
Using SMT Solvers
for Deductive Verification of C and Java Programs

Jean-Christophe Filliâtre

CNRS
Orsay, France

SMT, July 7, 2008

Jean-Christophe Filliâtre SMT Solvers and the Why platform SMT, July 7, 2008

The ProVal Project — http://proval.lri.fr/

foundations of ProVal: the Coq project

type theory: type ' logic specification
Curry-Howard isomorphism: proof ' program
functional programs only

goals of ProVal:
to deal with imperative programs (C, Java)
to apply our methods to industrial cases

Jean-Christophe Filliâtre SMT Solvers and the Why platform SMT, July 7, 2008

http://proval.lri.fr/

Brief History

1999: a first approach for programs with side effects in Coq

2000-2003: EU project Verificard (verification of Java Card applets
with industrial partners GemPlus, Schlumberger)

2001-: stand-alone Why tool, to use both automatic and interactive
provers

2003-: Krakatoa tool for Java programs

2004-: Caduceus tool for C programs

2007: The Why platform

Jean-Christophe Filliâtre SMT Solvers and the Why platform SMT, July 7, 2008

Outline

1 overview of the Why platform

2 SMT solvers and program verification

theories of interest for program verification

3 SMT-lib and SMT-comp

Jean-Christophe Filliâtre SMT Solvers and the Why platform SMT, July 7, 2008

Overview of the Why Platform

general goal: prove behavioral properties of pointer programs

pointer program = program manipulating data structures with
in-place mutable fields

we currently focus on C and Java programs

Jean-Christophe Filliâtre SMT Solvers and the Why platform SMT, July 7, 2008

What Kind of Properties

two kinds

safety, that is

no null pointer dereference
no array access out of bounds (no buffer overflow)
no division by zero
no arithmetic overflow
termination

behavioral correctness
the program does what it is expected to do

Jean-Christophe Filliâtre SMT Solvers and the Why platform SMT, July 7, 2008

Principles

specification as annotations at the source code level

Java: an extension of JML (Java Modeling Language)
C: our own language (mostly JML-inspired)

generation of verification conditions (VCs)

using Hoare logic / weakest preconditions
similar approaches: static ESC/Java, SPEC#, B method, etc.

multi-prover approach

off-the-shelf provers, as many as possible
automatic provers (Alt-Ergo, Simplify, Yices, Z3, CVC3, etc.)
proof assistants (Coq, PVS, Isabelle/HOL, etc.)

Jean-Christophe Filliâtre SMT Solvers and the Why platform SMT, July 7, 2008

A Toy Example: Binary Search

binary search: search a sorted array of integers for a given value

famous example; see J. Bentley’s Programming Pearls
most programmers are wrong on their first attempt to write binary search

Jean-Christophe Filliâtre SMT Solvers and the Why platform SMT, July 7, 2008

Binary Search (C code)

int binary search(int* t, int n, int v) {
int l = 0, u = n-1;
while (l <= u) {
int m = (l + u) / 2;
if (t[m] < v)
l = m + 1;

else if (t[m] > v)
u = m - 1;

else
return m;

}
return -1;

}

Jean-Christophe Filliâtre SMT Solvers and the Why platform SMT, July 7, 2008

Binary Search: Safety

no division by zero

no array access out of bounds

termination

/*@ requires n >= 0 && \valid range(t,0,n-1) */
int binary search(int* t, int n, int v) {

int l = 0, u = n-1;
/*@ invariant 0 <= l && u <= n-1
@ variant u-l
@*/

while (l <= u) {
...

}

DEMO

Jean-Christophe Filliâtre SMT Solvers and the Why platform SMT, July 7, 2008

Binary Search: Behavioral Specification

/*@ requires
@ n >= 0 && \valid range(t,0,n-1) &&
@ \forall int k1, int k2;
@ 0 <= k1 <= k2 <= n-1 => t[k1] <= t[k2]
@ ensures
@ (\result >= 0 && t[\result] == v) ||
@ (\result == -1 &&
@ \forall int k; 0 <= k < n => t[k] != v)
@*/

int binary search(int* t, int n, int v) {
...

}

Jean-Christophe Filliâtre SMT Solvers and the Why platform SMT, July 7, 2008

Binary Search: Behavioral Specification (cont’d)

requires a stronger invariant

int binary search(int* t, int n, int v) {
int l = 0, u = n-1;
/*@ invariant
@ 0 <= l && u <= n-1 &&
@ \forall int k;
@ 0 <= k < n => t[k] == v => l <= k <= u
@ variant u-l
@*/

while (l <= u) {
...

}
}

DEMO

Jean-Christophe Filliâtre SMT Solvers and the Why platform SMT, July 7, 2008

Binary Search: Arithmetic Overflows

finally, let’s prove that there is no arithmetic overflow... there is one!

in statement

int m = (l + u) / 2;

a possible overflow is signaled; a possible fix is

int m = l + (u - l) / 2;

see

Google: “Read All About It: Nearly All Binary Searches and
Mergesorts are Broken”

“Types, Bytes, and Separation Logic” POPL’07

Jean-Christophe Filliâtre SMT Solvers and the Why platform SMT, July 7, 2008

Binary Search: Arithmetic Overflows

finally, let’s prove that there is no arithmetic overflow... there is one!

in statement

int m = (l + u) / 2;

a possible overflow is signaled; a possible fix is

int m = l + (u - l) / 2;

see

Google: “Read All About It: Nearly All Binary Searches and
Mergesorts are Broken”

“Types, Bytes, and Separation Logic” POPL’07

Jean-Christophe Filliâtre SMT Solvers and the Why platform SMT, July 7, 2008

Verification Technique

we use a standard technology (component-as-array memory model,
weakest preconditions, etc.)

two specific issues:

how to share the effort which is common to C and Java

how to use many different theorem provers

our solution: the use of an intermediate language, Why, which is

a VC generator

a common front-end to various provers

Jean-Christophe Filliâtre SMT Solvers and the Why platform SMT, July 7, 2008

Platform Overview

Why

Caduceus KrakatoaWhy program

Annotated C program JML-Annotated Java program

Verification Conditions

Automatic provers
(Alt-Ergo, Simplify,
Yices, Z3, CVC3, etc.)

Interactive provers
(Coq, PVS,
Isabelle/HOL, etc.)

Jean-Christophe Filliâtre SMT Solvers and the Why platform SMT, July 7, 2008

Why: a Verification Condition Generator

Why is a verification condition generator for a language with

variables containing pure values, no alias (~ Hoare-logic language)

usual control structures (loops, tests, etc.)

exceptions

(possibly recursive) functions

polymorphic first-order logic with equality and arithmetic

Why is similar to Boogie (SPEC# project)

Why is also responsible for translating verification conditions to the
native logics of all provers

Jean-Christophe Filliâtre SMT Solvers and the Why platform SMT, July 7, 2008

~

Generating the Verification Conditions

Why

Caduceus

memory layout
for program foo
(foo_spec.why)

Annotated C program
(foo.c)

Verification Conditions

Automatic provers
(Simplify, Yices,
Ergo, CVC3, etc.)

Interactive provers
(Coq, PVS,
Isabelle/HOL, etc.)

Why code for
C functions
(foo.why)

memory model
for C programs
(caduceus.why)

Jean-Christophe Filliâtre SMT Solvers and the Why platform SMT, July 7, 2008

SMT Solvers and Program Verification

Jean-Christophe Filliâtre SMT Solvers and the Why platform SMT, July 7, 2008

Disclaimer

don’t be mistaken by the remaining of this talk;

I do think that

SMT solvers are great tools!

SMT-lib is definitely a good idea

SMT-comp helps improving the quality of SMT solvers

Jean-Christophe Filliâtre SMT Solvers and the Why platform SMT, July 7, 2008

Which Logics for Program Verification

SMT solvers provide

first-order logic with equality
memory models, user axiomatic models, etc.

integer/rational/real linear arithmetic
integer arithmetic: array indices, pointer arithmetic, etc.

applicative arrays
axiomatic approach is equally efficient
extensionality is not needed in practice

fixed-size bit vectors
a too restrictive interface

tuples, records, inductive data types

Jean-Christophe Filliâtre SMT Solvers and the Why platform SMT, July 7, 2008

Which Logics for Program Verification

relevant theories for program verification can be different

non-linear arithmetic

finite sets

reachability

let us consider some examples

Bresenham’s line drawing algorithm

Dijkstra’s shortest path algorithm

Jean-Christophe Filliâtre SMT Solvers and the Why platform SMT, July 7, 2008

Example 1: Bresenham’s Line Drawing Algorithm

draws a discrete line from (0, 0) to (x2, y2)

logic x2,y2 : int

axiom first octant : 0 <= y2 <= x2

x varies from 0 to x2 ;
at each step, y is increased or not, according to the size of e

parameter x,y,e : int ref

Jean-Christophe Filliâtre SMT Solvers and the Why platform SMT, July 7, 2008

Example 1: Bresenham’s Line Drawing Algorithm

let bresenham () =
x : = 0;
y : = 0;
e : = 2 * y2 - x2;
while !x <= x2 do
{ invariant 0 <= x <= x2 + 1 and

e = 2 * (x + 1) * y2 - (2 * y + 1) * x2 and
2 * (y2 - x2) <= e <= 2 * y2 }

(* here we would plot (x,y) *)
if !e < 0 then
e : = !e + 2 * y2

else begin
y : = !y + 1;
e : = !e + 2 * (y2 - x2)

end;
x : = !x + 1

done
Jean-Christophe Filliâtre SMT Solvers and the Why platform SMT, July 7, 2008

Example 1: Bresenham’s Line Drawing Algorithm

the code only uses linear arithmetic

the specification and thus the proofs require non-linear arithmetic

if suffices to add the following axioms

axiom z ring 0 : forall a,b,c : int. a * (b+c) = a*b + a*c
axiom z ring 1 : forall a,b,c : int. (b+c) * a = b*a + c*a

DEMO

Jean-Christophe Filliâtre SMT Solvers and the Why platform SMT, July 7, 2008

Example 2: Dijkstra’s Shortest Path

single-source shortest path in a weighted graph

S ← ∅
Q ← {src}; d [src]← 0
while Q\S not empty do

extract u from Q\S with minimal distance d [u]
S ← S ∪ {u}
for each vertex v such that u

w→ v
d [v]← min(d [v], d [u] + w)
Q ← Q ∪ {v}

Jean-Christophe Filliâtre SMT Solvers and the Why platform SMT, July 7, 2008

Example 2: Dijkstra’s Shortest Path

finite sets are everywhere in the code/specification:

set of vertices V

set of successors of u

sets S and Q

all we need is

the empty set ∅
addition {x} ∪ s

subtraction s\{x}
membership predicate x ∈ s

Jean-Christophe Filliâtre SMT Solvers and the Why platform SMT, July 7, 2008

Example 2: Dijkstra’s Shortest Path

type ’a set

logic set empty : ’a set
logic set add : ’a, ’a set -> ’a set
logic set rmv : ’a, ’a set -> ’a set
logic In : ’a, ’a set -> prop

predicate Is empty(s : ’a set) =
forall x : ’a. not In(x, s)

predicate Incl(s1 : ’a set, s2 : ’a set) =
forall x : ’a. In(x, s1) -> In(x, s2)

Jean-Christophe Filliâtre SMT Solvers and the Why platform SMT, July 7, 2008

Example 2: Dijkstra’s Shortest Path

axiom set empty def :
Is empty(set empty)

axiom set add def :
forall x : ’a. forall y : ’a. forall s : ’a set.
In(x, set add(y,s)) <-> (x = y or In(x, s))

axiom set rmv def :
forall x : ’a. forall y : ’a. forall s : ’a set.
In(x, set rmv(y,s)) <-> (x <> y and In(x, s))

Jean-Christophe Filliâtre SMT Solvers and the Why platform SMT, July 7, 2008

Example 2: Dijkstra’s Shortest Path

termination requires the notion of cardinality

logic set card : ’a set -> int

axiom card nonneg : forall s : ’a set. set card(s) >= 0

axiom card set add :
forall x : ’a. forall s : ’a set.
not In(x,s) -> set card(set add(x,s)) = 1 + set card(s)

axiom card set rmv :
forall x : ’a. forall s : ’a set.
In(x,s) -> set card(s) = 1 + set card(set rmv(x, s))

axiom card Incl :
forall s1,s2 : ’a set.
Incl(s1,s2) -> set card(s1) <= set card(s2)

Jean-Christophe Filliâtre SMT Solvers and the Why platform SMT, July 7, 2008

Example 2: Dijkstra’s Shortest Path

while ... do
{ ... variant set card(V) - set card(S) }
...
S : = set add u !S;
...
while ... do
{ ... variant set card(su) }
...
su : = set rmv v !su

done
done

Jean-Christophe Filliâtre SMT Solvers and the Why platform SMT, July 7, 2008

Finite Sets

a theory of finite sets with constant ∅, operations {x} ∪ s, s\{x}, card(s)
and predicate x ∈ s would be extremely useful (even if incomplete)

Jean-Christophe Filliâtre SMT Solvers and the Why platform SMT, July 7, 2008

Example 2: Dijkstra’s Shortest Path

(* paths *)

logic path : vertex, vertex, int -> prop

axiom path nil :
forall x : vertex. path(x,x,0)

axiom path cons :
forall x,y,z : vertex. forall d : int.
path(x,y,d) -> In(z,g succ(y)) ->
path(x,z,d+weight(y,z))

(* and shortest paths *)

predicate shortest path(x : vertex, y : vertex, d : int) =
path(x,y,d) and forall d’ : int. path(x,y,d’) -> d <= d’

Jean-Christophe Filliâtre SMT Solvers and the Why platform SMT, July 7, 2008

Example 2: Dijkstra’s Shortest Path

axiom path inversion :
forall src,v : vertex. forall d : int. path(src,v,d) ->
(v = src and d = 0) or
(exists v’ : vertex.
path(src,v’,d - weight(v’,v)) and In(v,g succ(v’)))

(* lemmas requiring induction *)

axiom length nonneg :
forall x,y : vertex. forall d : int. path(x,y,d) -> d >= 0

...

Jean-Christophe Filliâtre SMT Solvers and the Why platform SMT, July 7, 2008

Reachability

more generally, a theory of reachability is often used when specifying
programs

this is simply the reflexive transitive closure of some relation (requires a
some kind of higher-order to be generic)

variants:

paths without repetition

paths with the list of nodes (path(x , y , l))

closure of a functionø

etc.

Jean-Christophe Filliâtre SMT Solvers and the Why platform SMT, July 7, 2008

Conversely

sometimes, no need for built-in theories

examples

arrays

machine arithmetic (fixed-size integers)

bitwise arithmetic (low-level bit tricks)

Jean-Christophe Filliâtre SMT Solvers and the Why platform SMT, July 7, 2008

Machine Arithmetic

3 possible models for C (integer) arithmetic in Why

exact arithmetic

bounded arithmetic (no overflow)

modulo arithmetic (faithful to program execution)

Jean-Christophe Filliâtre SMT Solvers and the Why platform SMT, July 7, 2008

Bounded Arithmetic

type int32

logic of int32 : int32 -> int

axiom int32 domain :
forall x : int32. -2147483648 <= of int32(x) <= 2147483647

parameter int32 of int :
x : int ->
{ -2147483648 <= x <= 2147483647 }
int32
{ of int32(result) = x }

Jean-Christophe Filliâtre SMT Solvers and the Why platform SMT, July 7, 2008

Bounded Arithmetic

a C operation such as x + y is translated into

int32 of int(of int32(x) + of int32(y))

which produces the verification condition

-2147483648 <= of int32(x) + of int32(y) <= 2147483647

no real need for a built-in theory

Jean-Christophe Filliâtre SMT Solvers and the Why platform SMT, July 7, 2008

Modulo Arithmetic

type int32
logic of int32 : int32 -> int
axiom int32 domain : ...

logic mod int32 : int -> int

parameter int32 of int :
x : int -> { } int32 { of int32(result) = mod int32(x) }

axiom mod int32 id :
forall x : int.
-2147483648 <= x <= 2147483647 -> mod int32(x) = x

axiom mod int32 def :
forall x,k : int.
mod int32(x) = mod int32(x + k * 4294967296)

Jean-Christophe Filliâtre SMT Solvers and the Why platform SMT, July 7, 2008

Modulo Arithmetic

in some cases, you may only need

axiom mod int32 gt :
forall x : int. x > 2147483647 ->
mod int32(x) = mod int32(x - 4294967296)

axiom mod int32 lt :
forall x : int. x < -2147483648 ->
mod int32(x) = mod int32(x + 4294967296)

otherwise, you need

either non-linear arithmetic

or at a built-in theory of modulo arithmetic

Jean-Christophe Filliâtre SMT Solvers and the Why platform SMT, July 7, 2008

Bitwise Arithmetic

challenge for the verified program of the month:

t(a,b,c){int d=0,e=a&~b&~c,f=1;if(a)for(f=0;d=(e-=d)&-e;f+=t(a-d,(b+d)*2,(

c+d)/2));return f;}main(q){scanf("%d",&q);printf("%d\n",t(~(~0<<q),0,0));}

Jean-Christophe Filliâtre SMT Solvers and the Why platform SMT, July 7, 2008

Unobfuscating...

int t(int a, int b, int c) {
int d, e=a&~b&~c, f=1;
if (a)
for (f=0; d=e&-e; e-=d)
f += t(a-d, (b+d)*2, (c+d)/2);

return f;
}

int main(int q) {
scanf("%d", &q);
printf("%d\n", t(~(~0<<q), 0, 0));

}

this program reads an integer n
and prints the number of solutions to the n-queens problem

Jean-Christophe Filliâtre SMT Solvers and the Why platform SMT, July 7, 2008

SMT-lib and SMT-comp

Jean-Christophe Filliâtre SMT Solvers and the Why platform SMT, July 7, 2008

Jean-Christophe Filliâtre SMT Solvers and the Why platform SMT, July 7, 2008

conclusion

Jean-Christophe Filliâtre SMT Solvers and the Why platform SMT, July 7, 2008

Conclusion

Jean-Christophe Filliâtre SMT Solvers and the Why platform SMT, July 7, 2008

