
Combining Interactive and Automated Theorem
Proving in Why3

Jean-Christophe Filliâtre
CNRS

Automation in Proof Assistants
Tallinn, March 31, 2012

1 / 41



anniversary

f (n) =

{
n − 10 if n > 100,
f (f (n + 11)) otherwise.

when is f returning 91? does f always terminate?
is f equivalent to the following code?

e ← 1
while e > 0 do

if n > 100 then

n← n − 10
e ← e − 1

else

n← n + 11
e ← e + 1

return n

2 / 41



anniversary

f (n) =

{
n − 10 if n > 100,
f (f (n + 11)) otherwise.

when is f returning 91? does f always terminate?

is f equivalent to the following code?

e ← 1
while e > 0 do

if n > 100 then

n← n − 10
e ← e − 1

else

n← n + 11
e ← e + 1

return n

3 / 41



anniversary

f (n) =

{
n − 10 if n > 100,
f (f (n + 11)) otherwise.

when is f returning 91? does f always terminate?
is f equivalent to the following code?

e ← 1
while e > 0 do

if n > 100 then

n← n − 10
e ← e − 1

else

n← n + 11
e ← e + 1

return n

4 / 41



an overview of Why3

5 / 41



the Why tool

• a tool for deductive program verification

program + spec −→ verification conditions −→ proof

• the SMT revolution makes it possible

• a similar tool: Boogie (Microsoft Research)

6 / 41



the Why tool

developed since 2001 at ProVal (LRI / INRIA)

applications:

• Java programs: Krakatoa (Marché Paulin Urbain)

• C programs: Caduceus (Filliâtre Marché) formerly,
Jessie plug-in of Frama-C (Marché Moy) today

• algorithms

• probabilistic programs (Barthe et al.)

• cryptographic programs (Vieira)

7 / 41



Why3

rewritten from scratch, started Feb 2010

authors: F. Bobot, JCF, C. Marché, G. Melquiond, A. Paskevich

open source software (LGPL)

http://why3.lri.fr/

8 / 41

http://why3.lri.fr/


overview

file.why

file.mlw

WhyML

VCgen

Why

transform/translate

print/run

Coq Alt-Ergo CVC3 Z3 etc.

9 / 41



the logic of Why3

10 / 41



in a nutshell

logic of Why3 = polymorphic first-order logic, with

• (mutually) recursive algebraic data types

• (mutually) recursive function/predicate symboles

• (mutually) inductive predicates

• let-in, match-with, if-then-else

more details:
Expressing Polymorphic Types in a Many-Sorted Language (FroCos 2011)

11 / 41



declarations

• types
• abstract: type t
• alias: type t = list int
• algebraic: type list α = Nil | Cons α (list α)

• function / predicate
• uninterpreted: function f int : int
• defined: predicate non empty (l: list α) = l 6= Nil

• inductive predicate
• inductive trans t t = ...

• axiom / lemma / goal
• goal G: ∀ x: int. x ≥ 0 → x*x ≥ 0

12 / 41



theories

logic declarations organized in theories

a theory T1 can be

• used (use) in a theory T2

• cloned (clone) in another theory T2

13 / 41



theories

logic declarations organized in theories

a theory T1 can be

• used (use) in a theory T2

• symbols of T1 are shared
• axioms of T1 remain axioms
• lemmas of T1 become axioms
• goals of T1 are ignored

• cloned (clone) in another theory T2

14 / 41



theories

logic declarations organized in theories

a theory T1 can be

• used (use) in a theory T2

• cloned (clone) in another theory T2

• declarations of T1 are copied or substituted
• axioms of T1 remain axioms or become lemmas/goals
• lemmas of T1 become axioms
• goals of T1 are ignored

15 / 41



under the hood

a technology to talk to provers

central concept: task

• a context (a list of declarations)

• a goal (a formula)

16 / 41



workflow

theory

end

theory

end

theory

end

Alt-Ergo

Z3

Vampire

17 / 41



workflow

theory

end

theory

end

theory

end

goal

Alt-Ergo

Z3

Vampire

18 / 41



workflow

theory

end

theory

end

theory

end

goal goal

Alt-Ergo

Z3

Vampire

T1

19 / 41



workflow

theory

end

theory

end

theory

end

goal goal goal

Alt-Ergo

Z3

Vampire

T1 T2

20 / 41



workflow

theory

end

theory

end

theory

end

goal goal goal

Alt-Ergo

Z3

Vampire

T1 T2 P

21 / 41



transformations

• eliminate algebraic data types and match-with

• eliminate inductive predicates

• eliminate if-then-else, let-in

• encode polymorphism, encode types

• etc.

efficient: results of transformations are memoized

22 / 41



driver

a task journey is driven by a file

• transformations to apply

• prover’s input format
• syntax
• predefined symbols / axioms

• prover’s diagnostic messages

more details: Why3: Shepherd your herd of provers (Boogie 2011)

23 / 41



API

Why3 has an OCaml API

• to build terms, declarations, theories, tasks

• to call provers

defensive API

• well-typed terms

• well-formed declarations, theories, and tasks

24 / 41



plug-ins

Why3 can be extended via three kinds of plug-ins

• parsers (new input formats)

• transformations (to be used in drivers)

• printers (to add support for new provers)

25 / 41



API and plug-ins

Your code

Why3 API

WhyML

TPTP

etc.

eliminate
algebraic

encode
polymorphism

etc.

Simplify

Alt-Ergo

SMT-lib

etc.

26 / 41



Why3 and proof assistants

27 / 41



support for proof assistants

similar to ATPs

• driver (transformations, printer, etc.)

with a few differences

• distinction between editor/checker

• proof scripts saved in proof session

currently, support for

• Coq

• PVS (work in progress)

28 / 41



purpose

a proof assistant can be used to

• handle a VC that is not proved automatically
• to perform a diagnosis
• to discharge it

• prove that a Why3 theory is consistent
• provide definitions for uninterpreted symbols
• prove axioms

29 / 41



a natural idea

Why3

ATP Coq

30 / 41



a natural idea

Why3

ATP Coq

31 / 41



a natural idea

Why3

ATP Coq

32 / 41



a Coq plug-in

Coq has OCaml plug-ins, Why3 provides an OCaml API

Coq

let why3 p gl =

...

Why3

the tactic builds a task, then calls prover p

33 / 41



which fragment of Coq’s logic

currently translated

• polymorphism

• algebraic data types

• inductive predicates

• arithmetic (currently Z)

not translated

• higher-order

• dependent types

34 / 41



which fragment of Coq’s logic

what cannot be translated is left uninterpreted or discarded

minimum requirement: anything coming from Why3 is sent back

35 / 41



translation

the plug-in translates

• local hypotheses from the goal

• global declarations from the current module

translation is performed lazily
results are memoized (as well as dependencies)

36 / 41



disclaimer

significant differences w.r.t. Isabelle’s Sledgehammer

• no higher-order

• ATP used as oracles (no proof reconstruction)

• a different encoding of types (FroCos 2011)

• theories: arithmetic, arrays, etc.

37 / 41



conclusion

38 / 41



summary

Why3 implements

• a polymorphic first-order logic,
with algebraic data types and inductive predicates

• deductive program verification

39 / 41



summary

Why3 provides

• a technology to talk to provers

• an OCaml API

• a Coq plug-in to call ATPs as oracles

open-source software http://why3.lri.fr/

40 / 41

http://why3.lri.fr/


thank you

41 / 41


