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Introduction

Credo

We are interested in verifying big properties of (small) programs
(6= small properties of big programs e.g. BLAST at Microsoft)

We believe that

I program verification requires interactive proof
(i.e. fully automatic proof is hopeless)

I verification tools must be safe
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I Hoare logic revisited
I Interpretation of imperative programs in Type Theory
I Monads and effects

2. Verifying C and Java programs
I Illustration on examples
I Finding an adequate memory model

3. Perspectives
I Verification of ML programs
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The Why tool Key idea Soundness In practice

Part I

The Why tool
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The Why tool Key idea Soundness In practice

Capture the essence of Hoare logic

1. absence of aliasing

2. embedding of the logic inside the programming language

{ P[x ← E ] } x := E { P }

We look for

I as much genericity as possible
(w.r.t. input language / logic / back-end provers)

I a safe method (not yet another VCG)

Jean-Christophe Filliâtre Verifying C and Java programs



The Why tool Key idea Soundness In practice

Capture the essence of Hoare logic

1. absence of aliasing

2. embedding of the logic inside the programming language

{ P[x ← E ] } x := E { P }

We look for

I as much genericity as possible
(w.r.t. input language / logic / back-end provers)

I a safe method (not yet another VCG)
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The Why tool Key idea Soundness In practice

Key idea

Translate an imperative program into Type Theory using monads

From a program {P} p {Q}, build a proof

p̂ : ∀x1, . . . , xn. P ⇒ ∃y1, . . . , ym. Q

p̂ is of course incomplete: the holes are the proof obligations
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The Why tool Key idea Soundness In practice

Example

to establish
{x ≥ 0} x := !x + 1 {x > 0}

we build a proof of
∀x0. x0 ≥ 0⇒ ∃x1. x1 > 0

which is
λx0. λP : x0 ≥ 0. let x1 = x0 + 1 in (exists x1 (? : x1 > 0))

resulting in one obligation
∀x0. x0 ≥ 0⇒ ∀x1. x1 = x0 + 1⇒ x1 > 0
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The Why tool Key idea Soundness In practice

Programs

e ::= c | x | fun x : τ → e | e e | !x | x := e | ref e
| if e then e else e | let x = e in e | rec f (~x : ~τ) : τ = e

τ ::= ι | ι ref | τ → τ

derived constructs:
e1; e2 ≡ let = e1 in e2

while e1 do e2 done ≡ (rec w (u :unit) : unit =
if e1 then (e2; w ()) else ()) ()
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The Why tool Key idea Soundness In practice

Adding annotations

e ::= c | x | fun x : τ → e | e e | !x | x := e | ref e
| if e then e else e | let x = e in e | rec f (~x : ~τ) : κ = e
| {P} e {Q}

τ ::= ι | ι ref | x : τ → κ type of value
κ ::= (P, τ, ε,Q) type of computation

ε ::= reads ~x writes ~x

the precondition P may mention !x
the postcondition Q may mention !x , !←−x and result
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The Why tool Key idea Soundness In practice

Typing with effects

In an environment Γ = x1 : τ1, . . . , xn : τn of values we infer the
type with effects of a program e

Γ ` e : κ

In particular, typing

I forbids aliasing

I prevents a local reference to escape its scope
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The Why tool Key idea Soundness In practice

Interpretation in CIC

A program e of type κ = (P, τ, ε,Q) where ε = reads ~x writes ~y is
interpreted in CIC as

ê : ∀~x . P ⇒ ∃~y , result. Q

The interpretation makes use of monads parameterized by effects
⇒ the addition of exceptions was straightforward
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The Why tool Key idea Soundness In practice

Soundness

We define an operational semantics for our programs (following
Wright and Felleisen’s A syntactic approach to type soundness)
θ.e 7→? θ′.v

First we show that the computational part of ê respects the
semantics of e

∃θ′, v . θ.e 7→? θ′.v ⇐⇒ (e θ(x1) . . . θn(xn)) = (θ′(y1), . . . , θ
′(ym), v)

Then we show that if all the obligations in ê can be replaced by
proof terms, in such a way that ê becomes well-typed in CIC, then
e satisfies its specification κ.
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The Why tool Key idea Soundness In practice

Completeness

The method is incomplete if the program does not contain enough
annotations
As usual, computing weakest preconditions dispenses the user from
writing all annotations
In practice, inserting pre-, post- and loop invariants is all we need
to do
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The Why tool Key idea Soundness In practice

Steps in the Why tool

annotated program

typed annotated program

typing with effects

fully annotated program

WP computation

CIC term

monadic translation

obligations

VCG

validation
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The Why tool Key idea Soundness In practice

The Why tool in practice

The tool includes additional features

I exceptions

I e ::= . . . | raise (E e) | try e with E x ⇒ e
I ε ::= reads ~x writes ~x raises ~E
I postcondition Q;E1 ⇒ Q1; . . . ;En ⇒ Qn

I modularity
one can declare types / logic functions / predicates /
programs

I polymorphism
but no polymorphism w.r.t effects
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The Why tool Key idea Soundness In practice

Logic

Annotations are not written in CIC but in a logical subset common
to a maximal set of provers

polymorphic multi-sorted first-order logic
(with equality and arithmetic)

actually, we only need

I to embed logical terms inside programs

I minimal logic (∀ ∧ ⇒) to compute weakest preconditions
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The Why tool Key idea Soundness In practice

Example

type ’a array

logic length : ’a array -> int

logic acc : ’a array, int -> ’a

logic upd : ’a array, int, ’a -> ’a array

parameter get : t:’a array ref -> i:int ->

{ 0 <= i < length(t) } ’a reads t { result = acc(t, i) }

parameter set : t:’a array ref -> i:int -> v:’a ->

{ 0 <= i < length(t) } unit writes t { t = upd(t@, i, v) }
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The Why tool Key idea Soundness In practice

Example (cont’d)

exception Found of int

exception Not_found

let search (t : int array ref) =

{}
try

let i = ref 0 in begin

while !i < (length !t) do

{ invariant 0 <= i and forall k:int. 0 <= k < i -> acc(t,k) <> 0

variant length(t) - i }
if (get t !i) = 0 then raise (Found !i);

i := !i + 1

done;

raise Not_found : int

end

with Found x ->

x

end

{ acc(t, result) = 0

| Not_found => forall k:int. 0 <= k < length(t) -> acc(t,k) <> 0 }
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The Why tool Key idea Soundness In practice

Example (cont’d)

We get the usual Hoare logic proof obligations:

1. loop invariant holds initially

2. precondition of (get t !i)

3. preservation of the loop invariant

4. decreasing of the variant (termination)

5. final postcondition when terminating normally

6. final postcondition when Not found is raised

all of them are automatically discharged by Simplify

Note: we can still type-check the validation (with Coq)
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Verifying C and Java programs Examples Underlying technique

Part II

Verifying C and Java programs
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Verifying C and Java programs Examples Underlying technique

We propose a new approach for the verification of Java and C
programs and two tools

I Krakatoa: verification of Java programs
I specified using JML (Java Modeling Language)

I Caduceus: verification of C programs
I specification language à la JML

Both are currently under experimentation on industrial code
(Axalto / Dassault Aviation)
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Verifying C and Java programs Examples Underlying technique

Example: character queue as circular array

0
↓

length− 1
↓

first
↑

last
↑

struct queue {
char contents[];
int length;
int first, last;
unsigned int empty, full :1;

} q;

/*@ invariant q_invariant :
@ \valid_range(q.contents, 0, q.length-1) &&
@ 0 <= q.first < q.length &&
@ 0 <= q.last < q.length
@*/
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Verifying C and Java programs Examples Underlying technique

Example continued: specifying functions

/*@ requires !q.full
@ assigns q.empty, q.full, q.last, q.contents[q.last]
@ ensures !q.empty && q.contents[\old(q.last)] == c
@*/

void push(char c);

/*@ requires !q.empty
@ assigns q.empty, q.full, q.first
@ ensures !q.full && \result == q.contents[\old(q.first)]
@*/

char pop();
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Verifying C and Java programs Examples Underlying technique

Example continued: body for push function

/*@ requires !q.full
@ assigns q.empty, q.full, q.last, q.contents[q.last]
@ ensures !q.empty && q.contents[\old(q.last)] == c
@*/

void push(char c) {
q.contents[q.last++] = c; // insert ’c’ in the queue
if (q.last == q.length)

q.last = 0; // wrap if needed
q.empty = 0; // queue is not empty
q.full = (q.first == q.last); // queue is full if

// ’last’ reaches ’first’
}
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Verifying C and Java programs Examples Underlying technique

Multi-prover architecture

Annotated C programAnnotated C program

CaduceusCaduceus

CoqCoq PVSPVS SimplifySimplify CVC LiteCVC Lite haRVeyhaRVey

verification conditionsverification conditions

Jean-Christophe Filliâtre Verifying C and Java programs



Verifying C and Java programs Examples Underlying technique

Example continued: certification of push function

Caduceus produces 3 verification conditions expressing that

I the code of push contains no unallocated pointer dereference
(e.g. assignment of q.contents[q.last++] is valid)

I the postcondition and the assigns clause of push are
established

I the invariant q invariant is preserved by push

Proofs of these obligations

I with Simplify (100%) and CVC Lite (67%)

I with Coq (100%), very easy (6 lines of tactics)
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Verifying C and Java programs Examples Underlying technique

Example: in-place list reversal

typedef struct struct_list {
int hd;
struct struct_list *tl;

} *list;

list reverse(list p) {
list r = NULL;
while (p != NULL) {

list q = p ;
p = p->tl;
q->tl = r;
r = q;

}
return r;

}

pp

rr

reverse(p)

Jean-Christophe Filliâtre Verifying C and Java programs



Verifying C and Java programs Examples Underlying technique

Introduction of new logical types and functions

I New predicates and functions can be introduced

// logical finite list of pointers

//@ logic plist nil()
//@ logic plist cons(list p, plist l)

// concatenation and reversal
//@ logic plist app(plist l1, plist l2)
//@ logic plist rev(plist pl)

I Axioms may be given, e.g.

//@ axiom app nil : \forall plist l; app(nil(),l) == l

Jean-Christophe Filliâtre Verifying C and Java programs



Verifying C and Java programs Examples Underlying technique

Introduction of new logical types and functions

I New predicates and functions can be introduced

// logical finite list of pointers

//@ logic plist nil()
//@ logic plist cons(list p, plist l)

// concatenation and reversal
//@ logic plist app(plist l1, plist l2)
//@ logic plist rev(plist pl)

I Axioms may be given, e.g.

//@ axiom app nil : \forall plist l; app(nil(),l) == l
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Specification of list reversal

/* llist(p,l) specifies that l is the list of pointers
from p to NULL following tl fields */

//@ predicate llist(list p, plist l) reads p->tl

// is_list(p) specifies that p is finite

//@ predicate is_list(list p) { \exists plist l ; llist(p,l) }

/*@ requires is_list(p)
@ ensures \forall plist l;
@ \old(llist(p, l)) => llist(\result, rev(l)) */

list reverse(list p);
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Annotating the code of list reversal

list reverse(list p) {
list r = NULL;

/*@ invariant
\exists plist lp; \exists plist lr;
llist(p, lp) && llist(r, lr) &&
disjoint(lp, lr) &&
\forall plist l; \old(llist(p, l)) =>
app(rev(lp), lr) == rev(l)

@ variant length(p) for length_order */

while (p != NULL) {
list q = p;
p = p->tl; q->tl = r; r = q;

}
return r;

}

rr

pp
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Certification of list reversal

I 7 verification conditions

I With Simplify: 71%

I With Coq: 100%, with 661 lines of tactics
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Example: Schorr-Waite algorithm

I Graph marking algorithm

I Considered as a benchmark for the verification of pointer
programs (Bornat, 1999, Jape system) (Nipkow-Mehta, 2003,
Isabelle/HOL)

I 12 verification conditions

I With Simplify: 33%

I With Coq: 100%, with 2362 lines of tactics
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Underlying technique

Annotated C programAnnotated C program

CaduceusCaduceus

Why programWhy programBackground theoryBackground theory

WhyWhy

CoqCoq PVSPVS SimplifySimplify haRVeyhaRVey . . .
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Modeling C memory heap

I Burstall-Bornat model: memory partition according to
structure fields

I We extend this idea to handle C arrays and pointer arithmetic:
a memory block is

p p +i=shift(p,i)

←−−offset(p)−−→ ↓ ↓
base addr(p)

←−−−−−−−−−−−block length(alloc,p)−−−−−−−−−−−→

I Each structure field is a map from addresses to memory blocks
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Burstall-Bornat model: example of character queue

addresses structure fields arrays of int

last contents intP

q

...

4

...
...

q.contents[q.last++] = c
q.last <- 4 + 1
*(q.contents+4) <- c
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Burstall-Bornat model: example of character queue

addresses structure fields arrays of int

last contents intP

q
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5

...
...

aa
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*(q.contents+4) <- c
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Burstall-Bornat model: example of character queue

addresses structure fields arrays of int

last contents intP

q

...

5

...
...

aa

aa c

q.contents[q.last++] = c
q.last <- 4 + 1
*(q.contents+4) <- c
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General structure of C memory heap

alloc f1 · · · fk intP intPP . . .

a1 n.a.
a2 5
a3 1
a4 n.a.
a5 3
...

...
...

...
...

...
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Translation of C statements into Why

The C statement

q.contents[q.last++] = c

becomes in Why:

assert valid(!alloc,q); // proof obligation
let tmp1 = acc(!last,q) in // tmp1 <- q.last
last := upd(!last,q,tmp1+1); // q.last <- tmp1+1
let tmp2 = shift(acc(!contents,q),tmp1) in

// tmp2 <- q.contents + tmp1
assert valid(!alloc,tmp2); // proof obligation
intP := upd(!intP,tmp2,c) // *tmp2 <- c
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Axiomatization

I The abstract Why functions acc, upd, shift, etc. are
specified by axioms: the background theory

I Excerpt from this theory:

acc(upd(t,i,v),i) = v
i <> j -> acc(upd(t,i,v),j) = acc(t,j)
shift(p,0) = p
shift(shift(p,i),j) = shift(p,i+j)
...

I An important part of this theory is dedicated to assigns clauses
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Soundness

Soundness of the translation not formally proved, but
I based on the Why tool, which is sound

I the Why validation can be type-checked

I the modelling is quite simple

I ultimately, consistency of the background theory can be
proved (e.g. by a realization in Coq)
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Java programs: the Krakatoa tool

Same methodology, with a very similar model

I one map for each class attribute

I a pointer is valid if it is not null (no pointer arithmetic)

But the JML sometimes lacks a precise semantics
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Conclusion and perspectives
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Conclusion

I We are able to certify non trivial programs

I We support a large subset of ANSI C and Java/JML
I Prototypes freely available

I http://why.lri.fr/
I http://caduceus.lri.fr/
I http://krakatoa.lri.fr/

But scaling up issues show up on large programs:

I Generated proof obligations can get large

I Clear need for assistance to write specifications

I Need for more automation of proofs, cooperation of provers
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Conclusion and perspectives

Current limitations / work in progress

Limitations of the tools

I (mutually) recursive functions

I arithmetic overflow

I floating point arithmetic

I C unions

Limitations of the model

I pointer cast

I non ANSI (i.e. compiler dependent) features
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Conclusion and perspectives

Verification of ML programs

The Burstall-Bornat model could apply (one map for each mutable
structure field); includes references as a particular case

I type ’a ref = { mutable contents : ’a }

The Why approach reaches its limits: the type system is not
powerful enough to handle the full combination of higher-order and
polymorphism

A good specification language has to be designed first
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