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The ProVal project — http://proval.lri.fr/

Foundations of ProVal: the Coq project

type theory: type ' logic specification
Curry-Howard isomorphism: proof ' program
functional programs only

goals of ProVal:
to deal with imperative programs (C, Java)
to apply our methods to industrial cases
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Brief History

1999: a first approach for programs with side effects in Coq

2000-2003: EU project Verificard (verification of Java Card applets
with industrial partners GemPlus, Schlumberger)

2001-: stand-alone Why tool, to use both automatic and interactive
provers

2003-: Krakatoa tool for Java programs

2004-: Caduceus tool for C programs

2007: The Why platform
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overview of the Why platform
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Overview of the Why Platform

general goal: prove behavioral properties of pointer programs

pointer program = program manipulating data structures with
in-place mutable fields

we currently focus on C and Java programs
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What Kind of Properties

two kinds

safety, that is

no null pointer dereference
no array access out of bounds (no buffer overflow)
no division by zero
no arithmetic overflow
termination

behavioral correctness
the program does what it is expected to do
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Principles

specification as annotations at the source code level

Java: an extension of JML (Java Modeling Language)
C: our own language (mostly JML-inspired)

generation of verification conditions (VCs)

using Hoare logic / weakest preconditions
other similar approaches: static verification (ESC/Java, SPEC#),
B method, etc.

multi-prover approach

off-the-shelf provers, as many as possible
automatic provers (Alt-Ergo, Simplify, Yices, Z3, CVC3, etc.)
proof assistants (Coq, PVS, Isabelle/HOL, etc.)
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A Toy Example: Binary Search

binary search: search a sorted array of integers for a given value

famous example; see J. Bentley’s Programming Pearls
most programmers are wrong on their first attempt to write binary search
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Binary Search (C code)

int binary search(int* t, int n, int v) {
int l = 0, u = n-1;
while (l <= u ) {
int m = (l + u) / 2;
if (t[m] < v)
l = m + 1;

else if (t[m] > v)
u = m - 1;

else
return m;

}
return -1;

}
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Binary Search

we want to prove:

1 absence of runtime error

2 termination

3 behavioral correctness
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Binary Search: Safety

no division by zero

no array access out of bounds

/*@ requires n >= 0 && \valid range(t,0,n-1) */
int binary search(int* t, int n, int v) {

int l = 0, u = n-1;
/*@ invariant 0 <= l && u <= n-1 */
while (l <= u ) {
...

}

DEMO
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Binary Search: Termination

we add a variant to prove termination

/*@ requires n >= 0 && \valid range(t,0,n-1) */
int binary search(int* t, int n, int v) {

int l = 0, u = n-1;
/*@ invariant 0 <= l && u <= n-1
@ variant u - l
@*/

while (l <= u ) {
...

}

DEMO
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Binary Search: Behavioral Specification

we add a postcondition for the success case

/*@ requires n >= 0 && \valid range(t,0,n-1)
@ ensures \result >= 0 => t[\result] == v
@*/

int binary search(int* t, int n, int v) {
int l = 0, u = n-1;
/*@ invariant 0 <= l && u <= n-1
@ variant u - l
@*/

while (l <= u ) {
...

}

DEMO
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Binary Search: Behavioral Specification (cont’d)

we add a postcondition for the failure case ⇒ we need a precondition
which says that the array is sorted

/*@ requires
@ n >= 0 && \valid range(t,0,n-1) &&
@ \forall int k1, int k2;
@ 0 <= k1 <= k2 <= n-1 => t[k1] <= t[k2]
@ ensures
@ (\result >= 0 && t[\result] == v) ||
@ (\result == -1 &&
@ \forall int k; 0 <= k < n => t[k] != v)
@*/

int binary search(int* t, int n, int v) {
...

}
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Binary Search: Behavioral Specification (cont’d)

requires a stronger invariant

int binary search(int* t, int n, int v) {
int l = 0, u = n-1;
/*@ invariant
@ 0 <= l && u <= n-1 &&
@ \forall int k;
@ 0 <= k < n => t[k] == v => l <= k <= u
@ variant u-l
@*/

while (l <= u ) {
...

}
}

DEMO
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Binary Search: Arithmetic Overflows

finally, let’s prove that there is no arithmetic overflow... there is one!

in statement

int m = (l + u) / 2;

a possible overflow is signaled; a possible fix is

int m = l + (u - l) / 2;

see

Google: “Read All About It: Nearly All Binary Searches and
Mergesorts are Broken”

“Types, Bytes, and Separation Logic” POPL’07
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Cases Studies so far

academic case studies

Schorr-Waite algorithm [SEFM’05]

selection sort, insertion sort, heapsort, quicksort

Dijkstra’s shortest path

Bresenham’s line drawing

Knuth-Morris-Pratt string searching

n-queens (backtracking counting of solutions)

several MIX programs from The Art of Computer Programming
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Cases Studies so far

industrial case studies

Java applets
Java Card transactions at Gemalto [N. Rousset, SEFM’06]

Industrial banking applet Payflex (Banking) - 4600 loc
SIMSave: SIM/Server synchro - 3800 loc
IAS: government security platform - 20 000 loc

Demoney applet provided by Trusted Logic
PSE applet provided by Gemalto [AMAST’04]

avionics software from Dassault Aviation [T. Hubert, HAV’07]

embedded C code checked for safety - 70 000 loc

undergoing collaboration with CEA, Airbus, France Télécom,
Continental SA, Dassault Aviation
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verification technique
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Problems to Solve

we need

1 to get VCs from annotated programs

how to model the memory
what can be shared between C and Java

2 to discharge the VCs

how to use both automatic and interactive theorem provers

our solution: the use of an intermediate language, Why, which is

a VC generator

a common front-end to various provers
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Platform Overview

Why

Caduceus KrakatoaWhy program

Annotated C program JML-Annotated Java program

Verification Conditions

Automatic provers
(Alt-Ergo, Simplify, 
Yices, Z3, CVC3, etc.)

Interactive provers
(Coq, PVS,
Isabelle/HOL, etc.)
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Why: a Verification Condition Generator

Why is a verification condition generator for a language with

variables containing pure values, no alias (~ Hoare-logic language)

usual control structures (loops, tests, etc.)

exceptions

(possibly recursive) functions

polymorphic first-order logic with equality and arithmetic

Why is similar to Boogie (SPEC# project)

Why is also responsible for translating verification conditions to the
native logics of all provers
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Generating the Verification Conditions

Why

Caduceus

memory layout
for program foo
(foo_spec.why)

Annotated C program
(foo.c)

Verification Conditions

Automatic provers
(Simplify, Yices,
Ergo, CVC3, etc.)

Interactive provers
(Coq, PVS,
Isabelle/HOL, etc.)

Why code for
C functions
(foo.why) 

memory model
for C programs
(caduceus.why)
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Modeling the memory

we need to translate pointer programs to alias-free programs

naive idea: model the memory as a big array

using the theory of arrays

acc : mem, int→ int
upd : mem, int, int→ mem

∀m p v , acc(upd(m, p, v), p) = v
∀m p1 p2 v , p1 6= p2 ⇒ acc(upd(m, p1, v), p2) = acc(m, p2)
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Naive Memory Model

then the C program

struct S { int x; int y; } p;
...
p.x = 0;
p.y = 1;
//@ assert p.x == 0

becomes

m := upd(m, px , 0);
m := upd(m, py , 1);
assert acc(m, px) = 0

the verification condition is

acc(upd(upd(m, px , 0), py , 1), px) = 0
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Memory Model for Pointer Programs

we use the component-as-array model (Burstall-Bornat)

each structure/object field is mapped to a different array

relies on the property “two different fields cannot be aliased”

strong consequence: prevents pointer casts and unions (a priori)
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Benefits of the Component-As-Array Model

struct S { int x; int y; } p;
...
p.x = 0;
p.y = 1;
//@ assert p.x == 0

becomes

x := upd(x , p, 0);
y := upd(y , p, 1);
assert acc(x , p) = 0

the verification condition is

acc(upd(x , p, 0), p) = 0
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Component-As-Array Model and Pointer Arithmetic

struct S { int x; short y; struct S *next; } t[3];

x y next x y next x y nextt

x

t

...

y

...

next

...
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y
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Separation Analysis

on top of Burstall-Bornat model, we add some separation analysis

each pointer is assigned a zone

zones are unified when pointers are assigned / compared

functions are polymorphic wrt zones

similar to ML-type inference

then the component-as-array model is refined according to zones

Separation Analysis for Deductive Verification [HAV’07]
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Separation Analysis
struct S { int x; short y; struct S *next; } t1[3], t2[2];

x y next x y nextt2

x(z1)

t1

...

y(z1)

...

next(z1)

...

x(z2)

...

y(z2)

...

next(z2)

...

x y next x y next x y nextt1

t2
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Jean-Christophe Filliâtre The Why platform Porto, July 4, 2008



Example

little challenge for program verification proposed by P. Müller:

count the number n of non-zero values in an integer array t,
then copy these values in a freshly allocated array of size n

t 2 1 0 4 0 5 3 0

n=5

u 2 1 4 5 3
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P. Müller’s Example (code)

void m(int t[], int length) {
int count=0, i, *u;

for (i=0 ; i < length; i++)
if (t[i] > 0) count++;

u = (int *)calloc(count,sizeof(int));
count = 0;

for (i=0 ; i < length; i++)
if (t[i] > 0) u[count++] = t[i];

}
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P. Müller’s Example (spec)

void m(int t[], int length) {
int count=0, i, *u;
//@ invariant count == num of pos(0,i-1,t) ...
for (i=0 ; i < length; i++)
if (t[i] > 0) count++;

//@ assert count == num of pos(0,length-1,t)
u = (int *)calloc(count,sizeof(int));
count = 0;
//@ invariant count == num of pos(0,i-1,t) ...
for (i=0 ; i < length; i++)
if (t[i] > 0) u[count++] = t[i];

}
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P. Müller’s Example (proof)

12 verification conditions

without separation analysis: 10/12 automatically proved

with separation analysis: 12/12 automatically proved

DEMO

Jean-Christophe Filliâtre The Why platform Porto, July 4, 2008



discharging the verification conditions
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Which Provers

we want to use off-the-shelf provers, as many as possible

requirements

first-order logic

equality and arithmetic

quantifiers (memory model, user algebraic models)
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Provers Currently Supported

automatic decision procedures

provers a la Nelson-Oppen

Alt-Ergo [http://alt-ergo.lri.fr/, SMT’07, SMT’08]
Simplify, Yices, Z3, CVC3

resolution based provers

harvey, rv-sat, Zenon

interactive proof assistants

Coq, PVS, Isabelle/HOL

HOL4, HOL Light, Mizar
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Using Several Provers

built-in theories vs algebraic models

typing issues: provers do not implement the same logics

trust in prover results

provers collaboration
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Built-in Theories and Algebraic Models

some provers implement built-in theories, such as

purely applicative arrays

real arithmetic

bit vectors

tuples

in practice, the intersection is limited to linear arithmetic

so we axiomatize the theory we need and rely on the quantifier
instantiation capabilities (both risky and incomplete)
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Example 1: Bresenham Line Drawing Algorithm

// draw a line from (0,0) to (x2,y2) assuming 0 <= y2 <= x2

void bresenham() {
int x = 0;
int y = 0;
int e = 2 * y2 - x2;
for (x = 0; x <= x2; x++) {
// plot (x,y) at this point
if (e < 0)
e += 2 * y2;

else {
y++;
e += 2 * (y2 - x2);

}
}

}
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Example 1: Bresenham Line Drawing Algorithm

the code only uses additions,
but the loop invariant requires non-linear arithmetic

/*@ invariant
@ 0 <= x <= x2 + 1 &&
@ e == 2 * (x + 1) * y2 - (2 * y + 1) * x2 &&
@ 2 * (y2 - x2) <= e <= 2 * y2
@*/

for (x = 0; x <= x2; x++) {
// plot (x,y) at this point
...
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Example 1: Bresenham Line Drawing Algorithm

we can help the provers with the following axioms

/*@ axiom distr left :
@ \forall int a, int b, int c; a * (b+c) == a*b + a*c
@*/

/*@ axiom distr right :
@ \forall int a, int b, int c; (b+c) * a == b*a + c*a
@*/

DEMO
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Example 2: Counting Bits

int count bits(int x) {
int d, c;
for (c = 0; d = x&-x; x -= d) c++;
return c;

}

x&-x extracts the least significant bit of x
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Example 2: Counting Bits

we introduce a function symbol for the number of bits

//@ logic int nbits(int x)

/*@ ensures \result == nbits(x) */
int count bits(int x) {

int d, c;
/*@ invariant c + nbits(x) == nbits(\at(x,init))
@ variant nbits(x)
@*/

for (c = 0; d = x&-x; x -= d) c++;
return c;

}
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Example 2: Counting Bits

then we axiomatize nbits:

//@ axiom nbits nonneg : \forall int x; nbits(x) >= 0

//@ axiom nbits zero : nbits(0) == 0

/*@ axiom lowest bit zero :
@ \forall int x; (x&-x) == 0 <=> x == 0
@*/

/*@ axiom remove one bit :
@ \forall int x;
@ x != 0 => nbits(x - (x&-x)) == nbits(x) - 1
@*/
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Example 3: Priority Queues

static data structure for a priority queue containing integers

void clear(); // empties the queue
void push(int x); // inserts a new element
int max(); // returns the maximal element
int pop(); // removes and returns the maximal element
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Example 3: Priority Queues

//@ type bag

//@ logic bag empty bag()

//@ logic bag singleton bag(int x)

//@ logic bag union bag(bag b1, bag b2)

/*@ logic bag add bag(int x, bag b)
@ { union bag(b, singleton bag(x)) } */

//@ logic int occ bag(int x, bag b)

/*@ predicate is max bag(bag b, int m) {
@ occ bag(m, b) >= 1 &&
@ \forall int x; occ bag(x,b) >= 1 => x <= m
@ } */
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Example 3: Priority Queues

//@ logic bag model()

//@ ensures model() == empty bag()
void clear();

//@ ensures model() == add bag(x, \old(model()))
void push(int x);

//@ ensures is max bag(model(), \result)
int max();

/*@ ensures is max bag(\old(model()), \result) &&
@ \old(model()) == add bag(\result, model()) */

int pop();
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Example 3: Priority Queues

implementation: heap encoded in an array

17 15 13 10 12 10 7 2 8 7 ...

17

15 13

10 12 10 7

2 8 7

0 size

2 i + 1 2 i + 2i

array

tree

bag { 2, 7, 7, 8, 10, 10, 12, 13, 15, 17 }
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Example 3: Priority Queues

//@ type tree

//@ logic tree Empty()

//@ logic tree Node(tree l, int x, tree r)
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Example 3: Priority Queues

//@ predicate is heap(tree t)

//@ axiom is heap def 1: is heap(Empty())

...
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Example 3: Priority Queues

//@ logic bag bag of tree(tree t)

/*@ axiom bag of tree def 1:
@ bag of tree(Empty()) == empty bag()
@*/

...
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Example 3: Priority Queues

//@ logic tree tree of array(int *t, int root, int bound)

/*@ axiom tree of array def 2:
@ \forall int *t; \forall int root; \forall int bound;
@ 0 <= root < bound =>
@ tree of array(t, root, bound) ==
@ Node(tree of array(t, 2*root+1, bound),
@ t[root],
@ tree of array(t, 2*root+2, bound))
@*/

...
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Example 3: Priority Queues

#define MAXSIZE 100

int heap[MAXSIZE];

int size = 0;

//@ invariant size inv : 0 <= size < MAXSIZE

//@ invariant is heap: is heap(tree of array(heap, 0, size))

/*@ logic bag model()
@ { bag of tree(tree of array(heap, 0, size)) } */
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Typing Issues

verification conditions are expressed in polymorphic first-order logic

need to be translated to logics with various type systems:

unsorted logic (Simplify, Zenon)

simply sorted logic (SMT provers)

parametric polymorphism (CVC Lite, PVS)

polymorphic logic (Alt-Ergo, Coq, Isabelle/HOL)
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Typing Issues

forgetting types is unsound

//@ type color
//@ logic color black
//@ logic color white
//@ axiom color: \forall color c; c==white || c==black

∀c , c = white ∨ c = black ` ⊥
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Type Encoding

several type encodings are used

monomorphization

may loop

usual encoding “types-as-predicates”

does not combine nicely with most provers

new encoding with type-decorated terms
Handling Polymorphism in Automated Deduction [CADE’07]
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Trust in Prover Results

some provers apply the de Bruijn principle and thus are safe
Coq, HOL family

most provers have to be trusted
Simplify, Yices
PVS, Mizar

some provers output proof traces
Alt-Ergo, CVC family, Zenon
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Provers Collaboration

most of the time, we run the various provers in parallel,
expecting at least one of them to discharge the VCs

if not, we turn to interactive theorem provers

no real collaboration between automatic provers

from Coq or Isabelle, one can call automatic theorem provers

proofs are checked when available
results are trusted otherwise
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conclusion, ongoing and future work
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Summary

the Why platform features

behavioral specification languages for C and Java programs,
at source code level

deductive program verification using original memory models

multi-provers backend (interactive and automatic)

successfully applied on both

academic case studies

industrial case studies

free software, at http://why.lri.fr/

Jean-Christophe Filliâtre The Why platform Porto, July 4, 2008

http://why.lri.fr/


Ongoing Work

floating point arithmetic
allows to specify rounding and method errors
Formal Verification of Floating-Point Programs [ARITH’07]
mostly interactive proof (currently Coq, eventually PVS)

ownership
when class/type invariants must hold?

automatic generation of loop invariants and preconditions
using abstract interpretation techniques [HAV’07]

Eclipse plugin (C and Java)

selection of relevant hypotheses [FTP’07]

in Why, in Alt-Ergo
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The Future: Frama-C

more realistic C fragment (unions & pointer casts, goto’s, etc.)

more ambitious specification language

ACSL: ANSI/ISO C Specification Language

combination of deductive verification and abstract interpretation

see http://frama-c.cea.fr/
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