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EXPLOITING REGULARITIES IN LARGE CELLULAR SPACES 
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We informally describe a computer algorithm for simulating deterministic cellular automata. It grows "smarter" by 
selectively recording intermediate computations while operating on a compressed representation of the cellular space-time. No 
information is lost because configurations do not actually evolve. Instead, the simulator accomodates random exploration of 
place-times in the future of initial configurations embedded in an effectively unbounded void. 

We use Conway's Life automaton as a model, but the idea extends easily to other geometries, dimensions, and number 
of states. 

1. Motivat ion 

In 1970, J.H. Conway announced a particularly 
interesting cellular automaton which he dubbed 
"Life" [1-3]. Life is a two state, nine-neighborhood 
rule applied on an ordinary, two-dimensional grid 
[4]. Early manual and computer simulations sug- 
gested that initially finite configurations of  on cells 
remained finite. This led Conway to conjecture the 
non-existence of  such things as "puffer trains", his 
name for configurations which would travel 
indefinitely through empty space leaving per- 
manent debris. 

Fig. I. shows four stages of  what seems to be a 
puffer train. Every ten time steps, the topmost 
three components advance five cells vertically, and 
left-for-right reflect themselves, while the center 
component emits a puff of  debris (indicated by an 
arrow). Thus, in ten more time steps, the 
configuration will try to emit a mirror image puff 
five cells forward of  the previous puff. This would 
obviously be a puffer train, were the puffs not 
themselves vigorously interacting, threatening to 
spawn a disturbance which overwhelms the puffer 
from behind. 

Is fig. 1 a puffer train? 
There is probably no way to settle such ques- 

tions except by experiment. Run the simulation 
until either the puffing stops, or the debris exhibits 

enough regularity for determinism to furnish a 
proof  of  unbounded growth. (The proven Turing- 
universality of  Life on infinite grids introduces 
a third, fortunately remote possibility: the 
configuration may neither regularize nor self- 
distruct, indefinitely concealing its ultimate behav- 
ior.) 

Fig. 2 shows that fig. 1 is indeed a puffer train, 
by virtue of  the debris plume achieving both 
temporal and spatial periodicity, but only after 
some 2000 steps and a sevenfold multiplication of  
the original puff period. Subsequent experiments 
on similar puffer train candidates have shown 
period doubling to be far likelier than septupling. 
A few configurations, however, have puffed for 
several hundred steps, only to disintegrate without 
establishing an overall period, thereby under- 
scoring the necessity of  experimental proof  of  
apparent unbounded growth. 

And should one turn from naturalist to engineer, 
building large configurations of  modules which 
construct or compute things [3], one should still 
experiment to verify that the "hardware" works. 

In either case, the experiments will usually re- 
quire a large and unpredictable amount of  "real 
estate" and time, yet most of  this real estate will 
repeat itself most of  the time. 

The following algorithm will let us freely explore 
the future space-times of  large initial con- 
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Fig. 1, Four  stages in the evolution of a probable puffer train. 

figurations, provided that they are sufficiently re- 
petitious, both structurally and behaviorally. It 
(and enough computational hardware to support 
it) could have spared Conway one of his few 
unlucky conjectures. 

2. The algorithm 

There are two key componen t s - a  hash mech- 
anism and macro-cells. The hash mechanism pre- 
vents the recomputation of indistinguishable 
scenarios. Macro-cells mechanize the information- 
compression of the spacetime behavior of 
configurations. A macro-cell represents a 2" by 2" 
block of automaton cells, where n is any non- 

negative integer. Each macro-cell seeks to deter- 
mine its RESULT, namely the concentric 2"-1 by 
2" - L macro-cell which the parent macro-cell exclu- 
sively determines after 2"-2 time steps. But instead 
of occupying 2 2" units of storage, a macro-cell of 
size 2" (n > 0) requires just five units. These hold 
(pointers to) the four macro-cells of size 2"- ~ which 
comprise the four quadrants, and, if we are lucky 
(and n > 1), the RESULT, also of quadrant size. 

The entire structure and evolution of an initial 
configuration will be encoded in the interlinkings 
of macro-cells, which are computed as we probe its 
future. This will usually require fewer macro-cells 
than you might think, due to two restrictions on 
when a macro-cell can be created. First, a macro- 
cell is never created if one having the same quad- 
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Fig. 2. Above the still-smoldering initial explosion (bot tom),  
there finally appearg  a segment o f  temporally and spatially 
periodic exhaust,  proving that above this segment operates  a 
true puffer train [5]. 

rants already exists• This applies recursively to the 

quadrants• At the bottom of.the recursion are the 
2 o by 20 (i.e. 1 by 1) cells, of  which there are at most 
two, since Life is a two state automaton• Likewise, 
at most 22.2 = 16 two by two cells can be created, 
etc. When the algorithm tries to group four quad- 
rants to form a pre-existing macro-cell, the hash 
mechanism notices the coincidence and returns the 
old cell instead of  a new one. Most importantly, 
this old cell may already know its RESULT,  while 
the new one cannot• (Ironically, the "old"  cell may 
well have been created later in simulated time than 
the "new" one.) 

The second restriction on macro-cell creation is 
implicit in the algorithm: a macro-cell of  size 2 n, 
(n/> 2) can only be created when its x, y, and time 
coordinates (relative to all its parent macro-cells) 
are multiples of  2"-2. Thus, proliferations of  cells 
is limited by indistinguishability when they are 
small, and by infrequency of  creation when they 
are large• 

As an example, an empty universe of  diameter 
232 is represented by a macro-cell whose four 
quadrants are all the same, a macro-ceU of  di- 
ameter 231 , etc. Thus, the whole thing requires only 
33 macro-cells. Since the representations of  the 
"big" ones are no larger than the "small" ones, one 
can be casual about creating new universes, as long 
as one reuses a lot of  lower-level components• Thus 
if one wishes to "edit"  an existing 232 by 232 

universe by altering a single 1 by 1 cell, one must 
create a whole new universe. But this can entail no 
more than 33 new cells (at most one of  each size), 
no matter how extensive the original configuration• 

Similarly, simulation rates can increase ex- 
ponentially in regions of  repetitive behavior, be- 
cause of  the reuse of  many RESULTs in the 
construction of  larger RESULTs (which represent 
larger time-steps). 

The smallest macro-cell which can have a RE- 
SULT is 4 by 4. These and all larger cells produce 
RESULTS in response to messages, which usually 
issue from larger macro-cells in pursuit of their 
own RESULTs• In order to minimize storage 
requirements of individual cells, message handling 
code is associated with size classes of  macro-cells, 
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rather than with the cells themselves. If the queried 
macro-cell already knows its RESULT (from hav- 
ing computed it previously), it just returns it. If a 
4 by 4 cell doesn't know its RESULT, it computes 
it by brute force, i.e. by applying the Life rule [4] 
to the nine-neighborhoods of each of its four 
central cells (bits). Larger cells determine their 
RESULTs by a somewhat inelegant-looking recur- 
sion which involves combining a total of thirteen 
separate RESULTs of quadrants, and other 
quadrant-sized macro-cells formed by grouping 
RESULTS and regrouping quarants of quadrants. 

Here is a mental picture of the recursion. A 
macro-cell at time 0 is the top stratum of a patch 
of earth. Successively deeper strata hold future 
time-slices. We are trying to excavate down to the 
RESULT stratum, which is the fiat bottom of a 
hole with sides of slope 1, a frustum of the 
foreseeable future cone with the initial macro-cell 
as its base. (Actually, the future cone is the exterior 
of the light cone of the exterior of the initial 
macro-cell.) We daren't excavate any steeper, lest 
we unearth the uncertainty that seeps sideways 
from the edges at slope 1. The depth of the hole is 
1 of its width, and half the width of the bottom. To 
scoop out such a hole, we recursively scoop out 
holes of the next smaller size, i.e. one half the 
desired diameter and depth. By taking the RE- 
SULTs of the four quadrants, we reach half of the 
desired depth, but there remain dikes covering 5/9 
of this halfway bottom (see fig. 3). To excavate 
these dikes, five artificial, shifted "quadrants" must 
be constructed from quadrants' quadrants, and 
then RESULTed. This will involve the re- 
excavation of some thin air, but at little cost, since 
the reexcavated cells will remember their RE- 
SULTs. (If they didn't, the recursion would actu- 
ally recompute the same results a number of times 
proportional to the diameter of the outermost 
macro-cell!) We are now on the halfway bottom, 
composed of nine subresults, which are then 
grouped in fours to form four overlapping squares. 
The grouping of the RESULTs of these four 
squares is the grand RESULT. 

Thirteen scoopings is not too inefficient, given 

that each scoop is only 1/8 the volume of the 
desired excavation. 

Note that the algorithm is indifferent to the x, y, 
and time coordinates and even the sizes of the 
macro-cells. Their spatial coordinates are implicit 
in the quadrant structure of their owners, and their 
time coordinates are implicit in the RESULT 
structure. Nothing is even checking whether a 
RESULT is to be computed by counting (4 by 4), 
or by recursion (> 4 by 4), since the knowledge of 
how to RESULT is in the cell classes themselves. 
The 16 by 16s send the same RESULT message to 
their 8 by 8s as the 8 by 8s send to their 4 by 4s, 
without any knowledge of their own size or the size 
of their quadrants. There are 4 by 4s in the 
quadrants of the 8 by 8s by construction, and a 
properly constructed universe will stay that way. 

"Digital physicists" i.e. seekers of cellular mod- 
els of the real Universe, may be interested in this 
algorithm's decoupling of simulated time from 
simulator time, thus freeing their models from the 
irritating requirement of "pan-synchronicity", and 
giving time a rather more topological inter- 
pretation. But this very virtue becomes a drawback 
when the simulator desires to view the progress of 
the simulation as if it were evolving flatly and 
parallel to simulator time. One approach is to 
artificially maintain x and y coordinates through- 
out the recursion, and display RESULTs in their 
proper position whenever they are obtained. This 
is especially tempting, in that it might have the 
additional virtue of skipping over scenarios that 
have been played before. Alas, the result, at least 
if viewed fiat, is incomprehensible. Time not only 
runs at different speeds in different places, it even 
appears to run backwards in fixed places. This 
comes from the reexcavation of "thin air" de- 
scribed earlier, wherein overlapping events are 
explored several times. A possible fix might be to 
"ratchet" time by maintaining, for each I by I cell 
position, the largest time value reached. But this 
would prevent the simulation of those very large 
but repetitive configurations for which this algo- 
rithm is well suited. What's worse, the ratcheting 
leaves an unflat time surface which still results in 
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Fig. 3. The recursion step: digging a hole in spacetime with half-size scoops. Greater depths represent greater time. The thin, 
circumferential flange indicating time stratum 0 extends into neighboring macro-cells. 

confusing displays. For example, a traveling oscil- 
lator may simply disappear for an extended time, 
only to reappear simultaneously in several places, 
due to multiple intersections of the oscillator's 
straight track with the terraced walls of the partial 
excavation. 

The resolution of this drawback is to let the 
observation drive the computing, instead of vice 
versa. In general, one wishes to have one or more 
"windows" into the spacetime, that is, (probably) 
rectangular slabs of  I by 1 cells, one time unit thick. 
To SHOW the intersection of such a slab with the 

spacetime, teach the macro-cell classes to check 
whether their future cone intersects the slab, and if 
so, propagate the SHOW message, along with 
appropriate x, y, and time offsets, to the quadrants 
and RESULTs, which are computed as necessary. 
Then teach the 1 by l s to signal the querying 
window if they get a SHOW message with time and 
space coordinates all 0. Although significantly 
more complicated than the RESULT algorithm, 
this SHOW algorithm is more efficient than it may 
sound. If  no RESULTs need to be computed, 
SHOW is only logarithmic in the time coordinate. 
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Furthermore, most future cones (and, by the geo- 
metry, the cones of  all their components, recur- 
sively,) will not intersect non-gigantic windows. 

However, the outermost SHOW method ensures 
that the configuration being probed is surrounded 
by enough (iteratively doubled) vacuum so that its 
future cone entirely contains the probe window, no 
matter how large or remote in space or time. Thus, 
there are never any edge effects. 

Another virtue of  the macro-cell approach is 
that a large SHOW or RESULT computation 
which is aborted before completion is not wasted, 
for all of  the intermediate RESULTs have been 
permanently recorded in their owners. Thus, a 
restarted computation will very quickly regain the 
state where it broke off. Likewise, independent 
experiments on the sequence of similar 
configurations may accelerate as the hash-table 
accumulates "smart"  macro-cells. 

Direct generalizations of  the RESULT mech- 
anism enable the geometric transformation, aging, 
and merging of  large configurations, as well as 
extensive replications in arbitrary grids. 

3. Conclusion 

Even in simulating such an unpredictable and 
irreversible automaton as Life, considerable econo- 
mies are possible. By attributing similar thriftiness 
to whatever implements our own reality, our (sim- 
ulated) imaginations may be stimulated. 
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