Using SMT Solvers

for Deductive Verification of C and Java Programs

Jean-Christophe Fillidtre

CNRS
Orsay, France

SMT, July 7, 2008

10
% e W INRIA | B PARS GO

xxxxxx {NFORMATIGUE

Jean-Christophe Filliatre SMT Solvers and the Why platform SMT, July 7, 2008

The ProVal Project — http://proval.lri.fr/

e foundations of ProVal: the Coq project
e type theory: type ~ logic specification
e Curry-Howard isomorphism: proof ~ program
o functional programs only

@ goals of ProVal:

o to deal with imperative programs (C, Java)
e to apply our methods to industrial cases

Jean-Christophe Filliatre SMT Solvers and the Why platform SMT, July 7, 2008

http://proval.lri.fr/

@ 1999: a first approach for programs with side effects in Coq

@ 2000-2003: EU project Verificard (verification of Java Card applets
with industrial partners GemPlus, Schlumberger)

@ 2001-: stand-alone WHY tool, to use both automatic and interactive
provers

@ 2003-: KRAKATOA tool for JAVA programs
@ 2004-: CADUCEUS tool for C programs
@ 2007: The WHY platform

Jean-Christophe Filliatre SMT Solvers and the Why platform SMT, July 7, 2008

@ overview of the Why platform

@ SMT solvers and program verification
o theories of interest for program verification

© SMT-lib and SMT-comp

Jean-Christophe Filliatre SMT Solvers and the Why platform SMT, July 7, 2008

Overview of the Why Platform

@ general goal: prove behavioral properties of pointer programs

@ pointer program = program manipulating data structures with
in-place mutable fields

@ we currently focus on C and Java programs

Jean-Christophe Filliatre SMT Solvers and the Why platform SMT, July 7, 2008

What Kind of Properties

two kinds

o safety, that is

no null pointer dereference

no array access out of bounds (no buffer overflow)
no division by zero

no arithmetic overflow

termination

o behavioral correctness
e the program does what it is expected to do

Jean-Christophe Filliatre SMT Solvers and the Why platform SMT, July 7, 2008

@ specification as annotations at the source code level

e Java: an extension of JML (Java Modeling Language)
o C: our own language (mostly JML-inspired)

@ generation of verification conditions (VCs)

o using Hoare logic / weakest preconditions
o similar approaches: static ESC/Java, SPEC#, B method, etc.

@ multi-prover approach

o off-the-shelf provers, as many as possible
e automatic provers (Alt-Ergo, Simplify, Yices, Z3, CVC3, etc.)
o proof assistants (Coq, PVS, Isabelle/HOL, etc.)

Jean-Christophe Filliatre SMT Solvers and the Why platform SMT, July 7, 2008

A Toy Example: Binary Search

binary search: search a sorted array of integers for a given value

famous example; see J. Bentley's Programming Pearls
most programmers are wrong on their first attempt to write binary search

Jean-Christophe Filliatre SMT Solvers and the Why platform SMT, July 7, 2008

Binary Search (C code)

int binary search(int* t, int n, int v) {
int 1 = 0, u = n-1;
while (1 <= u) {
intm=(Q+u) / 2;
if (t[m] < v)
l1=m+1;
else if (t[m] > v)
u=m-1;
else
return m;

}

return -1;

}

Jean-Christophe Filliatre SMT Solvers and the Why platform SMT, July 7, 2008

Binary Search: Safety

@ no division by zero
@ no array access out of bounds
@ termination

/*@ requires n >= 0 && \valid range(t,0,n-1) */
int binary search(int* t, int n, int v) {
int 1 = 0, u = n-1;
/*Q@ invariant 0 <= 1 && u <= n-1
@ variant u-1
@x/
while (1 <= u) {

DEMO

Jean-Christophe Filliatre SMT Solvers and the Why platform SMT, July 7, 2008

Binary Search: Behavioral Specification

/*@ requires
@ n >= 0 && \valid.range(t,0,n-1) &&

@ \forall int k1, int k2;

@ 0 <= k1 <= k2 <= n-1 => t[k1] <= t[k2]
@ ensures

@ (\result >= 0 && t[\result] == v) ||

@ (\result == -1 &&

¢ \forall int k; 0 <= k < n => t[k] '= v)
@x/

int binary search(int* t, int n, int v) {

}

Jean-Christophe Filliatre SMT Solvers and the Why platform SMT, July 7, 2008

Binary Search: Behavioral Specification (cont'd)

requires a stronger invariant

int binary_search(int* t, int n, int v) {
int 1 = 0, u = n-1;
/*@ invariant
e 0 <=1 && u <= n-1 &
\forall int k;
© 0<=k<n=>t[k] ==v=>1<=k<=u
@ variant u-1
©x/
while (1 <= u) {

}
}

@

DEMO

Jean-Christophe Filliatre SMT Solvers and the Why platform

SMT, July 7, 2008

Binary Search: Arithmetic Overflows

finally, let's prove that there is no arithmetic overflow...

Jean-Christophe Filliatre SMT Solvers and the Why platform SMT, July 7, 2008

Binary Search: Arithmetic Overflows

finally, let's prove that there is no arithmetic overflow... there is one!
in statement

intm=(Q+u / 2;
a possible overflow is signaled; a possible fix is

intm=1+ (u-1)/ 2;

see

@ Google: “Read All About It: Nearly All Binary Searches and
Mergesorts are Broken”

@ “Types, Bytes, and Separation Logic” POPL'07

Jean-Christophe Filliatre SMT Solvers and the Why platform SMT, July 7, 2008

Verification Technique

we use a standard technology (component-as-array memory model,
weakest preconditions, etc.)

two specific issues:
@ how to share the effort which is common to C and Java

@ how to use many different theorem provers

our solution: the use of an intermediate language, Why, which is
@ a VC generator

@ a common front-end to various provers

Jean-Christophe Filliatre SMT Solvers and the Why platform SMT, July 7, 2008

Platform Overview

Annotated C program

Caduceus

Interactive provers

JML-Annotated Java program

q Why program h

Krakatoa

(Cog, PVS, h Verification Conditions q
Isabelle/HOL, etc.)

Jean-Christophe Filliatre

SMT Solvers and the Why platform

Automatic provers
(Alt-Ergo, Simplify,
Yices, Z3, CVC3, etc.)

SMT, July 7, 2008

Why: a Verification Condition Generator

Why is a verification condition generator for a language with
@ variables containing pure values, no alias (~ Hoare-logic language)
@ usual control structures (loops, tests, etc.)
@ exceptions
@ (possibly recursive) functions
@ polymorphic first-order logic with equality and arithmetic
Why is similar to Boogie (SPEC# project)

Why is also responsible for translating verification conditions to the
native logics of all provers

Jean-Christophe Filliatre SMT Solvers and the Why platform SMT, July 7, 2008

~

Generating the Verification Conditions

Annotated C program
(foo.c)

O\

memory model memory layout Why code for
for C programs for program foo C functions
(caduceus.why) (foo_spec.why) (foo.why)
Why
Interactive provers l Automatic provers
(Coq, PVS, e Verification Conditions — (Simplify, Yices,
Isabelle/HOL, etc.) Ergo, CVC3, etc.)

Jean-Christophe Filliatre SMT Solvers and the Why platform SMT, July 7, 2008

SMT Solvers and Program Verification

Jean-Christophe Filliatre SMT Solvers and the Why platform SMT, July 7, 2008

Disclaimer

don't be mistaken by the remaining of this talk;

| do think that
@ SMT solvers are great tools!
@ SMT-lib is definitely a good idea
@ SMT-comp helps improving the quality of SMT solvers

Jean-Christophe Filliatre SMT Solvers and the Why platform SMT, July 7, 2008

Which Logics for Program Verification

SMT solvers provide
o first-order logic with equality
e memory models, user axiomatic models, etc.
e integer/rational/real linear arithmetic
e integer arithmetic: array indices, pointer arithmetic, etc.

o applicative arrays

e axiomatic approach is equally efficient
e extensionality is not needed in practice

o fixed-size bit vectors
@ a too restrictive interface

o tuples, records, inductive data types

Jean-Christophe Filliatre SMT Solvers and the Why platform SMT, July 7, 2008

Which Logics for Program Verification

relevant theories for program verification can be different
@ non-linear arithmetic
o finite sets

@ reachability

let us consider some examples
@ Bresenham’s line drawing algorithm

@ Dijkstra’s shortest path algorithm

Jean-Christophe Filliatre SMT Solvers and the Why platform SMT, July 7, 2008

Example 1: Bresenham's Line Drawing Algorithm

draws a discrete line from (0, 0) to (x2, y2)
logic x2,y2 : int
axiom first octant : 0 <= y2 <= x2
x varies from 0 to x ;

at each step, y is increased or not, according to the size of e

parameter x,y,e : int ref

Jean-Christophe Filliatre SMT Solvers and the Why platform SMT, July 7, 2008

Example 1: Bresenham's Line Drawing Algorithm

let bresenham () =
x 1= 0;
y :=0;
e := 2 % y2 - x2;
while !x <= x2 do
{ invariant 0 <= x <= x2 + 1 and
e=2x (x+1) xy2 - (2*y+ 1) *x x2 and
2 % (y2 - x2) <= e <=2 x y2 }
(* here we would plot (x,y) *)
if le < 0 then

e :=le+ 2 x y2
else begin
y 1= ly +1;
e :=le + 2 x (y2 - x2)
end;
x 1=Ix+1
done

Jean-Christophe Filliatre SMT Solvers and the Why platform SMT, July 7, 2008

Example 1: Bresenham's Line Drawing Algorithm

the code only uses linear arithmetic

the specification and thus the proofs require non-linear arithmetic

if suffices to add the following axioms

axiom z_ring O : forall a,b,c: int. a * (b+c)
axiom z ring 1 : forall a,b,c:int. (b+c) * a

axb + ax*xc
b*xa + cx*a

DEMO

Jean-Christophe Filliatre SMT Solvers and the Why platform SMT, July 7, 2008

Example 2: Dijkstra’'s Shortest Path

single-source shortest path in a weighted graph

S0
Q « {src}; d[src] — 0
while Q\S not empty do
extract u from Q\S with minimal distance d[u]
S« Su{u}
for each vertex v such that u % v
d[v] < min(d[v], d[u] + w)
Q= QU{v}

Jean-Christophe Filliatre SMT Solvers and the Why platform SMT, July 7, 2008

Example 2: Dijkstra’'s Shortest Path

finite sets are everywhere in the code/specification:
@ set of vertices V

@ set of successors of u
@ sets S and @

all we need is
@ the empty set ()
e addition {x} Us
@ subtraction s\{x}

@ membership predicate x € s

Jean-Christophe Filliatre SMT Solvers and the Why platform SMT, July 7, 2008

Example 2: Dijkstra’'s Shortest Path

type ’a set

logic set_empty : ’a set

logic set_add : ’a, ’a set -> ’a set
logic set.rmv : ’a, ’a set -> ’a set
logic In : ’a, ’a set —> prop
predicate Is_empty(s : ’a set) =

forall x:’a. not In(x, s)

predicate Incl(sl : ’a set, s2 : ’a set) =
forall x:’a. In(x, s1) -> In(x, s2)

Jean-Christophe Filliatre SMT Solvers and the Why platform SMT, July 7, 2008

Example 2: Dijkstra’'s Shortest Path

axiom set_empty_def
Is_empty(set_empty)

axiom set_add_def
forall x: ’a. forall y:’a. forall s:’a set.
In(x, set_add(y,s)) <-> (x = y or In(x, s))

axiom set_rmv_def
forall x:’a. forall y:’a. forall s:’a set.
In(x, set_rmv(y,s)) <-> (x <> y and In(x, s))

Jean-Christophe Filliatre SMT Solvers and the Why platform SMT, July 7, 2008

Example 2: Dijkstra’'s Shortest Path

termination requires the notion of cardinality

logic set_card : ’a set -> int

axiom card nonneg : forall s:’a set. set_card(s) >= 0

axiom card_set_add :
forall x: ’a. forall s: ’a set.
not In(x,s) -> set_card(set_add(x,s)) = 1 + set_card(s)

axiom card_set_rmv :
forall x: ’a. forall s: ’a set.
In(x,s) -> set_card(s) = 1 + set_card(set_rmv(x, s))

axiom card_Incl :
forall s1,s2 : ’a set.
Incl(s1,s2) —> set_card(sl) <= set_card(s2)

Jean-Christophe Filliatre SMT Solvers and the Why platform SMT, July 7, 2008

Example 2: Dijkstra’'s Shortest Path

while ... do
{ ... variant set_card(V) - set_card(S) }

S := set_add u !S;

while ... do

{ ... variant set_card(su) }
su .= set_rmv v !su
done
done

Jean-Christophe Filliatre SMT Solvers and the Why platform SMT, July 7, 2008

Finite Sets

a theory of finite sets with constant (), operations {x} U's, s\{x}, card(s)
and predicate x € s would be extremely useful (even if incomplete)

Jean-Christophe Filliatre SMT Solvers and the Why platform SMT, July 7, 2008

Example 2: Dijkstra’'s Shortest Path

(* paths *)
logic path : vertex, vertex, int -> prop

axiom path nil
forall x: vertex. path(x,x,0)

axiom path_cons
forall x,y,z: vertex. forall d: int.
path(x,y,d) -> In(z,g_succ(y)) ->
path(x,z,d+weight (y,z))

(* and shortest paths *)

predicate shortest_path(x: vertex, y: vertex, d: int) =
path(x,y,d) and forall d’:int. path(x,y,d’) -> d <= d’

Jean-Christophe Filliatre SMT Solvers and the Why platform SMT, July 7, 2008

Example 2: Dijkstra’'s Shortest Path

axiom path_inversion :

forall src,v: vertex. forall d:int. path(src,v,d) ->
(v = src and 4 = 0) or
(exists v’: vertex.

path(src,v’,d - weight(v’,v)) and In(v,g succ(v’)))
(* lemmas requiring induction *)

axiom length nonneg :

forall x,y: vertex. forall d:int. path(x,y,d) -> d >= 0

Jean-Christophe Filliatre SMT Solvers and the Why platform SMT, July 7, 2008

Reachability

more generally, a theory of reachability is often used when specifying
programs

this is simply the reflexive transitive closure of some relation (requires a
some kind of higher-order to be generic)

variants:

@ paths without repetition
@ paths with the list of nodes (path(x,y,/))
@ closure of a functiong
°

etc.

Jean-Christophe Filliatre SMT Solvers and the Why platform SMT, July 7, 2008

Conversely

sometimes, no need for built-in theories

examples
@ arrays
e machine arithmetic (fixed-size integers)

@ bitwise arithmetic (low-level bit tricks)

Jean-Christophe Filliatre SMT Solvers and the Why platform SMT, July 7, 2008

Machine Arithmetic

3 possible models for C (integer) arithmetic in Why
@ exact arithmetic
@ bounded arithmetic (no overflow)

e modulo arithmetic (faithful to program execution)

Jean-Christophe Filliatre SMT Solvers and the Why platform SMT, July 7, 2008

Bounded Arithmetic

type int32
logic of_int32: int32 -> int

axiom int32_domain :
forall x: int32. -2147483648 <= of_int32(x) <= 2147483647

parameter int32_of_int :
x:int ->
{ -2147483648 <= x <= 2147483647 }
int32
{ of_int32(result) = x }

Jean-Christophe Filliatre SMT Solvers and the Why platform SMT, July 7, 2008

Bounded Arithmetic

a C operation such as x + y is translated into
int32_of_int (of_int32(x) + of_int32(y))
which produces the verification condition

-2147483648 <= of _int32(x) + of_int32(y) <= 2147483647

no real need for a built-in theory

Jean-Christophe Filliatre SMT Solvers and the Why platform SMT, July 7, 2008

Modulo Arithmetic

type int32
logic of_int32: int32 -> int
axiom int32_domain :

logic mod_int32: int -> int

parameter int32_of_int
x:int -> { } int32 { of_int32(result) = mod_int32(x) }

axiom mod_int32_id :
forall x: int.
-2147483648 <= x <= 2147483647 -> mod_int32(x) = x

axiom mod_int32_def
forall x,k: int.
mod_int32(x) = mod_int32(x + k * 4294967296)

Jean-Christophe Filliatre SMT Solvers and the Why platform SMT, July 7, 2008

Modulo Arithmetic

in some cases, you may only need

axiom mod_int32_gt
forall x: int. x > 2147483647 ->
mod_int32(x) = mod_int32(x - 4294967296)

axiom mod_int32_1t
forall x: int. x < -2147483648 ->
mod_int32(x) = mod_int32(x + 4294967296)

otherwise, you need

@ either non-linear arithmetic

@ or at a built-in theory of modulo arithmetic

Jean-Christophe Filliatre SMT Solvers and the Why platform SMT, July 7, 2008

Bitwise Arithmetic

challenge for the verified program of the month:

t(a,b,c){int d=0,e=a& b& c,f=1;if (a)for (f=0;d=(e-=d)&-e;f+=t (a-d, (b+d)*2, (
c+d)/2)) ;return f;}main(q){scanf ("%d",&q) ;printf("%d\n",t("(70<<q),0,0));}

Jean-Christophe Filliatre SMT Solvers and the Why platform SMT, July 7, 2008

Unobfuscating...

int t(int a, int b, int c¢) {
int d, e=a& " b&~c, f=1;
if (a)
for (£f=0; d=e&-e; e-=d)
f += t(a-d, (b+d)*2, (c+d)/2);
return f;

}

int main(int q) {
scanf ("%d", &q);
printf("%d\n", t(7(70<<q), 0, 0));

}

this program reads an integer n
and prints the number of solutions to the n-queens problem

Jean-Christophe Filliatre SMT Solvers and the Why platform SMT, July 7, 2008

SMT-lib and SMT-comp

Jean-Christophe Filliatre SMT Solvers and the Why platform SMT, July 7, 2008

Jean-Christophe Filliatre SMT Solvers and the Why platform SMT, July 7, 2008

conclusion

Jean-Christophe Filliatre SMT Solvers and the Why platform SMT, July 7, 2008

Conclusion

Jean-Christophe Filliatre SMT Solvers and the Why platform SMT, July 7, 2008

