
The 2nd Verified Software Competition
Experience Report

Jean-Christophe Filliâtre Andrei Paskevich Aaron Stump

VSTTE
Philadelphia, January 28, 2012

Previous Competitions

• on-site competitions
I VSTTE 2010 / 2 hours / 5 problems

(Peter Müller, Natarajan Shankar)

I FoVeOOS 2011 / 2.5 hours / 3 problems
(Marieke Huisman, Vladimir Klebanov, Rosemary Monahan)

• long-term challenges
I VACID-0 / 5 problems

(Rustan Leino, Micha l Moskal)

And Now for Something Completely Different

inspired by the ICFP programming contest

• more challenging problems

• over a short period (2/3 days)

but

• algorithm is given

• solution = specification + mechanized proof

a completely different evaluation process

• adequacy of a specification cannot be judged mechanically

Competition Format

• first announcement on Sep 30
I second call on Oct 7
I last call on Nov 1 (“one week to go”)

• competition from Nov 8 15:00 UTC to Nov 10 15:00 UTC
I problems put on the web
I solutions sent by email

• winner(s) private notification on Dec 12

Rules

• team work is allowed
(only teams up to 4 members are eligible for the first prize)

• any software used in the solutions should be freely available
for noncommercial use to the public

• software must be usable on x86 Linux or Windows

• participants can modify their tools during the competition

Problems

find a balance between

• purely applicative vs imperative style

• data structures vs algorithms

• easy vs difficult

5 independent problems

Pentathlon

1. Two-Way Sort (50 points)

sort an array of Boolean values

2. Combinators (100 points)

call-by-value reduction of SK-terms

3. Ring Buffer (150 points)

queue data structure in a circular array

4. Tree Reconstruction (150 points)

build a binary tree from a list of leaf depths

5. Breadth-First Search (150 points)

search for a shortest path in a directed graph

Participants

Participants

• 29 submissions

• 79 participants
I 8 teams of size 1
I 6 teams of size 2
I 4 teams of size 3
I 10 teams of size 4
I 1 team of size 9

• ACL2 (1)

• Agda (3)

• ATS (1)

• B (2)

• BLAST (1)

• CBMC (1)

• Coq (7)

• Dafny (6)

• Escher (1)

• Guru (1)

• HIP (1)

• Holfoot (1)

• Isabelle (2)

• KeY (1)

• KIV (1)

• PAT (1)

• PML (1)

• PVS (3)

• Socos (1)

• VCC (2)

• VeriFast (1)

• Ynot (1)

Winners

a group of excellent submissions with tied scores

⇒ we opted for 6 medalists: 2 bronze, 2 silver, 2 gold

and they are...

Bronze Medalists (590 points)

• eam (VCC)
I Ernie Cohen
I Micha l Moskal

• JasonAndNadia (Dafny)
I Jason Koenig
I Nadia Polikarpova

Silver Medalists (595 points)

• SRI (PVS)
I Sam Owre
I N. Shankar

• LeinoMuller (Dafny)
I Rustan Leino
I Peter Müller

Gold Medalists (600 points)

• acl2-dkms
I Jared Davis
I Matt Kaufmann
I J Strother Moore
I Sol Swords

• KIV
I Gidon Ernst
I Gerhard Schellhorn
I Kurt Stenzel
I Bogdan Tofan

some feedback from the organizers

Preparation

• a larger set of problems
I Booth algorithm
I in-place inversion of a permutation
I stable counting sort

• solutions in Why3

• beta-testing
I are the problems too easy / too difficult?
I make a selection

Organization

• announces on various mailing lists

• web page
I hosted on the VSTTE web site (Google sites)

https://sites.google.com/site/vstte2012/compet

• mailing list for the competition
I Google group vstte-2012-verification-competition

• mailbox for submissions
I vstte-2012-competition@lri.fr

https://sites.google.com/site/vstte2012/compet
vstte-2012-competition@lri.fr

Sequence of Events

• before the competition
I a few discussions on the mailing list or in private

• during the competition
I “night watch” (2 in Europe, 1 in USA)
I a few questions on the mailing list

• after the competition
I we sent acknowledgment emails (was useful)
I we invited participants to share their solutions

• evaluation process

Evaluation Process

1. proofreading code and specification

2. installing and running tools, inserting errors

Evaluation Process

1. proofreading code and specification
I what makes it easy

• Principle of Least Astonishment

I what makes it hard
• ar[i→n(i)] as a notation for array access
• non human-readable format
• code, spec, and proof tangled

2. installing and running tools, inserting errors

Evaluation Process

1. proofreading code and specification

2. installing and running tools, inserting errors
I what makes it easy

• packages
• tool and prover(s) come together

I what makes it hard
• installation issues

Conclusion

• we hope to take part in next competitions

• a submission server would be a good idea

• always hire several organizers, on both sides of the Atlantic

Thanks

• beta-testing
Claude Marché, Duckki Oe

• VSTTE 2012 chairs
Ernie Cohen, Rajeev Joshi, Peter Müller, Andreas Podelski

• publicity
Gudmund Grov

• technical support
LRI’s staff

Problem 1: Two-Way Sort

two_way_sort(a: array of boolean) :=

i <- 0;

j <- length(a) - 1;

while i <= j do

if not a[i] then

i <- i+1

elseif a[j] then

j <- j-1

else

swap(a, i, j);

i <- i+1;

j <- j-1

endif

endwhile

Problem 1: Two-Way Sort

1. Safety. Verify that every array access is made within bounds.

2. Termination. Prove that function two way sort always
terminates.

3. Behavior. Verify that after execution of function
two way sort, the following properties hold.

3.1 Array a is sorted in increasing order.
3.2 Array a is a permutation of its initial contents.

Problem 2: Combinators

terms t ::= S | K | (t t)

CBV contexts C ::= � | (C t) | (v C)
values v ::= K | S | (K v) | (S v) | ((S v) v)

�[t] = t
(C t1)[t] = (C [t] t1)
(v C)[t] = (v C [t])

C [((K v1) v2)] → C [v1]
C [(((S v1) v2) v3)] → C [((v1 v3) (v2 v3))]

Problem 2: Combinators

Implementation Task

1. Implement a function reduction which, when given a
combinator term t as input, returns a term t ′ such that
t →∗ t ′ and t ′ 6→, or loops if there is no such term.

Verification Tasks

1. Prove that if reduction(t) returns t ′, then t →∗ t ′ and t ′ 6→.

2. Prove that function reduction terminates on any term which
does not contain S.

3. Consider the meta-language function ks defined by

ks 0 = K
ks (n + 1) = ((ks n) K)

Prove that reduction applied to the term (ks n) returns K
when n is even, and (K K) when n is odd.

Problem 3: Ring Buffer

type ring_buffer = record

data : array of int; // buffer contents

size : int; // buffer capacity

first: int; // queue head , if any

len : int; // queue length

end

x1 x2 . . . xlen
↑
first

. . . xlen x1 x2

↑
first

Problem 3: Ring Buffer
create(n: int): ring_buffer :=

return new ring_buffer(

data = new array[n] of int;

size = n; first = 0; len = 0)

clear(b: ring_buffer) :=

b.len <- 0

head(b: ring_buffer): int :=

return b.data[b.first]

push(b: ring_buffer , x: int) :=

b.data[(b.first + b.len) mod b.size] <- x;

b.len <- b.len + 1

pop(b: ring_buffer): int :=

r <- b.data[b.first];

b.first <- (b.first + 1) mod b.size;

b.len <- b.len - 1;

return r

Problem 3: Ring Buffer

1. Safety. Verify that every array access is made within bounds.

2. Behavior. Verify the correctness of your implementation
w.r.t. the first-in first-out semantics of a queue.

3. Harness. The following test harness should be verified.

test (x: int , y: int , z: int) :=

b <- create (2);

push(b, x);

push(b, y);

h <- pop(b); assert h = x;

push(b, z);

h <- pop(b); assert h = y;

h <- pop(b); assert h = z;

Problem 4: Tree Reconstruction

1, 3, 3, 2

type tree

Leaf(): tree

Node(l:tree , r:tree): tree

type list

is_empty(s: list): boolean

head(s: list): int

pop(s: list)

Problem 4: Tree Reconstruction

1, 3, 3, 2

type tree

Leaf(): tree

Node(l:tree , r:tree): tree

type list

is_empty(s: list): boolean

head(s: list): int

pop(s: list)

Problem 4: Tree Reconstruction

build_rec(d: int , s: list): tree :=

if is_empty(s) then fail; endif

h <- head(s);

if h < d then fail; endif

if h = d then pop(s); return Leaf();

endif

l <- build_rec(d+1, s);

r <- build_rec(d+1, s);

return Node(l, r)

build(s: list): tree :=

t <- build_rec (0, s);

if not is_empty(s) then fail; endif

return t

Problem 4: Tree Reconstruction

1. Soundness. Verify that whenever function build successfully
returns a tree the depths of its leaves are exactly those passed
in the argument list.

2. Completeness. Verify that whenever function build reports
failure there is no tree that corresponds to the argument list.

3. Termination. Prove that function build always terminates.

4. Harness. The following test harness should be verified:
I Verify that build applied to the list 1, 3, 3, 2 returns the tree

Node(Leaf, Node(Node(Leaf, Leaf), Leaf)).
I Verify that build applied to the list 1, 3, 2, 2 reports failure.

Problem 5: Breadth-First Search

bfs(source: vertex , dest: vertex): int :=

V <- {source }; C <- {source }; N <- {};

d <- 0;

while C is not empty do

remove one vertex v from C;

if v = dest then return d; endif

for each w in succ(v) do

if w is not in V then

add w to V;

add w to N;

endif

endfor

if C is empty then

C <- N;

N <- {};

d <- d+1;

endif

endwhile

fail "no path"

Problem 5: Breadth-First Search

1. Soundness. Verify that whenever function bfs returns an
integer n this is indeed the length of the shortest path from
source to dest.

A partial score is attributed if it is only proved that there
exists a path of length n from source to dest.

2. Completeness. Verify that whenever function bfs reports
failure there is no path from source to dest.

