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definition

program
+

specification

verification
conditions

proof



this is not new

A. M. Turing. Checking a large routine. 1949.

STOP

r′ = 1
u′ = 1 v′ = u TEST r − n s′ = 1 u′ = u + v s′ = s + 1

r′ = r + 1 TEST s − r



this is not new

Tony Hoare.
Proof of a program: FIND.
Commun. ACM, 1971.

k

≤ v v ≥ v



which programs? which specs?

program
+

specification

verification
conditions

proof

programs

• pseudo code / mainstream languages / DSL

• small / large

specs

• safety, i.e. the program does not crash

• absence of arithmetic overflow

• complex behavioral property, e.g. “sorts an array”



which logic?

program
+

specification

verification
conditions

proof

• too rich: we won’t be able to automate proofs

• too poor: we can’t model programming languages and we
can’t specify programs

typically, a compromise

• e.g. first-order logic + equality + arithmetic



what about proofs?

program
+

specification

verification
conditions

proof

a gift: theorem provers

• proof assistants: Coq, PVS, Isabelle, etc.

• TPTP provers: Vampire, Eprover, SPASS, etc.

• SMT solvers: CVC3, Z3, Yices, Alt-Ergo, etc.

• dedicated provers



checking a large routine (Turing, 1949)

STOP

r′ = 1
u′ = 1 v′ = u TEST r − n s′ = 1 u′ = u + v s′ = s + 1

r′ = r + 1 TEST s − r

u ← 1
for r = 0 to n − 1 do

v ← u
for s = 1 to r do
u ← u + v
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checking a large routine (Turing, 1949)

STOP

r′ = 1
u′ = 1 v′ = u TEST r − n s′ = 1 u′ = u + v s′ = s + 1

r′ = r + 1 TEST s − r

requires {n ≥ 0}
u ← 1
for r = 0 to n − 1 do
v ← u
for s = 1 to r do
u ← u + v

ensures {u = fact(n)}



checking a large routine (Turing, 1949)

STOP

r′ = 1
u′ = 1 v′ = u TEST r − n s′ = 1 u′ = u + v s′ = s + 1

r′ = r + 1 TEST s − r

requires {n ≥ 0}
u ← 1
for r = 0 to n − 1 do invariant {u = fact(r)}
v ← u
for s = 1 to r do invariant {u = s × fact(r)}

u ← u + v
ensures {u = fact(n)}



verification condition

function fact(int) : int

axiom fact0: fact(0) = 1

axiom factn: ∀ n:int. n ≥ 1 → fact(n) = n * fact(n-1)

goal vc: ∀ n:int. n ≥ 0 →
(0 > n - 1 → 1 = fact(n)) ∧
(0 ≤ n - 1 →

1 = fact(0) ∧
(∀ u:int.

(∀ r:int. 0 ≤ r ∧ r ≤ n - 1 → u = fact(r) →
(1 > r → u = fact(r + 1)) ∧
(1 ≤ r →
u = 1 * fact(r) ∧
(∀ u1:int.

(∀ s:int. 1 ≤ s ∧ s ≤ r → u1 = s * fact(r) →
(∀ u2:int.

u2 = u1 + u → u2 = (s + 1) * fact(r))) ∧
(u1 = (r + 1) * fact(r) → u1 = fact(r + 1))))) ∧

(u = fact((n - 1) + 1) → u = fact(n))))
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verification condition

function fact(int) : int

axiom factn: ∀ n:int. n ≥ 1 → fact(n) = n * fact(n-1)

goal vc: ∀ n:int. n ≥ 0 →

(0 ≤ n - 1 →

(∀ u:int.

(∀ r:int. 0 ≤ r ∧ r ≤ n - 1 → u = fact(r) →

(1 ≤ r →

(∀ u1:int.

(u1 = (r + 1) * fact(r) → u1 = fact(r + 1))))) ∧



the SMT revolution

SMT means Satisfiability Modulo Theories

an SMT solver combines

∀ + SAT + Equality + Arith + ...

e.g.

n ≥ 0 0 > n − 1

n = 0
(Arith)

fact(0) = 1
(Ax)

1 = fact(n)
(Equality)



computing the verification conditions

a well-known technique: weakest preconditions
(Dijkstra 1971, Barnett/Leino 2005)

yet extracting verification conditions for a realistic programming
language is a lot of work

as in a compiler, we rather translate to some intermediate
language from which we extract VCs

two examples:

• Boogie (Microsoft Research)

• Why3 (Univ. Paris Sud / Inria)



Why3 in a nutshell

• a programming language, with
• polymorphism
• pattern-matching
• exceptions
• mutable data structures, but no aliasing

• a polymorphic first-order logic, with
• algebraic data types
• recursive definitions
• inductive and coinductive predicates

file.why

file.mlw

WhyML

VCgen

Why

transform/translate

print/run

Coq Alt-Ergo CVC3 Z3 etc.



applications

• Java programs: Krakatoa (Marché Paulin Urbain)

• C programs: Jessie plug-in of Frama-C (Marché Moy)

• Ada programs: Hi-Lite (Adacore)

• probabilistic programs (Barthe et al.)

• cryptographic programs (Vieira)



an example of program verification



Boyer-Moore’s majority

given a multiset of N votes

A A A C C B B C C C B C C

determine the majority, if any



an elegant solution

due to Boyer & Moore (1980)

linear time

constant extra space
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principle

A A A C C B B C C C B C C

cand = C

k = 3

then we check if C indeed has majority, with a second pass
(in that case, it has: 7 > 13/2)



Why3 code

let mjrty (a: array candidate) : candidate =
let n = length a in

let cand = ref a[0] in let k = ref 0 in

for i = 0 to n-1 do

if !k = 0 then begin cand := a[i]; k := 1 end

else if !cand = a[i] then incr k else decr k

done;

if !k = 0 then raise Not found;

try

if 2 * !k > n then raise Found; k := 0;

for i = 0 to n-1 do

if a[i] = !cand then begin

incr k; if 2 * !k > n then raise Found

end

done;

raise Not found

with Found →
!cand

end



demo



still a lot to do

to simultaneously

• increase proof automation
• e.g. automatic induction

• enrich the specification logic
• e.g. higher-order logic

• support more programming constructs
• e.g. continuations, coroutines, higher-order functions


