
Physica 10D (1984) 75--80
North-Holland, Amsterdam

EXPLOITING REGULARITIES IN LARGE CELLULAR SPACES

R.Wm. GOSPER
Symbolics Inc, 845 Page Mill Road, Polo Alto, California 94304, and Lawrence Livermore National Laboratory, Livermore,
California 94550, USA

We informally describe a computer algorithm for simulating deterministic cellular automata. It grows "smarter" by
selectively recording intermediate computations while operating on a compressed representation of the cellular space-time. No
information is lost because configurations do not actually evolve. Instead, the simulator accomodates random exploration of
place-times in the future of initial configurations embedded in an effectively unbounded void.

We use Conway's Life automaton as a model, but the idea extends easily to other geometries, dimensions, and number
of states.

1. Motivat ion

In 1970, J.H. Conway announced a particularly
interesting cellular automaton which he dubbed
"Life" [1-3]. Life is a two state, nine-neighborhood
rule applied on an ordinary, two-dimensional grid
[4]. Early manual and computer simulations sug-
gested that initially finite configurations of on cells
remained finite. This led Conway to conjecture the
non-existence of such things as "puffer trains", his
name for configurations which would travel
indefinitely through empty space leaving per-
manent debris.

Fig. I. shows four stages of what seems to be a
puffer train. Every ten time steps, the topmost
three components advance five cells vertically, and
left-for-right reflect themselves, while the center
component emits a puff of debris (indicated by an
arrow). Thus, in ten more time steps, the
configuration will try to emit a mirror image puff
five cells forward of the previous puff. This would
obviously be a puffer train, were the puffs not
themselves vigorously interacting, threatening to
spawn a disturbance which overwhelms the puffer
from behind.

Is fig. 1 a puffer train?
There is probably no way to settle such ques-

tions except by experiment. Run the simulation
until either the puffing stops, or the debris exhibits

enough regularity for determinism to furnish a
proof of unbounded growth. (The proven Turing-
universality of Life on infinite grids introduces
a third, fortunately remote possibility: the
configuration may neither regularize nor self-
distruct, indefinitely concealing its ultimate behav-
ior.)

Fig. 2 shows that fig. 1 is indeed a puffer train,
by virtue of the debris plume achieving both
temporal and spatial periodicity, but only after
some 2000 steps and a sevenfold multiplication of
the original puff period. Subsequent experiments
on similar puffer train candidates have shown
period doubling to be far likelier than septupling.
A few configurations, however, have puffed for
several hundred steps, only to disintegrate without
establishing an overall period, thereby under-
scoring the necessity of experimental proof of
apparent unbounded growth.

And should one turn from naturalist to engineer,
building large configurations of modules which
construct or compute things [3], one should still
experiment to verify that the "hardware" works.

In either case, the experiments will usually re-
quire a large and unpredictable amount of "real
estate" and time, yet most of this real estate will
repeat itself most of the time.

The following algorithm will let us freely explore
the future space-times of large initial con-

0167-2789/84/$03.00 © Elsevier Science Publishers B.V.
(North-Holland Physics Publishing Division)

76 R. Wm. Gosper /Exploiting regularities in large cellular spaces

Center (B t e) Time 8

]enter (0~ ~) Tl~e IB

]enter (B, O) Time 2B

P

@

'4

Center (0, 55) Time 238

• •

O

Fig. 1, Four stages in the evolution of a probable puffer train.

figurations, provided that they are sufficiently re-
petitious, both structurally and behaviorally. It
(and enough computational hardware to support
it) could have spared Conway one of his few
unlucky conjectures.

2. The algorithm

There are two key componen t s - a hash mech-
anism and macro-cells. The hash mechanism pre-
vents the recomputation of indistinguishable
scenarios. Macro-cells mechanize the information-
compression of the spacetime behavior of
configurations. A macro-cell represents a 2" by 2"
block of automaton cells, where n is any non-

negative integer. Each macro-cell seeks to deter-
mine its RESULT, namely the concentric 2"-1 by
2" - L macro-cell which the parent macro-cell exclu-
sively determines after 2"-2 time steps. But instead
of occupying 2 2" units of storage, a macro-cell of
size 2" (n > 0) requires just five units. These hold
(pointers to) the four macro-cells of size 2"- ~ which
comprise the four quadrants, and, if we are lucky
(and n > 1), the RESULT, also of quadrant size.

The entire structure and evolution of an initial
configuration will be encoded in the interlinkings
of macro-cells, which are computed as we probe its
future. This will usually require fewer macro-cells
than you might think, due to two restrictions on
when a macro-cell can be created. First, a macro-
cell is never created if one having the same quad-

R. Wm. Gosper/Exploiting regularities in large cellular spaces 77

. ¢ . " . ~ . ~

, : ,• ~ •
.~" o•

~ ' . . . ; .

-:- .:." ~t,~ "~

.. ":'.:. :.:,. ,

*'o~" "e "
. . • ' • ' , ° (,~ '~

~'.~. . b ' t - ~* :

¢.~-~....': ,.*..-.~,

; ; . . .

t . • • • • . .

• o ~ ' - o - - • e - . - • , - , . ' - . r ~

• - . . . , . . . ' ~ . . ~ ,..

. ' i " " i ' - ' -'" .:.' -"4, "

'"~'~.; '.:." '- ~'." ' i ' .
-:- ~: • ...,. ~

..., .-' -,:,. ~" .."
,;, . ' - . . . : ,.. "-:- -

(
• • ; . ° .." ,;,
: . ~ - : - ' - ? . . ' : , : , - .-

, ; , : , ? . + . . '
-,~. • . , : , . ' . o "

..-:-',? , .. :,.
. . . . , . - - ,.-,,

,;,~o o.~ • o
.',: . ..:,. '-. ? "':'..

. ..:.. ; " , . . .
: - : . : . "..: ".-

"':'. ".."..:.'~i."
:" ~ . - . " ~ .
. . . - , . ' , . ' ~ : " . .

. i..'!" ' . . ' - " ' "

'"iS
t •

Fig. 2. Above the still-smoldering initial explosion (bot tom),
there finally appearg a segment o f temporally and spatially
periodic exhaust, proving that above this segment operates a
true puffer train [5].

rants already exists• This applies recursively to the

quadrants• At the bottom of.the recursion are the
2 o by 20 (i.e. 1 by 1) cells, of which there are at most
two, since Life is a two state automaton• Likewise,
at most 22.2 = 16 two by two cells can be created,
etc. When the algorithm tries to group four quad-
rants to form a pre-existing macro-cell, the hash
mechanism notices the coincidence and returns the
old cell instead of a new one. Most importantly,
this old cell may already know its RESULT, while
the new one cannot• (Ironically, the "old" cell may
well have been created later in simulated time than
the "new" one.)

The second restriction on macro-cell creation is
implicit in the algorithm: a macro-cell of size 2 n,
(n/> 2) can only be created when its x, y, and time
coordinates (relative to all its parent macro-cells)
are multiples of 2"-2. Thus, proliferations of cells
is limited by indistinguishability when they are
small, and by infrequency of creation when they
are large•

As an example, an empty universe of diameter
232 is represented by a macro-cell whose four
quadrants are all the same, a macro-ceU of di-
ameter 231 , etc. Thus, the whole thing requires only
33 macro-cells. Since the representations of the
"big" ones are no larger than the "small" ones, one
can be casual about creating new universes, as long
as one reuses a lot of lower-level components• Thus
if one wishes to "edit" an existing 232 by 232

universe by altering a single 1 by 1 cell, one must
create a whole new universe. But this can entail no
more than 33 new cells (at most one of each size),
no matter how extensive the original configuration•

Similarly, simulation rates can increase ex-
ponentially in regions of repetitive behavior, be-
cause of the reuse of many RESULTs in the
construction of larger RESULTs (which represent
larger time-steps).

The smallest macro-cell which can have a RE-
SULT is 4 by 4. These and all larger cells produce
RESULTS in response to messages, which usually
issue from larger macro-cells in pursuit of their
own RESULTs• In order to minimize storage
requirements of individual cells, message handling
code is associated with size classes of macro-cells,

78 R. Win. Gosper /Exploiting regularities in large cellular spaces

rather than with the cells themselves. If the queried
macro-cell already knows its RESULT (from hav-
ing computed it previously), it just returns it. If a
4 by 4 cell doesn't know its RESULT, it computes
it by brute force, i.e. by applying the Life rule [4]
to the nine-neighborhoods of each of its four
central cells (bits). Larger cells determine their
RESULTs by a somewhat inelegant-looking recur-
sion which involves combining a total of thirteen
separate RESULTs of quadrants, and other
quadrant-sized macro-cells formed by grouping
RESULTS and regrouping quarants of quadrants.

Here is a mental picture of the recursion. A
macro-cell at time 0 is the top stratum of a patch
of earth. Successively deeper strata hold future
time-slices. We are trying to excavate down to the
RESULT stratum, which is the fiat bottom of a
hole with sides of slope 1, a frustum of the
foreseeable future cone with the initial macro-cell
as its base. (Actually, the future cone is the exterior
of the light cone of the exterior of the initial
macro-cell.) We daren't excavate any steeper, lest
we unearth the uncertainty that seeps sideways
from the edges at slope 1. The depth of the hole is
1 of its width, and half the width of the bottom. To
scoop out such a hole, we recursively scoop out
holes of the next smaller size, i.e. one half the
desired diameter and depth. By taking the RE-
SULTs of the four quadrants, we reach half of the
desired depth, but there remain dikes covering 5/9
of this halfway bottom (see fig. 3). To excavate
these dikes, five artificial, shifted "quadrants" must
be constructed from quadrants' quadrants, and
then RESULTed. This will involve the re-
excavation of some thin air, but at little cost, since
the reexcavated cells will remember their RE-
SULTs. (If they didn't, the recursion would actu-
ally recompute the same results a number of times
proportional to the diameter of the outermost
macro-cell!) We are now on the halfway bottom,
composed of nine subresults, which are then
grouped in fours to form four overlapping squares.
The grouping of the RESULTs of these four
squares is the grand RESULT.

Thirteen scoopings is not too inefficient, given

that each scoop is only 1/8 the volume of the
desired excavation.

Note that the algorithm is indifferent to the x, y,
and time coordinates and even the sizes of the
macro-cells. Their spatial coordinates are implicit
in the quadrant structure of their owners, and their
time coordinates are implicit in the RESULT
structure. Nothing is even checking whether a
RESULT is to be computed by counting (4 by 4),
or by recursion (> 4 by 4), since the knowledge of
how to RESULT is in the cell classes themselves.
The 16 by 16s send the same RESULT message to
their 8 by 8s as the 8 by 8s send to their 4 by 4s,
without any knowledge of their own size or the size
of their quadrants. There are 4 by 4s in the
quadrants of the 8 by 8s by construction, and a
properly constructed universe will stay that way.

"Digital physicists" i.e. seekers of cellular mod-
els of the real Universe, may be interested in this
algorithm's decoupling of simulated time from
simulator time, thus freeing their models from the
irritating requirement of "pan-synchronicity", and
giving time a rather more topological inter-
pretation. But this very virtue becomes a drawback
when the simulator desires to view the progress of
the simulation as if it were evolving flatly and
parallel to simulator time. One approach is to
artificially maintain x and y coordinates through-
out the recursion, and display RESULTs in their
proper position whenever they are obtained. This
is especially tempting, in that it might have the
additional virtue of skipping over scenarios that
have been played before. Alas, the result, at least
if viewed fiat, is incomprehensible. Time not only
runs at different speeds in different places, it even
appears to run backwards in fixed places. This
comes from the reexcavation of "thin air" de-
scribed earlier, wherein overlapping events are
explored several times. A possible fix might be to
"ratchet" time by maintaining, for each I by I cell
position, the largest time value reached. But this
would prevent the simulation of those very large
but repetitive configurations for which this algo-
rithm is well suited. What's worse, the ratcheting
leaves an unflat time surface which still results in

R. Wm. Gosper /Exploiting regularities in large cellular spaces

Rr te r t h r e e = c a o ~ s R C t e r ¢ b v e ~coops

79

R F t e r n i n e u n a e t h o d i c a l ~¢OOD~ T ~ e l v e d o u n , one t o 9 0

Fig. 3. The recursion step: digging a hole in spacetime with half-size scoops. Greater depths represent greater time. The thin,
circumferential flange indicating time stratum 0 extends into neighboring macro-cells.

confusing displays. For example, a traveling oscil-
lator may simply disappear for an extended time,
only to reappear simultaneously in several places,
due to multiple intersections of the oscillator's
straight track with the terraced walls of the partial
excavation.

The resolution of this drawback is to let the
observation drive the computing, instead of vice
versa. In general, one wishes to have one or more
"windows" into the spacetime, that is, (probably)
rectangular slabs of I by 1 cells, one time unit thick.
To SHOW the intersection of such a slab with the

spacetime, teach the macro-cell classes to check
whether their future cone intersects the slab, and if
so, propagate the SHOW message, along with
appropriate x, y, and time offsets, to the quadrants
and RESULTs, which are computed as necessary.
Then teach the 1 by l s to signal the querying
window if they get a SHOW message with time and
space coordinates all 0. Although significantly
more complicated than the RESULT algorithm,
this SHOW algorithm is more efficient than it may
sound. If no RESULTs need to be computed,
SHOW is only logarithmic in the time coordinate.

80 R. Wm. Gosper /Exploiting regularities in large cellular spaces

Furthermore, most future cones (and, by the geo-
metry, the cones of all their components, recur-
sively,) will not intersect non-gigantic windows.

However, the outermost SHOW method ensures
that the configuration being probed is surrounded
by enough (iteratively doubled) vacuum so that its
future cone entirely contains the probe window, no
matter how large or remote in space or time. Thus,
there are never any edge effects.

Another virtue of the macro-cell approach is
that a large SHOW or RESULT computation
which is aborted before completion is not wasted,
for all of the intermediate RESULTs have been
permanently recorded in their owners. Thus, a
restarted computation will very quickly regain the
state where it broke off. Likewise, independent
experiments on the sequence of similar
configurations may accelerate as the hash-table
accumulates "smart" macro-cells.

Direct generalizations of the RESULT mech-
anism enable the geometric transformation, aging,
and merging of large configurations, as well as
extensive replications in arbitrary grids.

3. Conclusion

Even in simulating such an unpredictable and
irreversible automaton as Life, considerable econo-
mies are possible. By attributing similar thriftiness
to whatever implements our own reality, our (sim-
ulated) imaginations may be stimulated.

Acknowledgements

I found the RESULT algorithm while at the
XEROX Palo Alto Research Center. Its only
implementation so far has been in the exceptionally
powerful Flavor Lisp mechanism devised by How-
ard Cannon (of Symbolics, Inc.). This is also true
of the subsequently discovered display, geometric
transformation, aging, merging, and grid repli-
cation algorithms. John Lamping of Stanford Uni-
versity saved me much work by suggesting a binary
quadrant structure in place of the ternary structure
in my original plan. An early model Symbolics
3600 ran the puffer train of figs. 1 and 2 several
million steps, at a rate which doubled every two or
three minutes, once the initial explosion settled
into oscillation.

Fig. 3 was plotted by MIT Macsyma.

References

[1] M. Gardner, Sci. Amer. 223, No. 4 (1970) 120; 224, No. 2
(1971) 112.

[2] Berlekamp, Conway, & Guy, Winning Ways, Academic
Press, Vol. 2, 817-849. Contains design of a Turing machine
in Life.

[3] M. Gardner, Wheels, Life and Other Mathematical Amuse-
ments, (W.H. Freeman, San Francisco, 1983).

[4] The Life rule: If two of your eight nearest neighbors are on,
don't change. If three are on, turn on. Otherwise, turn off.

[5] The initial explosion, actually just a puff reacting against the
vacuum instead of previous puffs, eventually decays to a
harmless cloud of oscillators (of periods one, two and three)
at step number 5533.

