[1] John Allen. Anatomy of Lisp. McGraw-Hill Book Compagny, 1978.
[ bib ]
[2] H. Barendregt. Lambda Calculi with Types. Technical Report 91-19, Catholic University Nijmegen, 1991. in Handbook of Logic in Computer Science, Vol II.
[ bib ]
[3] H. Barendregt. Lambda calculi with types. In Samson Abramsky, Dov Gabbay, and Tom S.E. Maibaum, editors, Handbook of Logic in Computer Science, chapter 2.2. Oxford University Press, 1992.
[ bib ]
[4] The Objective Caml language. http://pauillac.inria.fr/ocaml/.
[ bib ]
[5] Daniel de Rauglaudre. The Camlp4 Pre Processor. http://caml.inria.fr/camlp4/.
[ bib ]
[6] X. Leroy. The Objective Caml system: Documentation and user's manual, March 1997. http://pauillac.inria.fr/ocaml/htmlman/.
[ bib ]
[7] G. Castagna. Surcharge, sous-typage et liaison tardive : fondements fonctionnels de la programmation orientée objet. Thèse de doctorat, Université Paris VII, Janvier 1994.
[ bib ]
[8] Coq. The Coq Proof Assistant, 2001. http://coq.inria.fr/.
[ bib ]
[9] G. Huet, G. Kahn, and C. Paulin-Mohring. The Coq Proof Assistant Version 6.1, A Tutorial, December 1996.
[ bib ]
[10] T. Coquand and G. Huet. Constructions: A Higher Order Proof System for Mechanizing Mathematics. In EUROCAL'85, volume 203 of Lecture Notes in Computer Science, Linz, 1985. Springer-Verlag.
[ bib ]
[11] T. Coquand and G. Huet. The Calculus of Constructions. Information and Computation, 76(2/3):95-120, 1988.
[ bib ]
[12] T. Coquand. Metamathematical Investigations of a Calculus of Constructions. INRIA and Cambridge University, 1986.
[ bib ]
[13] A. Church. A set of postulates for the foundation of logic. Annals of Mathematics, 2(33-34):346-366 and 839-864, 1932/33.
[ bib ]
[14] A. Church. A formulation of the simple theory of types. Journal of Symbolic Logic, 5:56-68, 1940.
[ bib ]
[15] A. Church. The Calculi of Lambda Conversion. Princeton University Press, 1941.
[ bib ]
[16] Jean Goubault. Implementing Functional Languages with Fast Equality, Sets and Maps: an Exercise in Hash Consing. In Journées Francophones des Langages Applicatifs (JFLA'93), pages 222-238, Annecy, February 1993.
[ bib | .ps.gz ]
[17] G. Gentzen. Investigations into logical deduction. In M. E. Szabo, editor, The collected papers of Gerhard Gentzen. North Holland, 1969.
[ bib ]
[18] H. Geuvers. Logics and Type Systems. PhD thesis, Catholic University Nijmegen, September 1993.
[ bib ]
[19] E. Giménez. Codifying guarded definitions with recursive schemes. In Workshop on Types for Proofs and Programs, volume 996 of Lecture Notes in Computer Science, pages 39-59. Springer-Verlag, 1994.
[ bib ]
[20] E. Giménez. An Application of Co-Inductive Types in Coq: Verification of the Alternating Bit Protocol. 1995.
[ bib | .ps.Z ]
[21] J.-Y. Girard. Interprétation fonctionnelle et élimination des coupures de l'arithmétique d'ordre supérieur. Thèse de doctorat d'État, Univerité Paris 7, 1972.
[ bib ]
[22] M. A. Harrison. Introduction to Formal Language Theory. Addison-Wesley, 1978.
[ bib ]
[23] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, 1979.
[ bib ]
[24] W. A. Howard. The formulae-as-types notion of construction. In Hindley and Seldin, editors, To H. B. Curry: Essays on Combinatory Logic, Lambda-Calculus and Formalism, pages 479-490. Academic Press, 1980.
[ bib ]
[25] G. Huet and A. Saï bi. Constructive category theory. January 1995. in CLICS-TYPES BRA meeting.
[ bib ]
[26] G. Huet and A. Saïbi. Constructive category theory. To appear, 1996.
[ bib ]
[27] M. P. Jones. An introduction to Gofer, June 1995. Draft version.
[ bib ]
[28] S. C. Kleene and J. B. Rosser. The inconsistency of certain formal logics. Annals of Mathematics, 2(36):630-636, 1935.
[ bib ]
[29] C. Kreitz. Constructive Automata Theory Implemented with the Nuprl Proof Development System. Technical Report TR 86-779, Cornell University, Department of Computer Science, September 1986.
[ bib ]
[30] T. F. Melham. The HOL finite_sets Library. University of Cambridge, Computer Laboratory, February 1992.
[ bib ]
[31] R.L. Constable et al. Implementing Mathematics with the Nuprl Proof Development System. Prentice Hall, 1986.
[ bib ]
[32] Chris Okasaki and Andrew Gill. Fast Mergeable Integer Maps. In Workshop on ML, pages 77-86, September 1998.
[ bib | .ps.gz ]
[33] William Pugh. The Omega Test: a fast and practical integer programming algorithm for dependence analysis. Communications of the ACM, 35(8):102-114, August 1992.
[ bib ]
[34] C. Parent. Developing certified programs in the system Coq - The Program tactic. Technical Report 93-29, École Normale Supérieure de Lyon, October 1993. Also in Proceedings of the BRA Workshop Types for Proofs and Programs, May 93.
[ bib ]
[35] C. Parent. Synthèse de preuves de programmes dans le Calcul des Constructions Inductives. Thèse de doctorat, École Normale Supérieure de Lyon, Janvier 1995.
[ bib ]
[36] C. Paulin-Mohring. Extracting Fomega's programs from proofs in the Calculus of Constructions. In Sixteenth Annual ACM Symposium on Principles of Programming Languages, Austin, January 1989. ACM.
[ bib ]
[37] C. Paulin-Mohring. Extraction de programmes dans le Calcul des Constructions. Thèse de doctorat, Université de Paris VII, Janvier 1989.
[ bib ]
[38] C. Paulin-Mohring. Inductive definitions in the system coq. Technical Report 92-49, LIP - ENS Lyon, 1993.
[ bib ]
[39] C. Paulin-Mohring. Inductive Definitions in the System Coq - Rules and Properties. In M. Bezem and J.-F. Groote, editors, Proceedings of the conference Typed Lambda Calculi and Applications, volume 664 of Lecture Notes in Computer Science. Springer-Verlag, 1993. Also LIP research report 92-49.
[ bib ]
[40] C. Paulin-Mohring and B. Werner. Synthesis of ML programs in the system Coq. Journal of Symbolic Computation, 15:607-640, 1993.
[ bib ]
[41] Gordon D. Plotkin. Call-by-Name, Call-by-Value and the lambda-Calculus. Theoretical Computer Science, 1(2):125-159, 1975.
[ bib ]
[42] D. Prawitz. Natural deduction, a proof-theoretical study. Almquist and Wiksell, 1965.
[ bib ]
[43] A. Saïbi. Une axiomatisation constructive de la théorie des catégories. Technical report, INRIA, 1995. To appear as a research report.
[ bib ]
[44] Philip Wadler. Views: A way for pattern matching to cohabit with data abstraction. In 14th ACM Symposium on Principles of Programming Languages, Munich, January 1987.
[ bib ]
[45] B. Werner. Une Théorie des Constructions Inductives. Thèse de doctorat, Université de Paris VII, Mai 1994.
[ bib ]
[46] David Lester. Exact Arithmetic Implementations in Haskell and PVS proofs. http://www.cs.man.ac.uk/arch/dlester/exact.html.
[ bib ]
[47] H. Boehm, R. Cartwright, M. J. O'Donnell, and M. Riggle. Exact Real Arithmetic: A Case Study in Higher Order Programming. In Proceedings of the 1986 Lisp and Functional Programming Conference, pages 162-173, 1986.
[ bib ]
[48] Hans Boehm. Exact Arithmetic Implementation in Java. http://www.hpl.hp.com/personal/Hans_Boehm/crcalc/.
[ bib ]

This file has been generated by bibtex2html 1.55