
an introduction to
Deductive Program Verification

Jean-Christophe Filliâtre
CNRS

Mathematical Summer in Paris
July 16, 2018

https://msp.math.ens.fr/

1 / 52

https://msp.math.ens.fr/


Software is hard. – Don Knuth

why?

• wrong interpretation of specifications

• coding in a hurry

• incompatible changes

• software = complex artifact

• etc.

2 / 52



a famous example: binary search

given a sorted array of integer, e.g.

-7 -1 2 2 42 987 1729

decide whether a given integer belongs to it

3 / 52



a famous example: binary search

first publication in 1946
first publication without bug in 1962

Jon Bentley. Programming Pearls.
1986.

Writing correct programs

the challenge of binary search

and yet...

4 / 52



and yet

in 2006, a bug was found in Java standard library’s binary search

Joshua Bloch, Google Research Blog
“Nearly All Binary Searches and Mergesorts are Broken”

it had been there for 9 years

5 / 52



the bug

...

int mid = (low + high) / 2;

int midVal = a[mid];

...

may exceed the capacity of type int

then provokes an access out of array bounds

a possible fix

int mid = low + (high - low) / 2;

6 / 52



what can we do?

better programming languages

• better syntax
(e.g. avoid considering DO 17 I = 1. 10 as an assignment)

• more typing
(e.g. avoid confusion between meters and yards)

• more warnings from the compiler
(e.g. do not forget some cases)

• etc.

7 / 52



test

systematic and rigorous test is another, complementary answer

but test is

• costly

• sometimes difficult to perform

• and incomplete (except in some rare cases)

8 / 52



formal methods

formal methods propose a mathematical approach to software
correctness

9 / 52



what is a program?

there are several aspects

• what we compute

• how we compute it

• why it is correct to compute it this way

10 / 52



what is a program?

the code is only one aspect (“how”) and nothing else

“what” and “why” are not part of the code

there are informal requirements, comments, web pages, drawings,
research articles, etc.

11 / 52



an example

• how: 2 lines of C

a[52514],b,c=52514,d,e,f=1e4,g,h;main(){for(;b=c-=14;h=printf("%04d",

e+d/f))for(e=d%=f;g=--b*2;d/=g)d=d*b+f*(h?a[b]:f/5),a[b]=d%--g;}

• what: 15,000 decimals of π

• why: lot of maths, including

π =
∞∑
i=0

(i !)2 2i+1

(2i + 1)!

12 / 52



an example

• how: 2 lines of C

a[52514],b,c=52514,d,e,f=1e4,g,h;main(){for(;b=c-=14;h=printf("%04d",

e+d/f))for(e=d%=f;g=--b*2;d/=g)d=d*b+f*(h?a[b]:f/5),a[b]=d%--g;}

• what: 15,000 decimals of π

• why: lot of maths, including

π =
∞∑
i=0

(i !)2 2i+1

(2i + 1)!

12 / 52



formal methods

formal methods propose a rigorous approach to programming,
where we manipulate

• a specification written in some mathematical language

• a proof that the program satisfies this specification

13 / 52



specification

what do we intend to prove?

• safety: the program does not crash
• no illegal access to memory
• no illegal operation, such as division by zero
• termination

• functional correctness
• the program does what it is supposed to do

14 / 52



several approaches

model checking, abstract interpretation, etc.

this lecture: deductive verification

program
+

specification

verification
conditions

proof

15 / 52



this is not new

A. M. Turing. Checking a large routine. 1949.

STOP

r′ = 1
u′ = 1 v′ = u TEST r − n s′ = 1 u′ = u + v s′ = s + 1

r′ = r + 1 TEST s − r

16 / 52



this is not new

Tony Hoare.

An Axiomatic Basis for Computer Programming.
1969.

17 / 52



checking a large routine (Turing, 1949)

STOP

r′ = 1
u′ = 1 v′ = u TEST r − n s′ = 1 u′ = u + v s′ = s + 1

r′ = r + 1 TEST s − r

u ← 1
for r = 0 to n − 1 do

v ← u
for s = 1 to r do

u ← u + v

18 / 52



checking a large routine (Turing, 1949)

STOP

r′ = 1
u′ = 1 v′ = u TEST r − n s′ = 1 u′ = u + v s′ = s + 1

r′ = r + 1 TEST s − r

u ← 1
for r = 0 to n − 1 do

v ← u
for s = 1 to r do

u ← u + v

18 / 52



checking a large routine (Turing, 1949)

STOP

r′ = 1
u′ = 1 v′ = u TEST r − n s′ = 1 u′ = u + v s′ = s + 1

r′ = r + 1 TEST s − r

precondition {n ≥ 0}
u ← 1
for r = 0 to n − 1 do

v ← u
for s = 1 to r do

u ← u + v
postcondition {u = n! }

18 / 52



checking a large routine (Turing, 1949)

STOP

r′ = 1
u′ = 1 v′ = u TEST r − n s′ = 1 u′ = u + v s′ = s + 1

r′ = r + 1 TEST s − r

precondition {n ≥ 0}
u ← 1
for r = 0 to n − 1 do invariant {u = r ! }

v ← u
for s = 1 to r do invariant {u = s × r ! }

u ← u + v
postcondition {u = n! }

18 / 52



verification condition

forall n:int. n >= 0 ->

(0 > n - 1 -> 1 = n!) /\

(0 <= n - 1 ->

1 = 0! /\

(forall u:int.

(forall r:int. 0 <= r /\ r <= n - 1 -> u = r! ->

(1 > r -> u = (r + 1)!) /\

(1 <= r ->

u = 1 * r! /\

(forall u1:int.

(forall s:int. 1 <= s /\ s <= r -> u1 = s * r! ->

(forall u2:int.

u2 = u1 + u -> u2 = (s + 1) * r!)) /\

(u1 = (r + 1) * r! -> u1 = (r + 1)!)))) /\

(u = ((n - 1) + 1)! -> u = n!)))

19 / 52



and then

what do we do with this mathematical statement?

we could perform a manual proof (as Turing and Hoare did)
but it is long, tedious, and error-prone

so we turn to tools that mechanize mathematical reasoning

20 / 52



automated theorem proving

mathematical
statement

automated
prover

true

false

21 / 52



no hope

it is not possible to implement such a
program
(Turing/Church, 1936, from Gödel)

full employment theorem for
mathematicians

Kurt Gödel

22 / 52



automated theorem proving

mathematical
statement

automated
prover

true

false

I don’t know

loops forever

examples: Z3, CVC4, Alt-Ergo, Vampire, SPASS, etc.

23 / 52



interactive theorem proving

if we only intend to check a proof, we can do it

mathematical
statement

proof

proof
assistant

true

false

examples: Coq, Isabelle, PVS, HOL Light, etc.

24 / 52



examples

Georges Gonthier, using Coq

• the four color theorem

• Feit–Thompson theorem

Thomas Hales, using HOL Light

• Kepler conjecture

25 / 52



let’s verify a program

26 / 52



Turing’s routine

STOP

r′ = 1
u′ = 1 v′ = u TEST r − n s′ = 1 u′ = u + v s′ = s + 1

r′ = r + 1 TEST s − r

u ← 1
for r = 0 to n − 1 do

v ← u
for s = 1 to r do

u ← u + v

27 / 52



termination

28 / 52



a program may not terminate

in programming, we have

• loops
the program execution may return to a previous point

• recursion
a function can be defined with self-references

29 / 52



a loop

x ← a positive integer
while x 6= 1 do

if x is even then

x ← x/2
else

x ← 3x + 1

30 / 52



a recursive function

f (n) =

{
n − 10 if n > 100
f (f (n + 11)) otherwise

it’s called McCarthy’s 91 function

31 / 52



a recursive function

f (n) =

{
n − 10 if n > 100
f (f (n + 11)) otherwise

it’s called McCarthy’s 91 function

31 / 52



it’s up to you

you can prove either

partial correctness
if the precondition holds
and if the program terminates
then its postcondition holds

or

total correctness
if the precondition holds
then the program terminates
and its postcondition holds

32 / 52



beware

partial correctness is a rather weak property,
since non-termination can turn your whole proof into something
meaningless

33 / 52



how to prove termination

bad news: we cannot check automatically whether a program
terminates or not

we have to provide hints, such as an upper bound on the number
of steps before termination

34 / 52



example

let’s prove that McCarthy’s 91 function terminates

f (n) =

{
n − 10 if n > 100
f (f (n + 11)) otherwise

35 / 52



I do not think it means what you think it means

36 / 52



binary search

lo ← 0
hi ← len(a)− 1
while lo ≤ hi do
m← lo + (hi − lo)/2
if a[m] < v
lo ← m + 1

else if a[m] > v
hi ← m − 1

else

return m
return -1

a < v . . . > v
↑ ↑
lo hi

37 / 52



a possible contract

def binary search(a, v):
requires ... the array is sorted ...
ensures 0 ≤ result < len(a) ∧ a[result] = v

∨ result = −1 ∧ ∀i . 0 ≤ i < len(a)⇒ a[i ] 6= v

this is perfectly fine

38 / 52



another contract

but if we write instead

def binary search(a, v):
requires ... the array is sorted ...
ensures (0 ≤ result < len(a)⇒ a[result] = v)

∧ (result = −1⇒ ∀i . 0 ≤ i < len(a)⇒ a[i ] 6= v)

the program can now return -2 and yet be proved correct

39 / 52



lesson

before you do any proof, get the specification right

then have the reader agree with you on the spec

otherwise, the whole proof is a waste of time

40 / 52



ghost code

41 / 52



ghost code

data and code added to the program
to make the proof simpler

42 / 52



example

we search the smallest Fibonacci number equal to or greater than n

a, b ← 0, 1
while a < n do

a, b ← b, a + b
return a

43 / 52



example

to prove it correct
we may want to introduce a loop invariant as follows

a, b ← 0, 1
while a < n do

invariant ∃i . i ≥ 0 ∧ a = Fi ∧ b = Fi+1

a, b ← b, a + b
return a

but proving the existence of i is difficult for theorem provers

44 / 52



a better way

instead, we can keep track of the value of i with a ghost variable

a, b ← 0, 1
i ← 0
while a < n do

invariant i ≥ 0 ∧ a = Fi ∧ b = Fi+1

a, b ← b, a + b
i ← i + 1

return a

instead of having the theorem prover guessing the right value,
we provide it

45 / 52



rules of the game

• ghost code may read regular data but can’t modify it

• ghost code cannot modify the control flow of regular code

• regular code does not see ghost data

consequence: ghost code can be removed
without observable modification

46 / 52



removing ghost code

a, b ← 0, 1
i ← 0
while a < n do

invariant i ≥ 0 ∧ a = Fi ∧ b = Fi+1

a, b ← b, a + b
i ← i + 1

return a

47 / 52



removing ghost code

a, b ← 0, 1
ghost i ← 0
while a < n do

invariant i ≥ 0 ∧ a = Fi ∧ b = Fi+1

a, b ← b, a + b
ghost i ← i + 1

return a

47 / 52



removing ghost code

a, b ← 0, 1

while a < n do

a, b ← b, a + b

return a

47 / 52



an application of ghost code

suppose we want to prove that, for all n,

n! ≥ 1

we can make a program that proves it

48 / 52



a program that is a proof

f ← 1
for i = 1 to n do

f ← i × f

• the whole program is ghost
(we do not intend to run it)

• we have performed a proof by induction
(automated theorem provers won’t do that by themselves)

49 / 52



a program that is a proof

f ← 1
for i = 1 to n do

invariant f = (i − 1)!
f ← i × f

assert f = n!

• the whole program is ghost
(we do not intend to run it)

• we have performed a proof by induction
(automated theorem provers won’t do that by themselves)

49 / 52



a program that is a proof

f ← 1
for i = 1 to n do

invariant f = (i − 1)! ∧ f ≥ 1
f ← i × f

assert f = n!
assert n! ≥ 1

• the whole program is ghost
(we do not intend to run it)

• we have performed a proof by induction
(automated theorem provers won’t do that by themselves)

49 / 52



a program that is a proof

f ← 1
for i = 1 to n do

invariant f = (i − 1)! ∧ f ≥ 1
f ← i × f

assert f = n!
assert n! ≥ 1

• the whole program is ghost
(we do not intend to run it)

• we have performed a proof by induction
(automated theorem provers won’t do that by themselves)

49 / 52



conclusion

50 / 52



takeaways

• we can verify programs, once and for all

• we have tools to do this
and in particular theorem provers

• a program can be a proof

• the programming language does not matter

• go see The Princess Bride if you haven’t already

51 / 52



if you love mathematics

http://projecteuler.net/

52 / 52

http://projecteuler.net/


verification of an algorithm

1 / 4



Boyer-Moore’s majority

given a multiset of N votes

A A A C C B B C C C B C C

determine the majority, if any

2 / 4



an elegant solution

due to Boyer & Moore (1980)

linear time

uses only three variables

3 / 4



principle

A A A C C B B C C C B C C

cand = A

k = 1

4 / 4



principle

A A A C C B B C C C B C C

cand = A

k = 2

4 / 4



principle

A A A C C B B C C C B C C

cand = A

k = 3

4 / 4



principle

A A A C C B B C C C B C C

cand = A

k = 2

4 / 4



principle

A A A C C B B C C C B C C

cand = A

k = 1

4 / 4



principle

A A A C C B B C C C B C C

cand = A

k = 0

4 / 4



principle

A A A C C B B C C C B C C

cand = B

k = 1

4 / 4



principle

A A A C C B B C C C B C C

cand = B

k = 0

4 / 4



principle

A A A C C B B C C C B C C

cand = C

k = 1

4 / 4



principle

A A A C C B B C C C B C C

cand = C

k = 2

4 / 4



principle

A A A C C B B C C C B C C

cand = C

k = 1

4 / 4



principle

A A A C C B B C C C B C C

cand = C

k = 2

4 / 4



principle

A A A C C B B C C C B C C

cand = C

k = 3

4 / 4



principle

A A A C C B B C C C B C C

cand = C

k = 3

then we check if C indeed has majority, with a second pass
(in that case, it has: 7 > 13/2)

4 / 4


	Appendix

