |
Ä
Ä
notations with square brackets |
x [#] y
x [#] y
and within a comment x [#] y is correctly parsed and nicely written...
|
x {-} y
x {-} y
and within a comment x {-} y is correctly parsed and nicely written...
|
Sections and modules |
Import
A.
End
N.
Section
S.
End
S.
End
M.
Tests about identifier toto
|
Tests about identifier
|
Comments |
bla bla bla (Peano.plus x y) toto 3 |