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The ProVal Project — http://proval.lri.fr/

foundations of ProVal: the Coq project

type theory: type ' logic specification
Curry-Howard isomorphism: proof ' program
functional programs only

goals of ProVal:
to deal with imperative programs (C, Java)
to apply our methods to industrial cases
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Brief History

1999: a first approach for programs with side effects in Coq

2000-2003: EU project Verificard (verification of Java Card applets
with industrial partners GemPlus, Schlumberger)

2001-: stand-alone Why tool, to use both automatic and interactive
provers

2003-: Krakatoa tool for Java programs

2004-: Caduceus tool for C programs

2007: The Why platform
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Outline

1 overview of the Why platform

2 SMT solvers and program verification

theories of interest for program verification

3 SMT-lib and SMT-comp
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Overview of the Why Platform

general goal: prove behavioral properties of pointer programs

pointer program = program manipulating data structures with
in-place mutable fields

we currently focus on C and Java programs
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What Kind of Properties

two kinds

safety, that is

no null pointer dereference
no array access out of bounds (no buffer overflow)
no division by zero
no arithmetic overflow
termination

behavioral correctness
the program does what it is expected to do
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Principles

specification as annotations at the source code level

Java: an extension of JML (Java Modeling Language)
C: our own language (mostly JML-inspired)

generation of verification conditions (VCs)

using Hoare logic / weakest preconditions
similar approaches: static ESC/Java, SPEC#, B method, etc.

multi-prover approach

off-the-shelf provers, as many as possible
automatic provers (Alt-Ergo, Simplify, Yices, Z3, CVC3, etc.)
proof assistants (Coq, PVS, Isabelle/HOL, etc.)
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A Toy Example: Binary Search

binary search: search a sorted array of integers for a given value

famous example; see J. Bentley’s Programming Pearls
most programmers are wrong on their first attempt to write binary search

Jean-Christophe Filliâtre SMT Solvers and the Why platform SMT, July 7, 2008



Binary Search (C code)

int binary search(int* t, int n, int v) {
int l = 0, u = n-1;
while (l <= u ) {
int m = (l + u) / 2;
if (t[m] < v)
l = m + 1;

else if (t[m] > v)
u = m - 1;

else
return m;

}
return -1;

}
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Binary Search: Safety

no division by zero

no array access out of bounds

termination

/*@ requires n >= 0 && \valid range(t,0,n-1) */
int binary search(int* t, int n, int v) {

int l = 0, u = n-1;
/*@ invariant 0 <= l && u <= n-1
@ variant u-l
@*/

while (l <= u ) {
...

}

DEMO
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Binary Search: Behavioral Specification

/*@ requires
@ n >= 0 && \valid range(t,0,n-1) &&
@ \forall int k1, int k2;
@ 0 <= k1 <= k2 <= n-1 => t[k1] <= t[k2]
@ ensures
@ (\result >= 0 && t[\result] == v) ||
@ (\result == -1 &&
@ \forall int k; 0 <= k < n => t[k] != v)
@*/

int binary search(int* t, int n, int v) {
...

}
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Binary Search: Behavioral Specification (cont’d)

requires a stronger invariant

int binary search(int* t, int n, int v) {
int l = 0, u = n-1;
/*@ invariant
@ 0 <= l && u <= n-1 &&
@ \forall int k;
@ 0 <= k < n => t[k] == v => l <= k <= u
@ variant u-l
@*/

while (l <= u ) {
...

}
}

DEMO
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Binary Search: Arithmetic Overflows

finally, let’s prove that there is no arithmetic overflow... there is one!

in statement

int m = (l + u) / 2;

a possible overflow is signaled; a possible fix is

int m = l + (u - l) / 2;

see

Google: “Read All About It: Nearly All Binary Searches and
Mergesorts are Broken”

“Types, Bytes, and Separation Logic” POPL’07
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Verification Technique

we use a standard technology (component-as-array memory model,
weakest preconditions, etc.)

two specific issues:

how to share the effort which is common to C and Java

how to use many different theorem provers

our solution: the use of an intermediate language, Why, which is

a VC generator

a common front-end to various provers
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Platform Overview

Why

Caduceus KrakatoaWhy program

Annotated C program JML-Annotated Java program

Verification Conditions

Automatic provers
(Alt-Ergo, Simplify, 
Yices, Z3, CVC3, etc.)

Interactive provers
(Coq, PVS,
Isabelle/HOL, etc.)
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Why: a Verification Condition Generator

Why is a verification condition generator for a language with

variables containing pure values, no alias (~ Hoare-logic language)

usual control structures (loops, tests, etc.)

exceptions

(possibly recursive) functions

polymorphic first-order logic with equality and arithmetic

Why is similar to Boogie (SPEC# project)

Why is also responsible for translating verification conditions to the
native logics of all provers
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Generating the Verification Conditions

Why

Caduceus

memory layout
for program foo
(foo_spec.why)

Annotated C program
(foo.c)

Verification Conditions

Automatic provers
(Simplify, Yices,
Ergo, CVC3, etc.)

Interactive provers
(Coq, PVS,
Isabelle/HOL, etc.)

Why code for
C functions
(foo.why) 

memory model
for C programs
(caduceus.why)
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SMT Solvers and Program Verification
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Disclaimer

don’t be mistaken by the remaining of this talk;

I do think that

SMT solvers are great tools!

SMT-lib is definitely a good idea

SMT-comp helps improving the quality of SMT solvers
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Which Logics for Program Verification

SMT solvers provide

first-order logic with equality
memory models, user axiomatic models, etc.

integer/rational/real linear arithmetic
integer arithmetic: array indices, pointer arithmetic, etc.

applicative arrays
axiomatic approach is equally efficient
extensionality is not needed in practice

fixed-size bit vectors
a too restrictive interface

tuples, records, inductive data types
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Which Logics for Program Verification

relevant theories for program verification can be different

non-linear arithmetic

finite sets

reachability

let us consider some examples

Bresenham’s line drawing algorithm

Dijkstra’s shortest path algorithm
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Example 1: Bresenham’s Line Drawing Algorithm

draws a discrete line from (0, 0) to (x2, y2)

logic x2,y2 : int

axiom first octant : 0 <= y2 <= x2

x varies from 0 to x2 ;
at each step, y is increased or not, according to the size of e

parameter x,y,e : int ref
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Example 1: Bresenham’s Line Drawing Algorithm

let bresenham () =
x : = 0;
y : = 0;
e : = 2 * y2 - x2;
while !x <= x2 do
{ invariant 0 <= x <= x2 + 1 and

e = 2 * (x + 1) * y2 - (2 * y + 1) * x2 and
2 * (y2 - x2) <= e <= 2 * y2 }

(* here we would plot (x,y) *)
if !e < 0 then
e : = !e + 2 * y2

else begin
y : = !y + 1;
e : = !e + 2 * (y2 - x2)

end;
x : = !x + 1

done
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Example 1: Bresenham’s Line Drawing Algorithm

the code only uses linear arithmetic

the specification and thus the proofs require non-linear arithmetic

if suffices to add the following axioms

axiom z ring 0 : forall a,b,c : int. a * (b+c) = a*b + a*c
axiom z ring 1 : forall a,b,c : int. (b+c) * a = b*a + c*a

DEMO
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Example 2: Dijkstra’s Shortest Path

single-source shortest path in a weighted graph

S ← ∅
Q ← {src}; d [src]← 0
while Q\S not empty do

extract u from Q\S with minimal distance d [u]
S ← S ∪ {u}
for each vertex v such that u

w→ v
d [v ]← min(d [v ], d [u] + w)
Q ← Q ∪ {v}
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Example 2: Dijkstra’s Shortest Path

finite sets are everywhere in the code/specification:

set of vertices V

set of successors of u

sets S and Q

all we need is

the empty set ∅
addition {x} ∪ s

subtraction s\{x}
membership predicate x ∈ s
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Example 2: Dijkstra’s Shortest Path

type ’a set

logic set empty : ’a set
logic set add : ’a, ’a set -> ’a set
logic set rmv : ’a, ’a set -> ’a set
logic In : ’a, ’a set -> prop

predicate Is empty(s : ’a set) =
forall x : ’a. not In(x, s)

predicate Incl(s1 : ’a set, s2 : ’a set) =
forall x : ’a. In(x, s1) -> In(x, s2)
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Example 2: Dijkstra’s Shortest Path

axiom set empty def :
Is empty(set empty)

axiom set add def :
forall x : ’a. forall y : ’a. forall s : ’a set.
In(x, set add(y,s)) <-> (x = y or In(x, s))

axiom set rmv def :
forall x : ’a. forall y : ’a. forall s : ’a set.
In(x, set rmv(y,s)) <-> (x <> y and In(x, s))
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Example 2: Dijkstra’s Shortest Path

termination requires the notion of cardinality

logic set card : ’a set -> int

axiom card nonneg : forall s : ’a set. set card(s) >= 0

axiom card set add :
forall x : ’a. forall s : ’a set.
not In(x,s) -> set card(set add(x,s)) = 1 + set card(s)

axiom card set rmv :
forall x : ’a. forall s : ’a set.
In(x,s) -> set card(s) = 1 + set card(set rmv(x, s))

axiom card Incl :
forall s1,s2 : ’a set.
Incl(s1,s2) -> set card(s1) <= set card(s2)
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Example 2: Dijkstra’s Shortest Path

while ... do
{ ... variant set card(V) - set card(S) }
...
S : = set add u !S;
...
while ... do
{ ... variant set card(su) }
...
su : = set rmv v !su

done
done
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Finite Sets

a theory of finite sets with constant ∅, operations {x} ∪ s, s\{x}, card(s)
and predicate x ∈ s would be extremely useful (even if incomplete)

Jean-Christophe Filliâtre SMT Solvers and the Why platform SMT, July 7, 2008



Example 2: Dijkstra’s Shortest Path

(* paths *)

logic path : vertex, vertex, int -> prop

axiom path nil :
forall x : vertex. path(x,x,0)

axiom path cons :
forall x,y,z : vertex. forall d : int.
path(x,y,d) -> In(z,g succ(y)) ->
path(x,z,d+weight(y,z))

(* and shortest paths *)

predicate shortest path(x : vertex, y : vertex, d : int) =
path(x,y,d) and forall d’ : int. path(x,y,d’) -> d <= d’
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Example 2: Dijkstra’s Shortest Path

axiom path inversion :
forall src,v : vertex. forall d : int. path(src,v,d) ->
(v = src and d = 0) or
(exists v’ : vertex.
path(src,v’,d - weight(v’,v)) and In(v,g succ(v’)))

(* lemmas requiring induction *)

axiom length nonneg :
forall x,y : vertex. forall d : int. path(x,y,d) -> d >= 0

...
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Reachability

more generally, a theory of reachability is often used when specifying
programs

this is simply the reflexive transitive closure of some relation (requires a
some kind of higher-order to be generic)

variants:

paths without repetition

paths with the list of nodes (path(x , y , l))

closure of a functionø

etc.
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Conversely

sometimes, no need for built-in theories

examples

arrays

machine arithmetic (fixed-size integers)

bitwise arithmetic (low-level bit tricks)
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Machine Arithmetic

3 possible models for C (integer) arithmetic in Why

exact arithmetic

bounded arithmetic (no overflow)

modulo arithmetic (faithful to program execution)
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Bounded Arithmetic

type int32

logic of int32 : int32 -> int

axiom int32 domain :
forall x : int32. -2147483648 <= of int32(x) <= 2147483647

parameter int32 of int :
x : int ->
{ -2147483648 <= x <= 2147483647 }
int32
{ of int32(result) = x }
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Bounded Arithmetic

a C operation such as x + y is translated into

int32 of int(of int32(x) + of int32(y))

which produces the verification condition

-2147483648 <= of int32(x) + of int32(y) <= 2147483647

no real need for a built-in theory
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Modulo Arithmetic

type int32
logic of int32 : int32 -> int
axiom int32 domain : ...

logic mod int32 : int -> int

parameter int32 of int :
x : int -> { } int32 { of int32(result) = mod int32(x) }

axiom mod int32 id :
forall x : int.
-2147483648 <= x <= 2147483647 -> mod int32(x) = x

axiom mod int32 def :
forall x,k : int.
mod int32(x) = mod int32(x + k * 4294967296)
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Modulo Arithmetic

in some cases, you may only need

axiom mod int32 gt :
forall x : int. x > 2147483647 ->
mod int32(x) = mod int32(x - 4294967296)

axiom mod int32 lt :
forall x : int. x < -2147483648 ->
mod int32(x) = mod int32(x + 4294967296)

otherwise, you need

either non-linear arithmetic

or at a built-in theory of modulo arithmetic
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Bitwise Arithmetic

challenge for the verified program of the month:

t(a,b,c){int d=0,e=a&~b&~c,f=1;if(a)for(f=0;d=(e-=d)&-e;f+=t(a-d,(b+d)*2,(

c+d)/2));return f;}main(q){scanf("%d",&q);printf("%d\n",t(~(~0<<q),0,0));}
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Unobfuscating...

int t(int a, int b, int c) {
int d, e=a&~b&~c, f=1;
if (a)
for (f=0; d=e&-e; e-=d)
f += t(a-d, (b+d)*2, (c+d)/2);

return f;
}

int main(int q) {
scanf("%d", &q);
printf("%d\n", t(~(~0<<q), 0, 0));

}

this program reads an integer n
and prints the number of solutions to the n-queens problem
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SMT-lib and SMT-comp
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conclusion
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