Verifying C and Java programs

Jean-Christophe Filliatre

CNRS - Université Paris Sud

National Institute of Aerospace, March 9, 2004



Context

Formal methods at Université Paris Sud
Verification of functional properties of C and Java programs

Applications
e Smart cards (Schlumberger cards, Trusted Logic) Java C

e Avionics (Dassault Aviation) C



Tools developed at Orsay

Java C
KRAKATOA CADUCEUS
WHY

PAANSN

PVS Coq Mizar HOL Light haRVey Simplity



Outline

1. Why: a generic tool for program verification

2. Verification of C and Java programs



The Why tool



Concept

source + specification —

Genericity

VCG

— proof obligations

e input: an adequate intermediate language

e output: several provers

Benefits: most of the VCG implementation is factorized

(weakest preconditions, effects, etc.)



An intermediate language

purely functional datatypes + variables over these types
no alias

while loops

if-then-else

sequences

local variables

expressions = statements (ML)

functions (local, recursive)

exceptions



Specifications

e Hoare-style annotations
e pre/post-conditions
e assertions in the code

e loop invariants/variants
e explicit effects: variables possibly accessed or modified

e |ogical declarations:

types, functions, predicates, axioms

Annotations written in first-order predicate syntax



Example

let searchl =
{3
try
let i = ref 0 in begin
while !i < (array_length t) do
{ invariant 0 <= i and forall k:int. 0 <=k < i -> t[k] <> 0
variant array_length(t) - i }
if t[!'i] = 0 then raise (Found !'i);
i= 11 +1
done;
raise Not_found : int
end
with Found x ->
X
end
{ tlresult] =0
| Not_found => forall k:int. O <= k < array_length(t) -> t[k] <> 0 }



Use of exceptions: break

The break construct is interpreted using an exception

while (b1l) A try
/* invariant I */ while bl do
if (b2) break; { invariant I }
S 1f b2 then raise Break;
t S
/* Q */ done
with Break ->
void
end

{1 Q1



Proof obligations

= 1 entering the loop
I,by, by - wp(s, 1) iInvariant preservation
I,b1,bs Q) exiting with break
I,-b FQ exiting the loop

The use of exceptions is invisible



Another example

while (e) s where e contains side-effects

try
while true do
1f not e then raise Exit;
S
done
with Exit ->
void

end



WP for exceptions

wp(e, Q, R) // case of a single exception E
wp(raise E, Q, R) =R

wp(try e; with E — e, Q, R) = wp(e1, Q, wp(es, Q, R))



Generating proof obligations

lllusion of Hoare-logic, but ...

actually a translation of Why programs into Type Theory using

monads

{P} p{Q}

p:Vri...z,. P=3dy1...y,,.Q



Methodology

annotated source
‘ typing with effects

typed annotated source
‘ WP computation

fully annotated source
‘ monadic translation

CIC term

VCG \

obligations === \3lidation



A safe method

The validation expresses the program correctness,

assuming the validity of obligations

The validation can be type-checked to improve confidence in the
tool

Obligations automatically discharged are justified in the validation



Output for several provers

Expressing the obligations only requires a minimal logic (V = A)

An output for a new prover only requires a 300 lines pretty-printer

for a first-order logic

Part of the difficulty is hidden in the model



Application to C and Java programs



Recipe

. choose a language L annotated in S

. define a model of L + S in prover P

. interpret L + .5 in the Why language

. generate obligations with why -P

. validate them with P



C and Java programs

Two tools developed at Orsay

e Krakatoa: Java annotated with JML
(C. Marché, C. Paulin, X. Urbain)

e Caduceus : C
(C. Marché, J.-C. Filliatre)



C and Java programs

Java

|

KRAKATOA

C

|

CADUCEUS

N/

WHY

PAAANSN

Cog PVS HOL Light haRVey Simplity

Mizar




Model

R. Burstall 1972
heap-as-array trick

heap-as-several-maps
a structure/object field = a map

R. Bornat

Proving Pointer Programs in Hoare Logic
T. Nipkow and F. Mehta

Proving Pointer Programs in Higher-Order Logic (Isabelle/HOL)



alloc X 'y ... int[
a1 A 3
a9 B
as |int[3]

al.x = 3



Krakatoa: Java programs

e Input: Java or JavaCard,

annotated with the Java Modeling Language (JML)

e To be proved:

— (class invariant and pre-condition) implies (class invariant

and post-condition)

— loop invariant and variant (total correctness)



Example: electronic purse

class Purse {

int balance;

public void credit(int s) A

balance += s;



Methodology

Generic Java model in PVS

Instanciation

C/T TN

source Java+JML

KRAKATOA

PVS model PVS specs

Why specs Why code

H—I

WHY
\ 4

Proof obligations

Interactive proof with PVS



Intermediate Why program

let Purse_credit_body =
fun (this : value) (s : int) ->
{ (ge_int(s, 0)
and (neqv(this,Null)
and (instanceof (heap, this, ClassType(Purse))
and Purse_invariant (Purse_balance, this)))) }
begin
label init;
let krak_acc = ((add_int ((acc !Purse_balance) this)) s) in
Purse_balance := (((update !'Purse_balance) this) krak_acc)
end{ ((eq_int(acc(Purse_balance, this),
add_int (acc(Purse_balance@, this), s))
and Purse_invariant (Purse_balance, this))

and modifiable(heap@, Purse_balance@, Purse_balance, value_loc(this))) }



Proof obligations

e set of PVS lemmas — interactive proof

e Simpliy input file — Valid / Invalid4counterexample

Here a single obligation
e proved with (grind)

e validated by Simplify



Case study of a JavaCard applet

Context: VERIFICARD project

e PSE applet: case study proposed by Schlumberger

Properties to be proved:
e confidentiality
e limited memory allocation
e error prediction: only ISOException raised

e soundness: functional properties of the applet

just started: Demoney case-study delivered by Trusted Logic



C programs: Caduceus

C programs annotated using a JML-like language

Model similar to the one for Java programs (4 pointer arithmetic)

Supported C fragment : eventually all ANSI C except

e arbitrary goto

e some pointers casts

Caduceus is work in progress



Example

/* search for a value in an array */

/*@ requires \valid_range(t,0,n)

ensures 0 <= \result < n => t[\result] == v */
int index(int t[], int n, int wv)
{
int 1 = 0;
/*@ invariant O <= i && \forall int k; 0 <=k < i => t[k] '= v

variant \length(t) - i */
while (i < n) A
if (t[i] == v) break;
1++;

}

return 1i;



Availability

http://why.lri.fr/
e GPL source code (12000 lines) and executables
e 30 pages manual (tutorial + reference manual)

e numerous examples (&~ 25)

http://krakatoa.lri.fr/

Caduceus: to be released soon



Future work

e machine arithmetic
e integer arithmetic without overtlow

e floating point arithmetic

e specification debugging
e loops unrolling

e symbolic evaluation on test values

e translating back to the user
e functions WP

e decision procedures counterexamples



