
ORSAY
No d’ordre : 1448

UNIVERSITÉ DE PARIS-SUD 11

CENTRE D’ORSAY

THÈSE
présentée

pour obtenir

L’HABILITATION À DIRIGER DES RECHERCHES
DE L’UNIVERSITÉ PARIS-SUD 11

PAR

Jean-Christophe Filliâtre
—×—

SUJET :

Deductive Program Verification

soutenue le 2 décembre 2011 devant la commission d’examen

MM. Gilles Barthe rapporteurs
Yves Bertot
K. Rustan M. Leino

Mme Christine Paulin examinateurs
MM. Olivier Danvy

Roberto di Cosmo
Gérard Huet
Xavier Leroy

Deductive Program Verification

Jean-Christophe Filliâtre

à Anne, Marion,
Émilie et Juliette

Contents

Contents vii

Preface ix

1 Deductive Program Verification 1
1.1 Program Verification is Challenging 3
1.2 Specifications . 6
1.3 Methodologies . 8
1.4 Proofs . 10

2 A Tool for Program Verification: Why3 13
2.1 History . 13
2.2 Overview of Why3 . 16
2.3 Logic . 17
2.4 Proofs . 22
2.5 Programs . 23

3 Case Studies in Program Verification 37
3.1 Termination . 38
3.2 Mathematics . 42
3.3 Data Structures . 49
3.4 Using Why3 as an Intermediate Language 52

4 Perspectives 59
4.1 Deductive Program Verification . 59
4.2 Why3 . 60

Bibliography 67

Index 77

vii

Preface

This memoir purposely focuses on my main research activity, that is deductive
program verification. Even more specifically, it presents research I’m doing these
days and that I’m considering for the forthcoming years. For completeness, I’m
briefly listing here the works I’ve made that are ignored in this document.

The Coq Proof Assistant. I did my Ph.D. in the Coq team, where the Coq proof
assistant had been developing for more than 10 years already at that time. The
outcome of my Ph.D. was a tactic to perform verification of imperative programs in
Coq [36, 37]. I used it to verify several non-trivial programs [45, 39]. Though I then
gradually moved to a mere Coq user, I gained from that period a deep knowledge of
that tool — not mentioning my contribution to its programming architecture. For
instance, I could use Coq in 2004 to verify implementations of finite sets as AVLs
and red-black trees, in a joint work with Pierre Letouzey [44]. Today, I use Coq on
a daily basis to handle verification conditions that are not discharged by automated
theorem provers.

Verification of C Programs. It was a wonderful experience to develop the Caduceus
tool for the verification of C programs with Claude Marché in 2004 [46]. We learned
a lot from that experience. In particular, the specification language we designed
for Caduceus served as a basis for the design of the more ambitious specification
language for Frama-C [50], namely ACSL [8]. Recently, I supervised the Ph.D. of
François Bobot whose purpose was to introduce concepts of separation logic within
the framework of traditional deductive verification of pointer programs [13].

Verification of Floating-Point Programs. When Sylvie Boldo joined the ProVal team
a few years ago, we naturally considered extending our expertise in deductive veri-
fication to floating-point programs. She is indeed an expert in the domain. Though
I’m rather ignorant with respect to floating-point arithmetic, I could provide the
other ingredient to get a nice framework for deductive verification of floating-
point programs [19]. Later, another specialist of floating-point arithmetic, Guil-

ix

x CONTENTS

laume Melquiond, joined ProVal and we could go another step forward [20, 18]
using his shiny tool Gappa.

Functional Programming. Those who know me can attest that I’m an enthusiastic,
even fanatic, OCaml programmer. I have been lucky to be introduced to this
language by Guy Cousineau, Xavier Leroy, and Damien Doligez when I was doing
my undergraduate studies at École Normale Supérieure. It was difficult not to fell
in love with the creation of such a dream team. Since then, I have experienced so
many joyful moments of programming with OCaml that I can’t remember all of
them.

It explains why, since my Ph.D., I’ve been continuously publishing papers related
to functional programming. Most of them are describing OCaml libraries [25, 26,
28, 3, 43] or neat functional programs [48, 38, 41]. A more profound paper describes
a joint work with Sylvain Conchon and introduces the notion of semi-persistent data
structures [27]. It is somewhat unfortunate that it is not covered in this memoir, as
it is probably the piece of work I’m most proud of.

Obviously, OCaml had a great influence on my work related to program ver-
ification. In designing the language of Why, I mostly reused syntax, typing, and
semantics of OCaml as much as possible. It appeared to be a successful inspiration.
Concepts such as polymorphism, algebraic data types, pattern matching, records
with mutable fields, etc., are all of genuine interest in program verification, as we
show later in this document.

Finally, two of the three Ph.D. theses I supervised are related to functional
programming, namely those of Julien Signoles [93] and Johannes Kanig [56, 57].

Acknowledgments

I’m greatly honored to defend this thesis in front of such a committee, for it
is exclusively composed of people I admire. If only Natarajan Shankar could have
joined it, it would have been the perfect committee.

Gilles Barthe, Yves Bertot, and Rustan Leino accepted to serve as examiners,
despite the extra workload it represents. I sincerely thank them. The contribution of
Rustan to the domain of deductive verification is truly impressive and has influenced
my work more than once. I remember when I read his PASTE 2005 paper for
the first time and how many new insights on weakest preconditions I got from
these eight pages. Program verification has always been central in Yves’s work, as
demonstrated in the Coq’Art, the book he co-authored with Pierre Castéran. This
book was immensely useful for me when I taught program verification with Coq
at the MPRI a few years ago. In 2010, Gilles kindly accepted to be our invited
speaker at PLPV, a workshop I was co-organizing. It was an opportunity for me

CONTENTS xi

to appreciate his impressive contribution to the domain of cryptographic software
verification.

Roberto di Cosmo was my adviser at École Normale Supérieure when I was
doing my undergraduate studies. I remember when I met him for the first time:
he was enthusiastic about Perl at that time and even tried to convince me! More
importantly, he gave me the advice I needed regarding my first internship, which
led me to the Coq team and to my first meeting with Gérard Huet. It was in 1993
at INRIA Rocquencourt. What a souvenir! My first immersion into a research lab
was great: computers piled in the so-called “buffers”, researchers giving a tour of
their work on the blackboard, hardware and software hacking all over the place,
etc. I did not stay there for long, however, since I soon left to Lyon to perform my
internship under the supervision of Christine Paulin. The lab was not as attractive,
with its hospital-like look, but the team was great. At the monthly meetings of
the Coq group, I was repeatedly impressed by stratospheric discussions related to
type theory always involving Christine and Gérard. It was at one of these meetings
that I picked up the PhD proposal on imperative program verification suggested by
Gérard. I clearly remember this event and the way I was literally attracted by the
subject. May be I was missing the very first days of my programmer’s life, when
I was doing imperative programming only. I am immensely grateful to Roberto,
Christine, and Gérard for having guided my first steps into research.

I am a programmer, since the age of thirteen. As I explained above, I was lucky
to be introduced to functional programming at some point, which changed my life
as a programmer, but also influenced my research activity. That’s why it makes
a lot of sense for me to count two eminent members of the ML community on my
committee. Xavier Leroy’s contribution to the domain is beyond words, but I must
confess that I’m even more impressed by his recent move to the domain of program
verification with the CompCert project. I wish my own contribution to program
verification will eventually be able to contribute to a similar project. Surprisingly, I
met Olivier Danvy for the first time only recently. He visited me in Orsay two years
ago and, almost immediately, challenged me with a programming exercise! If only
all computer scientists could be in that state of mind, it would change our discipline
for the better. At last, I can contribute to Nature’s statistical result: thanks Olivier.

Remerciements

« Tout vient à point à qui sait attendre » dit le proverbe. Je ne sais pas si
cette habilitation vient à point mais il est clair que j’ai su attendre. Je remercie
très chaleureusement toutes les personnes qui m’ont encouragé dans cette voie ces
dernières années, sans jamais désespérer. Cela inclut les membres de l’équipe ProVal,
passés et présents, et en particulier Christine, qui a su me remotiver plusieurs fois.
J’ai également reçu le chaleureux soutien de nombreux enseignants de l’École Poly-

xii CONTENTS

technique, notamment Olivier Bournez, Benjamin Werner, Stéphane Lengrand et
Thomas Clausen.

Je remercie le délégué aux thèses de l’école doctorale d’informatique de Paris-
Sud, Dominique Gouyou-Beauchamps, pour ses conseils relatifs à l’écriture de ce
mémoire, en particulier l’idée d’écrire un document que l’on puisse donner à lire à
un étudiant de M2 qui souhaite comprendre notre domaine.

Un grand merci à Xavier Urbain pour son aide précieuse dans la préparation du
pot ; je n’ai toutefois aucun espoir de parvenir à faire aussi bien que lui.

Enfin, je dédie ce mémoire à Anne, Marion, Émilie et Juliette qui ont supporté
sans jamais se plaindre le surcrôıt de travail que cette habilitation a pu me donner
certains week-ends, sans parler de quelques râleries supplémentaires.

1
Deductive Program Verification

I will start with a definition:

Deductive program verification is the art of turning the correctness of a
program into a mathematical statement and then proving it.

The words are carefully chosen. The word “deductive” makes a clear distinction
with other verification methods such as model checking, abstract interpretation,
typing, or testing. It also emphasizes the use of a logic, to specify and to prove.
I favor “program” to “software” since I am mostly interested in the verification
of small and challenging programs, rather than million line long software systems.
Providing methods and tools to verify textbook programs as easily as possible is
one of my goals. Yet I intend to verify code that is executable and thus I favor
“program” to “algorithm”. Deductive program verification is an “art”, exactly as
programming is. It requires experience, imagination, tricks, but also taste, to figure
out specifications and proof steps in the most elegant way. There is a long way to
go before it becomes a technique routinely used in software production. The word
“correctness” is purposely vague. It may refer to the safe execution of the program
only, but it may also characterize the precise meaning of what the program is do-
ing. We will show that deductive verification can be a challenging task whatever
the notion of correctness might be. Having the correctness expressed as a “math-
ematical statement” has the obvious advantage that a wide range of existing tools
and techniques can be used. This includes proof assistants and automated theorem
provers, which were not necessarily developed with program verification in mind.
Finally, it is important to embed the task of “proving” the correctness statement
into the definition. This is indeed a part of the game, and a successful verification
should include a proof as elegant as possible.

This chapter intends to be a survey on deductive program verification, along
the lines of the definition above. My own contribution to this domain is described
in the next two chapters.

1

2 CHAPTER 1. DEDUCTIVE PROGRAM VERIFICATION

The idea of deductive program verification is not new. It is actually as old as
programming. One of the very first proof of program was performed by Alan Turing
in 1949. His three page paper Checking a Large Routine [101, 79] contains a rigorous
proof a of program computing the factorial by repeated additions. The program is
given as the following flowchart:

STOP

r′ = 1
u′ = 1 v′ = u TEST r − n s′ = 1 u′ = u + v s′ = s + 1

r′ = r + 1 TEST s− r

Assigned variables are primed: a statement such as r′ = r + 1 must be read as
r ← r+ 1. Variable n contains the input parameter and is not modified. When the
program exits, variable u contains n!, the factorial of n. There are two nested loops.
In the outer loop, variable u contains r! and its contents is copied into variable v.
Then the inner loop computes (r + 1)! in u, using repeated additions of v. Since
variables r and s are only used for iteration, this program can profitably be written
using “for” loops, in a more modern way. With a benign modification of its control
flow 1, it reads as follows:

u← 1
for r = 0 to n− 1 do
v ← u
for s = 1 to r do
u← u+ v

The idea defended by Turing at the very beginning of his article is that “the pro-
grammer should make a number of definite assertions which can be checked indi-
vidually, and from which the correctness of the whole programme easily follows”.
He does so on the program above, associating mathematical assertions about vari-
ables to the various points of the code flowchart. For instance, one assertion states
that, prior to the execution of u′ = u + v, variable v contains r! and variable u
contains s × r!. The paper even includes a proof of termination. Turing gives an
ordinal that decreases whenever a transition in the flowchart is taken. The ordinal
is (n− r)ω2 + (r− s)ω+ k, where k is assigned a value from 0 to 6 according to the
statement under consideration. In modern terminology, we recognize the variant
n− r for the outer loop and the variant r − s for the inner loop. As an alternative
to the ordinal, Turing proposes the natural number (n− r)280 +(r−s)240 +k, since
he is assuming 40-bit integers.

1. The finding of which is left as an exercise.

1.1. PROGRAM VERIFICATION IS CHALLENGING 3

Another example of early proof is Tony Hoare’s proof of FIND [53]. In this 1971
paper, Hoare shows the correctness of a program that rearranges the elements of an
array as follows: given an index f , elements are swapped in such a way that we end
up with a value v at position f , elements smaller than v to the left, and elements
greater than v to the right. Hoare builds the program by successive refinement
steps and exhibits the loop invariants in the process. He carefully states and proves
the eighteen lemmas that entail their validity. For instance, one of the loops is
while A[i] < r do i := i+ 1 and has the following invariant:

m ≤ i & ∀p(1 ≤ p < i ⊃ A[p] ≤ r).

The preservation of this invariant is stated as the following lemma:

A[i] ≤ r & m ≤ i & ∀p(1 ≤ p < i ⊃ A[p] ≤ r)
⊃ m ≤ i+ 1 & ∀p(1 ≤ p < i+ 1 ⊃ A[p] ≤ r).

(The loop test is purposely strict, while this not necessary from the invariant and
the lemma.) Hoare’s proof also includes termination and preservation of the array
elements. There is even a footnote commenting on the possibility of arithmetic
overflows, in statements such as i = i + 1 above, and on possible workarounds.
Remarkably, a subsequent mechanization of this proof in 1999 [39] showed that it
did not contain a single error.

From a theoretical point of view, a manual proof such as in the examples above
can be carried out for any code and any specification, the only limit being the
mathematical skills of the user. In practice, however, this is not that simple. Proving
a program requires to check the validity of many conditions, most of them being
tedious and error-prone statements. Fortunately, the situation has evolved a lot
in the past two decades. Languages, techniques, and tools have flourished, which
allow the mechanization of the verification process. Still, before we describe them
in detail, let us take some time to examine other examples. Our purpose is to show
why deductive software verification can be truly difficult.

1.1 Program Verification is Challenging

A program specification can be limited to the mere safety: the program will
execute without ever running into a fatal error, such as dividing by zero or accessing
an invalid memory location. Proving safety can already be quite challenging. A few
years ago, a bug was found in the Java standard library which was related to the
computation of the average of two integers in some binary search [12]. With
array indices l and u large enough, the computation of (l + u) / 2 may return a
negative value if the addition overflows, resulting in some fatal access out of array

4 CHAPTER 1. DEDUCTIVE PROGRAM VERIFICATION

bounds 2. On a 32-bit machine with enough memory, it is indeed possible to have
arrays with more than a billion elements, and thus to trigger this bug. A possible
fix is to compute the mean value using l + (u-l)/2 instead. This sole example
shows that proving safety may require to prove the absence of arithmetic overflows,
which in turn may require a lot of other properties to be checked. This can be even
more difficult. Consider another fix using a logical shift right instead of a division,
that is (l + u) >>> 2 in Java. Then there is an overflow in some cases, but it is a
harmless one. Thus proving this code correct would require an even more complex
model of machine arithmetic.

Another example is termination. Most of the time, termination is a desired
property and should naturally be associated to safety. It is worth pointing out that
early papers on program verification, in particular the ones cited above [101, 53],
already included proving termination as part of the proof process. In principle,
proving termination has an easy rule of thumb: each loop or recursive function
is associated with some entity, called a variant, which decreases at each step and
cannot decrease indefinitely [49]. Typically, a natural number will do. But exactly
as for safety above, proving termination can be challenging anyway. A historical
example is John McCarthy’s “91 function” [71]. It is a function over integers defined
as follows:

f(n) =
{
f(f(n+ 11)) if n ≤ 100,
n− 10 otherwise.

Figuring out a variant for this function is not that difficult: it is as simple as 101−n.
But proving that it is indeed a variant, that is proving that it is non-negative and
decreases for each recursive call, is another story. Indeed, it requires to establish
a postcondition for the function, relating its output value to its parameter n —
namely, that f(n) returns 91 whenever n ≤ 100, and n − 10 otherwise. As for
binary search above, proving a property as simple as termination actually requires
us to prove much more about the program.

Another example of program the sole termination of which is difficult to establish
is Robert Floyd’s cycle detection algorithm, also known as “tortoise and hare”
algorithm [61, ex. 6 p. 7]. To check whether a singly linked list contains a cycle, this
algorithm traverses it at speeds 1 and 2 at the same time, using only two pointers.
Whenever a pointer reaches the end of the list, the outcome is negative. Whenever
the two pointers are equal, the outcome is positive. The beauty of this algorithm
is that it necessarily terminates, the hare not being able to overtake the tortoise
within the cycle, if any. Turning that into a proof is non-trivial. One has to state
the finiteness of the memory cells of the list, to introduce the inductive notion of

2. Interestingly, binary search was precisely taken as an example of program verification in
Jon Bentley’s Programming Pearls [10] more than 25 years ago. Unfortunately, his proof does not
consider the possibility of an arithmetic overflow.

1.1. PROGRAM VERIFICATION IS CHALLENGING 5

path from one list cell to another, and finally to come up with a variant which is
quite involved.

Here is yet another example where proving safety is truly difficult. Let us
consider computing the first M prime numbers, along the lines of Don Knuth’s
MIX program from The Art of Computer Programming [60, p. 147]. We are going
to fill a table with the first M primes, in increasing order. We store 2 in the first
slot and then we consider odd numbers starting from 3, performing divisibility tests
using the prime numbers computed so far 3. Say we have already found the first m
prime numbers, for m ≥ 2. They are stored in p[1], . . . , p[m]. Then we look for the
next prime, examining odd numbers starting from p[m] + 2. If n is our candidate,
the loop checking for the primality of n can be sketched as follows:

while p[i]2 < n ∧ n mod p[i] 6= 0 do
i← i+ 1

In practice, it is written differently, as we need to distinguish between the two
possible reasons for a loop exit. However, the loop above suffices to illustrate the
idea. Indeed, proving the safety of this code requires to prove that variable i will
not exceed the bounds of array p. More precisely, we are going to prove that i will
not exceed m, that is, we will not run out of prime numbers. Additionally, it ensures
that dividing by p[i] is safe, since p[i] ≥ 2 for i ≤ m. Last, it ensures the termination
of the loop in an obvious way. To prove that i does not exceed m, it suffices to prove
that p[m] is large enough for the test p[m]2 < n to fail. Fortunately, this is ensured
by Bertrand’s postulate: for k > 1, there is always a prime p such that k < p < 2k.
Therefore, we have n < 2p[m] ≤ p[m]2. Said otherwise, verifying the safety of this
program requires not less than Bertrand’s postulate. In 2003, Laurent Théry proved
Knuth’s program for prime numbers using Why and Coq [99]. Truly a tour de force,
this proof includes the full proof of Bertrand’s postulate in Coq.

As a last example, let us consider the verification of a sorting algorithm. The
algorithmic literature contains so many sorting algorithms that it is natural to
consider proving them as well, at least as an exercise. Expressing that a routine
sorting an array ends up with the array being sorted is quite easy. It amounts to
providing a postcondition such as

∀ij, 0 ≤ i ≤ j < n⇒ a[i] ≤ a[j].

But this is only half of the specification, and this is the easy one. We also need to
state that the final contents of the array is a rearrangement of its initial contents.
Otherwise, a code that simply fills the array with a constant value would obviously
fulfill the specification above. When it comes to specify the rearrangement property,

3. There are more efficient ways to compute prime numbers, but that is not the point here: the
purpose of this program is to illustrate the MIX assembly language.

6 CHAPTER 1. DEDUCTIVE PROGRAM VERIFICATION

there are several solutions but none is easy to define. In a higher-order logic, one
can state the existence of a bijection. Though elegant, it is not amenable to proof
automation. Another solution is to introduce the notion of multiset, to turn the
contents of an array into a multiset, and then to state the equality of the multisets for
the initial and final contents of the array. A third possibility is to define the notion
of permutation as the smallest equivalence relation containing transpositions, which
is adapted to sorting algorithms that swap elements [45]. Whatever the solution,
it will be quite difficult to get a fully automated proof, even for simple sorting
algorithms such as insertion sort or selection sort.

All these verification examples show the necessity of expressive specification
languages, even to prove simple properties such as safety. In particular, we cannot
expect deductive program verification to be conducted within a decidable logic.

1.2 Specifications
Roughly speaking, a specification language is made of two parts: first, a mathe-

matical language in which components of the specification (pre- and postconditions,
invariants, etc.) are written, as well as verification conditions in fine; second, its
integration with a programming language. Obviously, the choice of a specification
language is tied to both the methodology used to generate the verification condi-
tions and the technique used to prove them. These two aspects will be discussed in
the next two sections.

As far as the mathematical language is concerned, first-order predicate cal-
culus with equality is a natural choice, immediately picked up without discus-
sion in pioneer work [49, p. 21]. Today, many systems use a flavor of first-order
logic [9, 5, 30, 16, 65, 8]. Beside equality, a handful of built-in theories are typi-
cally considered. Linear arithmetic, purely applicative arrays, and bit vectors are
the common ones; non-linear or real arithmetic may be available as well. Other
extensions to first-order logic include recursive functions and algebraic data types
— in Dafny [65] and Why3 [16] for instance — as well as polymorphism [17] and
inductive predicates [16]. Set theory is an alternative, considered for instance in the
B method [1].

An alternate route is to consider using the logic of an existing, general-purpose
proof assistant. Examples of such systems successfully used in program verification
include Coq [98], PVS [83], Isabelle [85], and ACL2 [58]. This approach has ob-
vious benefits. First, it provides a powerful specification language, as these proof
assistants typically provide a rich and higher-order logic. Second, the logic is al-
ready implemented and, in particular, interactive proof tools are ready to be used.
Finally, proof assistants come with libraries developed over years, which eases the
specification process. Anyhow, this approach has drawbacks as well. One is that a
richer logic comes at a cost: proof automation is typically more difficult to achieve.

1.2. SPECIFICATIONS 7

This is discussed later in Section 1.4.
One can also introduce a new logic, dedicated for program verification. Un-

doubtedly the best example is separation logic [89]. Among other things, it allows
local reasoning on heap fragments, being a tool of choice for proving programs in-
volving pointer data structures. Similar proofs with traditional first-order predicate
calculus require cumbersome and explicit manipulations of sets of pointers.

Once the mathematical language for specification and verification conditions is
set, we are left with its integration into a programming language. Pioneer work
intends to bind logical assertions to the program flowchart [101, 49]. A key step was
then Hoare’s axiomatic basis [52] introducing the concept known nowadays as Hoare
triple. In modern notation, such a triple {P}s{Q} binds together a precondition P ,
a program statement s, and a postcondition Q. Its validity means that execution
of s in any state satisfying P must result, on completion, in a state satisfying
Q. Requiring s to be terminating defines total correctness, as opposed to partial
correctness otherwise. The beauty of Hoare logic is not really that it proposes
a methodology to derive the correctness of a program — weakest preconditions
are more efficient, as we will see in next section — but that it opens the way
to a modular reasoning framework about programs. Software components can be
enclosed in Hoare triples, with preconditions that are proof requirements for the
caller and, conversely, postconditions that are ensured to be valid by the callee. In
some hypothetical language, such a triple for a function f could look like

requires P
ensures Q
function f(x1, . . . , xn)

where P may refer to the current state and to function parameters xi, and Q may
refer to the state prior to the call, to the final state, to function parameters, and
to the returned value, if any. This idea has been popularized by Meyer’s design
by contract, a key feature of the Eiffel programming language [76], and later by
specification languages such as JML [63] and its derivatives [47, 8, 5]. Modern
specification languages include some variations, such as the ability to have several
contracts for a given function, to distinguish side effects from the postcondition, to
allows exceptional behaviors, etc. Anyway, they all clearly derive from Hoare logic.

This is not the only way to go, though. A specification language can be tied to
a programming language within a dedicated program logic, which mixes programs
and logical statements in a more intricate way. The aforementioned B method is
built on top of a notion of generalized substitution, which infuses programming
constructs among logical ones within a single language. Similarly, when program
verification is conducted within a general-purpose proof assistant, there is only one
language, that is the logic language. A program f is simply a purely applicative

8 CHAPTER 1. DEDUCTIVE PROGRAM VERIFICATION

and terminating function, already part of the logic. Proving it correct amounts to
establishing a statement like

∀x, P (x)⇒ Q(x, f(x)). (1.1)

The user is then left with a traditional proof, or is assisted with some “tactic”
dedicated to program verification.

So far we have discussed the specification language and its integration with
the programming language. We now turn to methodologies to extract verification
conditions from a program and its associated specification.

1.3 Methodologies
Hoare logic is undoubtedly the most famous of all techniques, Hoare’s paper [52]

being the most cited among pioneer work. It proposes rules to establish the validity
of Hoare triples. The rule for assignment, for instance, reads

{P [x← E]} x := E {P}.

It assumes E to be an expression without side effect, thus safely shared between
program and logic, and also x not to be aliased with another program variable.
More generally, each program construct is given a deductive rule. Some additional
rule allows to strengthen a precondition and to weaken a postcondition. It is a neat
system, from which you can derive the validity of arbitrarily complex programs.
In practice, however, one quickly finds it painful to figure out intermediate asser-
tions for Hoare rules to compose nicely. The natural approach is rather to assign
meaningful assertions at key places in the code, and to let the system figure out
the intermediate assertions. This is exactly what Dijkstra’s calculus of weakest pre-
condition [35] is doing. Given a program statement s and a postcondition Q, it
computes a precondition wp(s,Q), recursively over the structure of s, that precisely
captures the weakest requirement over the initial state such that the execution of s
will end up in a final state satisfying Q. As a consequence, the validity of the Hoare
triple {P}s{Q} is equivalent to

P ⇒ wp(s,Q).

Computing weakest preconditions is the approach taken in most modern verification
condition generators. Recent work has even improved over Dijkstra’s calculus to
provide greater efficiency [64]. There is still the limitation of programs being free of
aliasing, though. As a consequence, the semantics of the program under considera-
tion must be encoded as a set of types, symbols, and axioms, known as the memory
model, together with an alias-free version of this program performing actions on

1.3. METHODOLOGIES 9

this memory model. Within the last decade, two intermediate languages appeared,
the sole purpose of which is to perform the computation of weakest preconditions,
independently of the memory model: Why [47, 15] and Boogie [4]. Many tools now
employ this route which consists in building a memory model and then reusing an
existing intermediate language (Krakatoa [74], SPEC# [6], VCC [30], Frama-C [50],
Dafny, among others).

Building memory models is an activity in itself. Some key ideas come from
the 70s [23]. They could be successfully applied at the turn of the century when
practice finally caught up with theory [21], and then even improved [54]. Other
models include ideas from state-of-the-art recent research. A nice example is the
model used in the L4verified project [59]. This model [100] combines low-level details
allowing the verification of high-performance C code with higher-level concepts of
separation logic.

We already explained that proof assistants such as Coq, PVS, Isabelle, or ACL2,
are tools of choice to write program specifications, and even to write programs when
they happen to be purely applicative. Then, proving a program f to be correct,
that is establishing a statement such as (1.1), is a matter of following the definition
of f , splitting the goal into smaller verification conditions. This may be automated,
using a dedicated tactic (either built-in or developed for the purpose of program
verification). The user may have to provide some intermediate assertions, such as
a generalized specification for a recursive function. This can be compared to the
computation of weakest preconditions. When done, the user is left with a bunch of
purely logical statements and all the power of the proof assistant can be exploited
to discharge them. An impressive example of such a program verification is the
verified C compiler CompCert [69], developed and proved correct within the Coq
proof assistant by Xavier Leroy and his team.

But the use of general-purpose proof assistants is not limited to the verifica-
tion of purely applicative programs. One can use the logic of a proof assistant
to define an imperative programming language and its semantics. Then a proof
methodology can be carried out within the proof assistant and particular programs
can be verified. This is called deep embedding. A successful example is Schirmer’s
work in Isabelle/HOL [90]. It provides a Hoare logic-like language with procedures,
operating over a polymorphic state space. It was used in the L4verified project.
An additional benefit of deep embedding is that it allows meta-theoretical proofs,
such as soundness of the proof method w.r.t. the semantics of the language. An
alternative to deep embedding is shallow embedding. Concepts related to programs
are mere notations for semantic definitions, which can be tackled by unfolding or,
better, by relevant axioms and theorems. An example is Ynot [80], a Coq-embedded
system to verify higher-order and effectful programs using a combination of mon-
ads, separation logic, and Hoare triples. Another example is Arthur Charguéraud’s
characteristic formulae [24].

10 CHAPTER 1. DEDUCTIVE PROGRAM VERIFICATION

When a program is given a specification, and is processed through a suitable
deductive verification method, one is left with a set of mathematical statements,
the so-called verification conditions. The last step is to prove them.

1.4 Proofs
The L4verified and CompCert projects are two examples of large program verifi-

cation conducted within a proof assistant (Isabelle/HOL and Coq, respectively). At
least they show the relevance of using a general-purpose proof assistant to discharge
verification conditions. Even when those are computed completely independently,
for instance using a weakest precondition calculus, it is still possible to translate
them to the native format of a proof assistant. This is always possible, as the logic
of the proof assistant is typically richer than the one used to express the verification
conditions.

However, there are several reasons why we may want to avoid this path, at
least in a first step. One reason is that deductive verification typically generates
numerous, yet simple, goals. These include array bounds checking, variant decrease,
absence of arithmetic overflows, non-nullity of pointers, etc. They are better handled
directly by automated theorem provers, as discussed below. Processing them within
a proof assistant would incur an extra cost, such as one manipulation at least per
verification condition, if not more. Another reason to avoid interactive proof in the
first step is proof maintenance. In the process of figuring out the right specification,
or even the right code, it is likely that verification conditions will change a lot before
stabilizing. Any manipulation within the proof assistant, as small as it is, will slow
the whole specify/prove cycle.

It is better to turn to automated theorem provers when it comes to the task of
discharging verification conditions. Automated theorem provers have a long history,
as demonstrated by the CASC competition [94] and the huge corresponding library
of problems TPTP [95]. However, all the automated theorem provers taking part in
this competition were never really involved in deductive program verification. The
main reason must be the lack of support for arithmetic, a must-have in program
verification 4. Independently, another line of automated theorem provers emerged,
called SMT solvers 5. Initiated by Shostak’s and Nelson-Oppen’s decision proce-
dures [92, 81] in the early 80s, it focuses on the combination of first-order logic,
congruence closure, and built-in theories. The latter typically involve linear arith-
metic, at least. One of the earliest provers in that line was Nelson’s Simplify [34].
Developed in the 90s, in the context of program verification, it still performs im-
pressively. Other SMT solvers followed, such as CVC3 [7], Yices [33], Z3 [32], and

4. Things may change, as there are rumors that next versions of Vampire, the state-of-the-art
TPTP prover, will have support for arithmetic.

5. We only consider here SMT solvers with support for quantifiers.

1.4. PROOFS 11

Alt-Ergo [14]. Today, they have reached such a level of efficiency that a program
implementing binary search can be proved correct fully automatically within a sec-
ond. This includes proving safety, termination, absence of arithmetic overflow and
full behavioral correctness.

Obviously, we are also left from time to time with verification conditions that
cannot be proved automatically. A possibility is then to insert more intermediate
assertions in the code, to reduce the cost of each individual deduction. In other
words, the user inserts logical cuts to ease the proof. If this is unsuccessful, or if
this is not even an option, then there is no other choice than turning to a proof
assistant and starting an interactive proof. A definitive improvement in this process
is the recent introduction of automated theorem provers within proof assistants.
Isabelle/HOL is leading the way with its Sledgehammer tool [75].

Finally, another approach is to use a dedicated prover. It can be motivated by
a need for a close connection between verification conditions as displayed during an
interactive proof process and the input code and specification. Examples include
the system KeY [9] and the B method, for instance. Regarding the latter, it may
also be motivated by the poor support for set theory in existing automated theorem
provers. One obvious drawback of a dedicated prover is that it will hardly benefit
from state-of-the-art results in automated or interactive theorem proving, at least
not for free.

2
A Tool for Program Verification: Why3

Since my PhD, I have been continuously developing a tool for program verifi-
cation, with other members of ProVal. This chapter describes this tool. It does
not intend to be exhaustive — more details about Why3 are available in papers
related to Why3 [16, 17], in its manual [15], and from its website why3.lri.fr.
This chapter rather discusses design choices and technical solutions.

2.1 History

I started the development of a tool for deductive program verification during
my PhD [36, 37]. At the time, it was a tactic for the Coq proof assistant, called
Correctness. Given a Hoare triple {P}e{Q}, this tactic was building a proof of

∀~x, P ⇒ ∃~y, ∃r, Q (2.1)

where ~x is the set of all variables occurring in the triple, ~y the set of variables
possibly modified by expression e, and r is the result of e. Actually, only the com-
putational part of this proof was built, as a purely applicative interpretation of e in
a monadic style. When fed to Coq’s refine tactic, it resulted in proof obligations,
exactly as if Hoare logic rules had been applied. Programs included a standard
while language with local variables and (possibly recursive) functions. It was us-
ing a shallow embedding of the logic: data types were those of Coq, as were formulas
in annotations. Using that tactic, I could prove a few non-trivial programs such
as Hoare’s FIND [39], sorting algorithms quicksort and heapsort [45], and Knuth-
Morris-Pratt string searching algorithm. All proofs were conducted in Coq, with no
proof automation beside the omega tactic for Presburger arithmetic. A few others
used the Correctness tactic. Nicolas Magaud contributed the verification of inser-
tion sort as an undergraduate internship [45]. Worth mentioning is Laurent Théry’s
proof of Knuth’s algorithm for prime numbers [99], which includes the full proof of
Bertrand’s postulate in Coq (see Section 3.2).

13

14 CHAPTER 2. A TOOL FOR PROGRAM VERIFICATION: WHY3

In 2001, while visiting Cesar Muñoz at NASA Langley, I turned my implementa-
tion into a standalone tool, for Cesar to perform proofs using PVS instead of Coq.
I called this tool Why, for it is a way to tell the machine why a computation is
sound, instead of simply telling it how to compute. The technology was still based
on a purely applicative translation of imperative programs, but proof obligations
were now extracted from it by Why itself, no more by Coq’s refine tactic. Yet it
was still possible to build the Coq proof for (2.1) when the proof obligations were
discharged using Coq. The tool Why was first released in July 2002.

The idea of translating imperative programs into purely applicative ones to
derive proof obligations is elegant. In particular, it provides strong guarantees since,
once proof obligations are discharged, a proof of (2.1) can be built automatically
and checked by Coq 1. Unfortunately, it also has the drawback of traditional Hoare
logic: the user has to provide adequate intermediate assertions. At some point, it
becomes a bottleneck, as we figured out when we started using Why for deductive
verification of Java programs. It was in 2002 and Christine Paulin, Claude Marché,
and Xavier Urbain were developing the tool Krakatoa [74], which translates Java
programs into Why programs. The problem of intermediate assertions being a
showstopper, we had to go for the obvious solution: the computation of weakest
preconditions. We quickly modified the Why tool accordingly, weakest preconditions
being straightforward to implement. There was one big side effect, though: we lost
the Coq proof of (2.1) in the process, our weakest precondition calculus not being
proof-producing.

The divorce from Coq was on its way, anyhow. At the same period, we were
already experimenting with automated theorem provers, the first ones being haR-
Vey [87] and Simplify [34]. Corresponding back-ends were added to Why. As a
consequence, proof obligations were not all discharged with Coq anymore, ruling
out the possibility of a complete Coq proof of (2.1). Other back-ends followed,
for other automated theorem provers (CVC Lite in 2004, SMT-lib syntax in 2005,
Zenon in 2006, Alt-Ergo in 2008) as well as other proof assistants (HOL Light and
Mizar in 2003, Isabelle/HOL and HOL4 in 2005). All these back-ends were added
“on demand”, from our own experiments or from user requests. They were main-
tained to various degrees, depending on their actual use. Some of the back-ends
have been used for no more than a single program verification.

Supporting many theorem provers is challenging. This is definitely more subtle
than writing several pretty-printers for the corresponding input languages. The
main reason is that theorem provers implement different type systems: some are
untyped, some have simple types, and others have richer type systems with polymor-
phic types, dependent types, etc. The logic of Why happens to be a compromise:
it is a first-order logic with polymorphic types. There is no difficulty to embed it

1. Note that there is still space for unsoundness, such as a buggy translation which would not
preserve the semantics of the imperative program.

2.1. HISTORY 15

into richer type systems 2. On the other way round, however, a careful translation
must be carried out, since a mere removal of types would be unsound. A solution
was worked out by Jean-François Couchot and Stéphane Lescuyer in 2007 [29] and
recently improved by Andrei Paskevich and François Bobot [17].

In 2004, Claude Marché and myself started a tool for the verification of C pro-
grams, Caduceus [46]. Following the methodology of Krakatoa, it translated C pro-
grams into Why programs, on top of a memory model à la Burstall-Bornat [23, 21].
Why was clearly appearing as a suitable intermediate language. It is worth mention-
ing that another such intermediate language, Boogie, was developed independently
at Microsoft Research [4]. Later, Claude Marché identified another intermediate
language to stick between C/Java and Why, to factor out common concepts related
to memory models [54, 73]. Yet the role of Why was unchanged: computing weakest
preconditions and feeding them to theorem provers. This is not incompatible with
the direct use of Why to prove programs, which I kept doing all these years.

In 2007, a conference was organized in Bordeaux to celebrate Don Knuth who
was receiving an Honoris Causa degree from University Bordeaux 1. In an attempt
to honor the man and his work, I implemented a small tool to verify MIX programs
using Why. MIX is the hypothetical machine introduced by Knuth in The Art of
Computer Programming [60], as well as the name of its assembly language. So
the point was to verify assembly programs and to use Why as an intermediate
language one more time. The tool is a front-end to Why. It takes an annotated
MIX program as input and turns it into a set of sequential Why programs. Since
assembly programs have arbitrary control flow graphs, the notion of loop invariant is
replaced by a more general notion of invariant. Invariants can be placed anywhere
in programs. The only requirement is that any cycle in the control flow graph
should contain at least one invariant. Then the control flow graph is traversed and
any path from one invariant to another results in a separate Why program. The
memory model of MIX is simple, with a bunch of references for the registers and
status flags and a single array for the whole memory. More details are available in
the conference paper [40].

In 2009, Bárbara Vieira (University do Minho, Portugal) visited ProVal and
started the development of a tool to verify CAO programs. CAO is a domain-
specific language for cryptography, developed within the CACE European Project.
This tool translates CAO to Jessie, which is then translated to Why. More details
are available from the related publication [2]. After Java, C, and MIX, this is yet
another example of the use of Why as a verification condition generator.

After several years of development, the code of Why was becoming messy. In
particular, the back-end of the code offering support for the various theorem provers

2. This is typically the case of proof assistants, with the notable exception of PVS, which does
not provide declaration-level polymorphism. PVS supports type-parametric theories only, which
turns the Why output into a nightmare of small theories.

16 CHAPTER 2. A TOOL FOR PROGRAM VERIFICATION: WHY3

file.why

file.mlw

WhyML
VCgen

Why

transform/translate

print/run

Coq Alt-Ergo Gappa Z3 etc.

Figure 2.1: Overview of Why3’s architecture.

was getting so complex 3 that it was almost impossible to add new features, such as
support for algebraic data types for instance. Beside, we all know from The Mythical
Man-Month [22] that “we have to throw one away”. So on February 2010 we started
a brand new implementation, from scratch, with Andrei Paskevich, Claude Marché,
and François Bobot. It is called Why3 and was first released on December 2010.

2.2 Overview of Why3
Figure 2.1 gives an overview of Why3’s architecture. It clearly distinguishes two

parts: a purely logical back-end and a programs front-end.
Logical files include declaration or definition of types and symbols, axioms, and

goals. Such declarations are organized in small components called theories, which
are grouped in files with suffix .why. The purpose of Why3 is to extract goals from
theories and to pass them to provers using suitable series of transformations and
printers, as sketched in Fig. 2.1. For instance, the command line

why3 -P alt-ergo -t 10 -T EuclideanDivision int.why

extracts all goals from theory EuclideanDivision in file int.why and passes them
to the SMT solver Alt-Ergo with a timeout of 10 seconds. This includes transforming

3. At the very beginning, the front-end for type checking programs and computing weakest
preconditions was clearly the main part of the code; today, it is the opposite: the support for many
provers is definitely dominating.

2.3. LOGIC 17

goals to remove logical features that are not known from Alt-Ergo, such as recursive
and inductive definitions. Conversely, it makes use of Alt-Ergo’s built-in theories,
such as linear integer arithmetic or AC symbols.

Why3 provides a programming language, called WhyML. As depicted in Fig. 2.1
page 16, it is a mere front-end to what we have described so far. A WhyML
input text is a file with suffix .mlw. It contains a list of theories and/or modules.
Modules extend theories with programs. This front-end simply turns modules into
theories, replacing programs by goals corresponding to the verification conditions
— as computed by a weakest precondition calculus. WhyML files are handled by
the tool why3ml, which has a command line similar to why3. For instance,

why3ml -P alt-ergo turing.mlw

will run the SMT solver Alt-Ergo on all verification conditions for the programs
contained in file turing.mlw.

2.3 Logic
Why3 implements a polymorphic first-order logic. There are four kinds of dec-

larations in this logic: types, function and predicate symbols, axioms, and goals.

Non Interpreted and Alias Types. Types can be either non interpreted, aliases for
type expressions, or (possibly recursive) algebraic data types. Types can be mutu-
ally defined. A non interpreted type t is simply declared as

type t

A type alias introduces a shortcut for a type definition, e.g.,

type length = int

Technically, type aliases are expanded in a systematic manner. Built-in types in-
clude type int of integers, type real of real numbers, and tuple types.

Algebraic Data Types. An algebraic data type is defined with one or more construc-
tors. For instance, the type of polymorphic lists is declared as

type list α = Nil | Cons α (list α)

Each constructor introduces a new function symbol. Values of algebraic data types
can be examined using pattern matching, in both terms and formulas (see below).
Records are particular cases of algebraic data types, with a specific syntax:

type polar = {| radius: real; angle: real |}

18 CHAPTER 2. A TOOL FOR PROGRAM VERIFICATION: WHY3

A record introduces projection functions for its fields. The constructor of a record
type is not accessible; syntax {|...|} must be used instead, both for construction
and destruction.

Type Expressions. A type expression is either a type variable or the application of
a type symbol.

τ ::= α type variable
| s τ . . . τ type symbol application

Functions and Predicates. Function and predicate symbols can be non interpreted
or (mutually and/or recursively) defined. For instance, a non interpreted relation
rel over type t can declared as

predicate rel t t

and a recursive function length over lists is defined as follows:
function length (l: list α): int =

match l with
| Nil → 0
| Cons _ r → 1 + length r
end

Why3 automatically verifies that recursive definitions are terminating. To do so, it
looks for an appropriate lexicographic order of arguments that guarantees a struc-
tural descent.

Inductive Predicates. A predicate can also be defined inductively. For instance, the
reflexive and transitive closure of rel is defined as follows:

inductive rstar t t =
| Refl: ∀ x: t. rstar x x
| Trans: ∀ x y z: t. rstar x y → rel y z → rstar x z

Standard positivity restrictions apply to ensure the existence of a least fixed point.

Terms, Formulas, and Patterns. As usual in first-order logic, Why3 distinguishes
terms and formulas. Terms are built as follows:

t ::= x variable
| c constant
| s t . . . t function symbol application
| if f then t else t conditional expression
| match t with p→ t, . . . , p→ t end pattern matching

2.3. LOGIC 19

Constants include integer and real literals. Note the intrusion of formulas into terms
in conditional expressions. Formulas are built as follows:

f ::= s t . . . t predicate symbol application
| ∀x : τ.f universal quantification
| ∃x : τ.f existential quantification
| f ∧ f conjunction
| f ∨ f disjunction
| f → f implication
| f ↔ f equivalence
| not f negation
| true
| false
| if f then f else f conditional expression
| match t with p→ f, . . . , p→ f end pattern matching

Formulas enrich the usual connectives of first-order logic with conditional and pat-
tern matching expressions. Finally, patterns are built as follows:

p ::= x variable
| s t . . . t constructor application
| catch all
| p|p or pattern
| p as x binding

Axioms and Goals. Axioms can be introduced to enrich the logical context of sub-
sequent declarations. The syntax is immediate:

axiom rel sym: ∀ x y: t. rel x y → rel y x

A goal is declared with an equally obvious syntax:

goal test length: length (Cons 2 (Cons 3 (Cons 5 Nil))) = 3

The context of a goal consists of all preceding declarations. Finally, a lemma decla-
ration combines both notions of goal and axiom: it is a goal at the place where it
appears and an axiom for subsequent declarations. A typical lemma is the following:

lemma length nonnegative: ∀ l: list α. length l ≥ 0

In the case of this lemma, a proof by induction is needed and we may use Coq to
prove it. As an axiom, it will be used in subsequent proofs by automated theorem
provers that may not be powerful enough to prove it, such as SMT solvers.

20 CHAPTER 2. A TOOL FOR PROGRAM VERIFICATION: WHY3

Semantics. First-order logic is standard. For instance, a definition of many-sorted
first-order logic can be found in Manzano’s Extensions of first-order logic [72]. But
polymorphic first-order logic is not standard. Informally speaking, polymorphism in
Why3 is a declaration-level polymorphism, à la Hindley-Milner [77]. It means that
each polymorphic declaration is a schema for the (possibly infinite) set of all its
monomorphic instances. For instance, the following declaration of a polymorphic
function symbol length over lists

function length: list α : int

can be understood as the declaration of an infinite set of function symbols:

function length int: list int : int
function length bool: list bool : int
function length list int: list (list int) : int
...

Similarly, a polymorphic axiom such as

axiom length nonneg: ∀ l: list α. length l ≥ 0

is also to be understood as an infinite set of axioms

axiom length nonneg1: ∀ l: list int. length l ≥ 0
axiom length nonneg2: ∀ l: list bool. length l ≥ 0
axiom length nonneg3: ∀ l: list (list int). length l ≥ 0
...

A polymorphic goal, on the contrary, can always be turned into a monomorphic
goal, by instantiating all its type variables with fresh, uninterpreted types. A pre-
cise definition of polymorphic first-order logic is given by François Bobot and An-
drei Paskevich [17].

In practice, polymorphic first-order logic cannot be reduced to many-sorted
first-order logic using an infinite number of instantiations. Thus Why3 implements
various methods for encoding polymorphism, that are proved to be sound and com-
plete. This is described in the paper just mentioned.

Theories

Declarations are organized in small components called theories, which are grouped
in files with suffix .why. For instance, a file list.why may contain a first theory
List defining the data type of polymorphic lists

theory List
type list α = Nil | Cons α (list α)

end

2.3. LOGIC 21

and then another theory Length where the length of a list is defined:
theory Length

use import int.Int
use import List
function length (l: list α) : int =

match l with
| Nil → 0
| Cons _ r → 1 + length r
end

lemma length nonnegative: ∀ l: list α. length l ≥ 0
end

The declaration use import is used to import symbols from an existing theory.
Here, integer arithmetic symbols are imported from the standard library int.Int,
as well as the previously defined theory List. Imported symbols are shared: two
imports of the same theory will result into a single addition of the corresponding
symbols to the context. The purpose of theories is to control the logical context,
which is an important matter when one uses automated theorem provers. If there is
no need to import theory Length, we will avoid cluttering the logical context with
unnecessary definitions and axioms.

The other way to use a theory is to clone it. Cloning a theory is making a
copy of all its declarations, together with a possible instantiations of some of its
non interpreted symbols. Here is an example. Let us introduce the following theory
which defines the reflexive transitive closure of an abstract relation rel over an
abstract type t.

theory RTClosure
type t
predicate rel t t
inductive rstar t t =

| Refl: ∀ x:t. rstar x x
| Trans: ∀ x y z:t. rstar x y → rel y z → rstar x z

end

Given a particular relation next over integers, we can clone this theory to get the
reflexive transitive closure of next:

clone import RTClosure with type t = int, predicate rel = next

It is exactly as if we had typed in a fresh copy of the inductive definition above,
with int and next respectively substituted for t and rel. It saves us the trouble
— and the possibility of a mistake. Cloning theories is a powerful concept. For
instance, we can clone the whole theory

clone import RTClosure

22 CHAPTER 2. A TOOL FOR PROGRAM VERIFICATION: WHY3

to get a fresh type symbol t, a fresh predicate symbol rel, and its reflexive transitive
closure star. More subtly, we can clone it twice to get two relations and their
reflexive transitive closures over a single type elt:

type elt
clone import RTClosure as R1 with type t = elt
clone import RTClosure as R2 with type t = elt

Equivalently, and more elegantly, we can reuse the type provided by the first cloning
to instantiate the second one:

clone import RTClosure as R1
clone import RTClosure as R2 with type t = R1.t

The cloned theories are renamed using as X declarations to avoid name clashes.
Generally speaking, a theory with n uninterpreted symbols can be cloned in up

to 2n different ways (not mentioning the substitution itself). As illustrated above,
different cloning of a single theory can be meaningful. Why3’s standard library is
making a great use of theory cloning to avoid duplicated axioms; it is worth having
a look at it to understand how useful this simple idea can be.

Though they were developed independently, the concept of theory cloning is
similar to that of theory interpretation in PVS [84].

2.4 Proofs

Generally speaking, all information related to a given prover is gathered into a
text file called a driver . Such a file contains the list of transformations to apply,
the pretty-printer to use, the list of built-in symbols and corresponding axioms to
ignore, etc. The purpose of drivers is to ease the addition or modification of a
prover support, without changing Why3’s code. It also eases experiments such as
removing the use of a prover’s built-in theory.

Beside its command line tool, Why3 comes with an IDE 4. It displays goals and
allows the user to perform proofs by repeated applications of provers and simple
transformations such as splitting. A screenshot of the IDE is given in Fig. 2.2. The
whole proof session can be saved into a file, to be reloaded from the IDE or to be
replayed in a batch mode. The IDE is not limited to automated theorem provers.
Interactive proofs using Coq can be edited, and then checked. Coq proofs are saved
as part of the proof session.

4. Why3’s IDE is mostly contributed by Claude Marché.

2.5. PROGRAMS 23

Figure 2.2: Screenshot of Why3’s IDE.

2.5 Programs

As depicted in Fig. 2.1, Why3 is a verification condition generator for a pro-
gramming language called WhyML. The main features of this language can be
summarized as follows:

– it borrows many features from ML (syntax, polymorphism, algebraic data
types, immutable variables, local and anonymous functions);

– yet it is mostly a first-order language i.e. there is currently no support for
higher-order programs;

– it keeps to the main ideas of Hoare logic: (1) any term from the logic can be
used in programs; and (2) aliasing is not allowed.

In the remaining of this section, we detail the most distinguishable aspects of
WhyML.

24 CHAPTER 2. A TOOL FOR PROGRAM VERIFICATION: WHY3

Mutable State
There is only one kind of mutable data structures in WhyML: records with

mutable fields. The concept of mutable variable, or reference in ML-like terminology,
is defined as a particular case of record type 5:

type ref α = {| mutable contents: α |}

Then functions to create, access, and update references are easily defined, using
respectively record creation, field access, and field update. For instance, function
:= to update a reference is defined as follows:

let (:=) (r:ref α) (v:α) = {} r.contents ← v { !r = v }

Note the empty precondition and the postcondition stating that, in the final state,
the value of !r is equal to v. Here is for instance Turing’s early proof of pro-
gram [101] written in WhyML using for loops and a reference u:

let routine (n: int) =
{ n ≥ 0 }
let u = ref 1 in
for r = 0 to n-1 do invariant { !u = fact r }

let v = !u in
for s = 1 to r do invariant { !u = s * fact r }

u := !u + v
done

done;
!u
{ result = fact n }

(Annotations make use of a function symbol fact imported from Why3’s standard
library.) Note that for loop indexes (r and s here) are not mutable, as in OCaml.

Mutable states mean that we may need to refer to previous values of states in
annotations. Two constructs are provided for that purpose. First, a postcondition
may refer to the value of term t in the pre-state with old t. Second, labels can be
introduced within code and the value of a term t at a program point labeled with
L is denoted at t L. From the parsing and type checking point of view, old and at
are nothing else than polymorphic identity functions. They are interpreted later, in
the weakest precondition calculus.

Model Types
Let us consider modeling arrays in WhyML. As usual in Hoare logic, an array is

modeled as a map from integers to values, which is mutated as a whole. Assuming

5. This is exactly how references are defined in OCaml.

2.5. PROGRAMS 25

we have maps available from Why3’s standard library, an array can be defined as
a reference containing a map or, equivalently, as a new record type with a mutable
field:

use import map.Map
type array α = {| mutable elts: map int α |}

Although it is fine for many purposes, this model of arrays has a drawback: it does
not prevent us from copying the entire contents of one array into another. This can
indeed be achieved as simply as

a1.elts ← a2.elts

We would like to provide operations such as array access or array assignment, but
certainly not the ability to make such an atomic copy. Actually, we intend the
record type above to be a model of an array, not the array data type itself. For this
purpose, WhyML introduces the notion of model type. It consists in replacing, in
the type definition above, the equality sign by the model keyword:

type array α model {| mutable elts: map int α |}

This way, the type array α is no more a record type in programs, but rather an
abstract type. In the logic, however, that is in annotations, it is still defined as a
record type. It means that we can refer to the field elts when specifying operations
over arrays and when annotating programs using arrays. The other way round, we
cannot refer to field elts in programs anymore, which means that we cannot define
operations such as array access or array assignment. We can only declare them.
Here is for instance how array access is introduced:

val ([]) (a: array α) (i: int) :
{ 0 ≤ i < length a } α reads a { result = a[i] }

As a consequence, what we end up with is not an implementation of the array
data structure, but rather a signature or model of this data type. This is perfectly
fine; after all, an array in not implemented as a purely applicative map. The same
technique can be used for other mutable data structures that cannot be implemented
in WhyML. For instance, a mutable queue implemented as a singly linked list and
two pointers to its extremities cannot be implemented in WhyML. But such a data
structure can easily be modeled using purely applicative lists. It would start as
follows:

type t α model {| mutable elts: list α |}
val push: x: α → q: t α →

{} unit writes q { q.elts = old q.elts ++ Cons x Nil }
...

26 CHAPTER 2. A TOOL FOR PROGRAM VERIFICATION: WHY3

Regions
We are not done with our model of arrays: the notion of array length is still

missing (it is used in the precondition for function [] above). A simple solution
is to have a notion of length associated to purely applicative maps, as a func-
tion from map int α to int. Then the length of array a is simply the length of
a.elts. Equivalently, we could replace type map int α above with a product type
(int, map int α).

This is not a good solution, however. Having the length tied to the map means
that each modification to the array contents possibly modifies the length as well.
Of course, axioms over maps or suitable postconditions for array operations could
ensure that this is not the case. Unfortunately, it would also require the user to
state the invariance of an array length in annotations. For instance, a loop over an
array of size 10 would look like

for i = 0 to 9 do invariant { length a = 10 ∧ ... }
a[i] ← 0

done

to account for the array length not being modified. Without this annotation, it is
no more possible to prove that a[i] is a legal array access. Similarly, postconditions
for function mutating arrays would have to ensure length invariance as well. Adding
such annotations automatically would be an ugly hack, with no way to figure out
the proper generalization. Finally, all these annotations will result in more complex
verification conditions.

Instead, we turn to a much more elegant solution. We store the array length
into another, immutable, field:

type array α model {| length: int; mutable elts: map int α |}

This way, any array operation which mutates the array contents results in a mod-
ification of field elts, while field length is left unchanged, with no need to say
anything about it.

Clearly, record types with possibly mutable fields allow us to model arrays in a
way that traditional Hoare logic cannot 6. To do so, WhyML makes a slight shift
from traditional Hoare logic. The primitive notion is not that of mutable variable,
but rather that of a region. Regions are introduced by mutable record fields.

From a technical point of view, effects are now sets of regions and no more
sets of variables as they used to be in Why2. Accordingly, weakest preconditions
must now quantify over fresh values for regions. They must also reconstruct the
values of all variables involving the corresponding regions. For instance, the weakest

6. Of course, we could model an array with two variables, one for its length and another one
for its contents. But this would already be a translation from a language with arrays to another
language without. What we seek here is a proper modeling of arrays directly in WhyML.

2.5. PROGRAMS 27

precondition for the loop above scanning a 10-element array will look like

∀a0, . . .∀m1, let a1 = {length = a0.length; elts = m1} in . . .

The modification of the array within the loop body is interpreted as a new map
m1 and a new value a1 for array a is built from its old value a0 and m1. As a
consequence, any assumption over the length of a0 will hold for a1 as well. This
new way of computing weakest preconditions is explained later in this section, on
page 31.

Abstract Syntax

The abstract syntax of WhyML expressions is given in Fig. 2.3. On top of
that, several constructs are defined as syntactic sugar. We briefly describe these
constructs here for the reader to be able to go through all the exemples from the
next chapter. The sequence is the simplest one:

e1; e2
def= let = e1 in e2

Access to a record field f can be reduced to a logical term using a let binding:

e1.f
def= let x1 = e1 in x1.f

Indeed, any logical term can be used in programs. Additionally, predicate symbols
can be used in programs as well, according to the following sugar:

s e1 . . . en
def= let x1 = e1 in . . . let x1 = e1 in

if s x1 . . . xn then True else False

This includes equality and integer comparisons for instance.
A function call e1 e2, with e1 of type x2 : τ2 → κ1, is translated using the

non-deterministic construct any:

e1 e2
def= let x1 = e1 in let x2 = e2 in any κ1

The expression any κ1 stands for any computation with type, effect, and specification
as specified by κ1; in a context of modular verification, this is exactly what the
function call means. Similarly, assignment of record field f can be interpreted using
the any construct, as if it would be a function call:

e1.f ← e2
def= let x1 = e1 in let x2 = e2 in any {}unit writes x1.f{x1.f = x2}

28 CHAPTER 2. A TOOL FOR PROGRAM VERIFICATION: WHY3

e ::= x variable
| t term
| let x = e in e local binding
| let rec d, . . . , d in e local binding
| fun d anonymous function

| if e then e else e conditional
| loop e invariant f infinite loop
| for x = x to x do e invariant f for loop
| match x with p→ e, . . . , p→ e end pattern matching

| raise (E e) exception throwing
| try e with E x→ e, . . . , E x→ e exception handling

| L : e label
| assert f assertion (cut)
| check f assertion
| assume f assumption
| absurd absurdity
| any κ non-determinism

d ::= x : τ, . . . , x : τ = {f} e {q} function body

τ ::= α type variable
| s r, . . . , r τ, . . . , τ type application
| x : τ → κ function type

κ ::= {f} τ ε {q} specification
ε ::= reads r, . . . , r writes r, . . . , r

raises E, . . . , E effect
q ::= f,E → f, . . . , E → f postcondition

Figure 2.3: Abstract syntax of WhyML.

2.5. PROGRAMS 29

A while loop is syntactic sugar for an infinite loop where the predefined exception
Exit is used to exit:

while e1 do e2 invariant I variant t def=
try loop if e1 then e2 else raise Exit invariant I variant t
with Exit → ()

Within an infinite loop, the variant is some syntactic sugar for an assertion placed
at the end of the loop body:

loop e invariant f variant t def= loop L : e; assert t ≺ at t L invariant f

A fresh label L is used to denote the starting point of the loop body, in order to
state that the variant is decreasing (≺ is the order relation associated to the variant
t).

Variants for recursive functions is also syntactic sugar. We use the function
preconditions to insert the corresponding assertions. We proceed in two steps. First,
we save the value of the variants at the function entry points, in local variables vi:

let rec f1 ~x1 variant t1 = e1
and f2 ~x2 variant t2 = e2
...
and fn ~xn variant tn = en
in e

def=

let rec f1 ~x1 = let v1 = t1 in e1
and f2 ~x2 = let v2 = t2 in e2
...
and fn ~xn = let vn = tn in en
in e

Then we type each function body ei within an environment where function fj has
type

fj : ~xj → {tj(~xj) ≺ vi ∧ pj}τjεj{qj}

where ≺ is the order relation associated to all variants ti (it must be unique).
Finally, lazy operators && and || are syntactic sugar for conditional constructs.

e1 && e2
def=

{
let x1 = e1 in andb x1 e2 if e2 is pure,
if e1 then e2 else false otherwise.

We make a particular case when e2 is pure (that is, without any effect other than
read effects) to limit the number of conditional constructs. This helps in getting
smaller and more intuitive verification conditions. Operator || is interpreted in a
similar way.

Type Checking
The purpose of Why3 type checking is three-fold:

1. to perform traditional ML-like type checking;

30 CHAPTER 2. A TOOL FOR PROGRAM VERIFICATION: WHY3

2. to infer effects;
3. to exclude aliases.

Regarding point 1, we use a standard W algorithm [77]. We avoid the issue of
polymorphic references as follows: types are not generalized at local binders and
global binders only bind values, hence the value restriction applies [102]. Point 2
is also standard: it amounts to compute the sets of regions possibly accessed and
possibly modified for each program sub-expression, as well as the set of possibly
raised exceptions. It follows Talpin and Jouvelot’s type and effect discipline [96,
97] in a straightforward way. The resulting effects are used to compute weakest
preconditions.

Point 3 is the detection, and then rejection, of possible region aliases. This
is a requirement for the weakest precondition calculus to be sound, as it assumes
distinct regions to denote distinct memory cells. There are two different ideas.
First, functions are polymorphic w.r.t. regions, exactly as they are polymorphic
w.r.t. types. For instance, a function that swaps the contents of two references has
a type such as

swap : ∀r1, r2. ∀α. ref r1 α→ ref r2 α→ unit

(where we omit annotations for clarity). When we implement and prove correct a
function with such a type, we assume regions r1 and r2 to be distinct. Therefore,
when we apply this function to two references, we check that the corresponding
references are indeed distinct. As a consequence, an expression such as

let r = ref 0 in swap r r

is ill-typed. A function taking twice the same reference as argument should rather
have a type such as

swap’ : ∀r. ∀α. ref r α→ ref r α→ unit.

However, to keep the system as simple as possible (but no simpler), regions are
hidden from the user. To make this possible, a compromise is made. First, regions
provided by function arguments must all be distinct. This rules out functions such
as swap’ above, but they are of poor interest anyway. Second, regions returned
as part of the function result must be freshly allocated, i.e., allocated during the
function call. This rules out functions such as the identity over references:

id : ∀r. ∀α. ref r α→ ref r α.

Again, such functions are seldom useful. These two conditions are ensured by the
Why3 type checker.

2.5. PROGRAMS 31

Weakest Preconditions
Given a program expression e, a postcondition f , and ~q a set of exceptional

postconditions E1 → f1, . . . , En → fn, we define the weakest precondition wp(e, f, ~q)
recursively over the structure of e.

Purely Applicative Constructs. The case of a program variable is immediate:

wp(x, f,) def= f [result← dxe],

and so is the case of a logical term:

wp(t, f,) def= f [result← t].

The weakest precondition of a pattern matching is a mere swapping of the two
constructs:

wp(match x with p1 → e1, . . . , pn → en end, f, ~q) def=
match x with p1 → wp(e1, f, ~q), . . . , pn → wp(en, f, ~q) end.

Of course, this is that simple since we have pattern matching in the logic as well.
Getting rid of it is left to Why3’s back end (see Section 2.4).

Sequence and Conditional. Sequence and conditional follow the standard rules. The
sequence is here generalized into a let binding:

wp(let x = e1 in e2, f, ~q)
def= wp(e1,wp(e2, f, ~q)[dxe ← result], ~q).

In the particular case of a true sequence e1; e2, that is when x does not appear in
e2, it simplifies as expected:

wp(e1; e2, f, ~q)
def= wp(e1,wp(e2, f, ~q), ~q).

When e1 and e2 cannot raise an exception, it simplifies even further, to the tradi-
tional rule

wp(e1; e2, f) def= wp(e1,wp(e2, f)).

The conditional rule is also standard:

wp(if e1 then e2 else e3, f, ~q)
def= wp(e1, if result then wp(e2, f, ~q) else wp(e3, f, ~q), ~q).

However, in the particular case where e2 and e3 are both logical terms or variables,
we avoid the duplication of f using a conditional term:

wp(if e1 then e2 else e3, f, ~q)
def= wp(e1, f [result← if result then e2 else e3], ~q).

32 CHAPTER 2. A TOOL FOR PROGRAM VERIFICATION: WHY3

Assertions. Rules for assertions are straightforward to derive. An assertion intro-
duced with assert accumulates to the postcondition:

wp(assert f1, f2,) def= f1 ∧ f2.

In practice, such a conjunction is tagged so that a later split of this formula will
produce f1 and f1 ⇒ f2, instead of merely f1 and f2. This way, f1 acts as a logical
cut, which is the purpose of assert. A variant of assert, called check, results into
a symmetric conjunction. An assertion introduced with assume is turned into an
hypothesis:

wp(assume f1, f2,) def= f1 ⇒ f2.

Finally, the absurd statement turns the whole weakest precondition into falsity:

wp(absurd, ,) def= false.

Labels. When a label is crossed, we simply erase the corresponding label within
annotations. Thus we set

wp(L : e, f, ~q) def= wp(e, f, ~q)[at t L← t]

where the substitution ranges over all occurrences of terms at t L in the weakest
precondition.

Exceptions. Let ~q = E1 → f1, . . . , En → fn be the set of exceptional postcondi-
tions. When considering the statement raise (Ei e), we can always assume that Ei
belongs to ~q — otherwise we extend ~q with a true postcondition for Ei. Then we
have

wp(raise (Ei e), , ~q)
def= wp(e, fi, ~q).

For a try with construct, we can assume that handled exceptions are E1, . . . , Em,
with m ≤ n, without loss of generality. Then we have

wp(try e with E1 x1 → e1, . . . , Em xm → em, f, ~q)
def=

wp(e, f, (E1 → wp(e1, f1, ~q), . . . , Em → wp(em, fm, ~q), ~qm+1..n)).

A New Quantification. Before we go any further, we need to introduce a new op-
eration. In traditional Hoare logic, anytime we need to generalize the weakest
precondition w.r.t. the state, we simply quantify over all the corresponding pro-
gram variables. In our case, however, it is a slightly more complex operation. The
reason is that we allow sub-parts of data structures to be mutated. Therefore we
need to introduce new values for these sub-parts and then to reconstruct all the
values they belong to, as we informally explained earlier on page 26.

2.5. PROGRAMS 33

Let f be a formula (typically the weakest precondition computed so far) and
~r = r1, . . . , rn be a set of regions (typically the writes effect of some program sub-
expression). We define the formula ∇~r. f as follows. Let v1, . . . , vm be the set of
free variables of f whose types contain at least one region from ~r. Then we set

∇~r. f def= ∀~r. let v1 = update v1 ~r in
. . .
let vn = update vn ~r in
f

The value for each variable vi is rebuilt using function update. This function de-
composes the old value and rebuilds its fields one by one:

update v ~r def= match v with
C y1 . . . ym → C (update1 y1 ~r) . . . (updatem ym ~r).

C is the constructor for the type of v, which exists since v contains some regions in
its type. Function updatei rebuilds the value yi for field i, as follows:

updatei yi ~r
def=


rj if rj is the region for field i,
yi if ~r = ∅,
update yi (~r ∩ reg(yi)) otherwise.

Here reg(yi) stands for the set of regions occurring in the type of yi. Here is an
example. Let us assume the declaration of two record types array and state as
follows:

type array r α = {mutable elts : map int α}
type state r1 r2 = {a : array r1 bool; b : array r2 real}

Let s be a variable of type state r1 r2 and f a formula. We assume that s is the
only variable from f whose type contains r1. Then

∇r1. f = ∀r1 : map int bool.
let s = match s with

C y1 y2 → C (match y1 with C ′ → C ′ r1) b in
f.

Loops. The rule for the infinite loop is defined as follows:

wp(loop e invariant I, , ~q) def= I ∧∇writes(e). I ⇒ wp(e, I, ~q).

Note that the normal postcondition — second argument of wp — is of no use here
since the loop cannot terminate normally. On the contrary, one can exit the loop

34 CHAPTER 2. A TOOL FOR PROGRAM VERIFICATION: WHY3

using an exception, hence the use of ~q. The case of a for loop is rather tricky. That
is the main reason why this construct is not defined as syntactic sugar.

wp(for x = x1 to x2 do e invariant I(x), f, ~q) def=
x1 > x2 ⇒ f

∧ x1 ≤ x2 ⇒ I(x1)
∧ ∇writes(e). ∀i.x1 ≤ i ≤ x2 ⇒ I(i)⇒ wp(e, I(i+ 1), ~q)

∧ I(x2 + 1)⇒ f

First, it distinguishes the case where the for loop is not even entered, that is when
x1 > x2. Otherwise, I must hold initially (that is, I(x1)), must be preserved by e
(that is, I(i) must imply I(i+ 1), informally speaking), and must imply f on loop
exit. The last two conditions must hold within a fresh state, hence the ∇ operator.
Note that the latter condition mentions I(x2 + 1), not I(x2). Indeed, there are
x2−x1 +1 different states in a for loop and we chose the convention that I(x) refers
to the beginning of the loop body, as in other loops.

Function Call. A function call is interpreted using the non-determinism construct
any. The expression any {p} τ ε {q} stands for any computation with precondition
p, result of type τ , effect ε, and postcondition q. When computing the weakest
precondition, we may assume that both postconditions are referring to the same set
of exceptions, since we may always extend them using true postconditions. Then
we have

wp(any {f0} τ ε {f1, ~q1}, f2, ~q2) def=

f0 ∧∇writes(ε). (∀r : τ. f1 ⇒ f2) ∧
∧
i

(∀r : τi. q1,i ⇒ q2,i)

where τi is the type of the value carried by exception Ei. There is only one quantifi-
cation ∇writes(ε), for both normal and exceptional postconditions. We do not make
a distinction between effects for normal output and effects for exceptional output.

Function Definition. The weakest precondition for an anonymous function only
amounts to verifying that the definition is correct:

wp(fun d, ,) def= correct(d)

Indeed, the result of this expression being a function, it cannot appear in the post-
condition. Predicate correct is defined below. On the contrary, recursive functions
are necessarily bound into an expression. Thus the weakest precondition contains
two parts:

wp(letrec d1, . . . , dn in e, f, ~q) def= wp(e, f, ~q) ∧
∧
i

correct(di)

2.5. PROGRAMS 35

The predicate correct expresses than a function definition satisfies all its annotations.
It is defined using predicate wp:

correct(x1 : τ1, . . . xn : τn = {p} e {f, ~q}) def=
∀x1, . . . , xn.∇writes(e) ∪ reads(e). p⇒ wp(e, f, ~q)

There is a subtle point here: contrary to what we have done so far for loop, for, and
any, we also quantify over reads(e). It expresses that such a function may be used
in states that are possibly different from the one where it is declared.

Top-level Declarations. In Why3, top-level declarations are limited to declarations
and function definitions. A declaration induces no verification condition. A function
definition is either let d or letrec d1, . . . , dn and is translated into a verification
condition using predicate correct, as we did above for local definitions. Finally,
it is turned into a closed formula using universal quantification over all program
variables.

3

Case Studies in Program Verification

Over the past years, I have used the Why tool to verify several dozens of pro-
grams. All these proofs can be obtained from Why3’s on-line “gallery of verified
program”, at why3.lri.fr. There are also part of Why3’s source distribution. This
includes, though not exhaustively:

– historical examples, such as proofs from Turing’s, Floyd’s, and Hoare’s pa-
pers [101, 49, 53] and McCarthy’s 91 function [71];

– examples from books: binary search from Bentley’s Programming Pearls [10],
Knuth’s prime numbers algorithm from The Art of Computer Programming [60],
all program proofs from Software Foundations [86];

– challenges in program verification: all problems from VSTTE’10 competi-
tion [91], some problems from VACID-0 [66];

– several algorithms: Bresenham line drawing, Knuth-Morris-Pratt string search-
ing, Floyd’s “tortoise and hare”, Levenshtein distance, Dijkstra’s Dutch na-
tional flag, Dijkstra’s shortest path;

– several sorting algorithms: mergesort, selection sort, insertion sort, and quick-
sort;

– mathematically oriented programs: Fibonacci numbers (in linear and loga-
rithmic time), fast exponentiation (recursive and iterative), greatest common
divisor (with Bezout coefficients), N -queens puzzle (counting the number of
solutions [42]);

– data structures: sparse arrays, same fringe problem;
This chapter presents a selection of these proofs. It intends to strengthen the
discussion of the previous chapters. Additionally, it can serve as a companion to
Why3’s manual, which already contains a detailed description of the solutions for
the five VSTTE’10 verification problems, and to some of my publications [39, 45].

37

38 CHAPTER 3. CASE STUDIES IN PROGRAM VERIFICATION

3.1 Termination

We focus here on some program verification which involve tricky termination
proofs.

McCarthy’s 91 Function

This famous function was precisely introduced as a challenge for termination
proofs. It is defined over integers by

f(n) =
{
n− 10 if n > 100,
f(f(n+ 11)) otherwise.

We can show that it returns 91 as soon as n ≤ 101, hence its name. In Why3, we
define it recursively, as above. To prove it terminates, we have to provide a variant.
Here, it is as simple as

101− n

but proving that it decreases for each function call is tricky. Indeed, it actually
requires us to also prove a postcondition which states how the return value relates
to n. Thus we prove both termination and behavior at the same time.

let rec f91 (n:int) : int variant { 101-n } =
{ }
if n ≤ 100 then

f91 (f91 (n + 11))
else

n - 10
{ (n ≤ 100 and result = 91) or (n ≥ 101 and result = n - 10) }

The resulting weakest precondition is discharged in no time by any SMT solver —
which means, in our case, either Alt-Ergo, CVC3, or Z3.

Let us now consider a non-recursive implementation of McCarthy’s 91 function 1.
We do not need to make a full stack explicit. We can simply remember how many
calls to f are still to be performed. Let e be that number, which is initially set to 1.
If n > 100 we simply subtract 10 from n and decrement e by 1, since we have just
performed one call to f . Otherwise, we add 11 to n and increment e by 1, which
precisely mean two more calls to f since we just did one. The pseudocode reads as
follows:

1. The following code was suggested by Judicaël Courant.

3.1. TERMINATION 39

e← 1
while e > 0 do

if n > 100 then
n← n− 10
e← e− 1

else
n← n+ 11
e← e+ 1

return n

Proving the termination of this loop is at the same time simpler and more difficult
than proving the termination of the recursive function. It is simpler because we
do not need to say anything about the behavior of the code. But it is also more
difficult since the variant is now a pair, namely

(101− n+ 10e, e).

It is ordered lexicographically, where the first and second components are both
compared using the usual order relation over natural integers. This order relation
over pairs of integers is defined in Why3’s standard library and we import it:

use import int.Lex2

We could stop here. But exactly as the recursive implementation above was a
challenge for termination, this non-recursive implementation looks appealing for a
proof of correctness. It is not completely trivial why it indeed computes f(n). The
loop invariant is

fe(n) = f(n0)

where n0 stands for the initial value of n. Therefore, when we exit with e = 0, we
have n = f(n0) and we return it. To express this invariant, we first introduce the
logic function f .

function f (x: int) : int = if x ≥ 101 then x-10 else 91

It is not recursive but instead captures the extensional meaning of McCarthy’s
91 function. Then we define fk(x). Such a logical function cannot be defined
recursively over k, since it is not structural (see page 18). So we axiomatize it.

function iter int int : int
axiom iter 0: ∀ x: int. iter 0 x = x
axiom iter s: ∀ k x: int. 0 < k → iter k x = iter (k-1) (f x)

More generally, the standard library contains a theory int.Iter that axiomatizes
the iteration of any function. So we can replace the three declarations above with
a theory cloning:

40 CHAPTER 3. CASE STUDIES IN PROGRAM VERIFICATION

use import module ref.Ref
use import int.Lex2

function f (x: int) : int = if x ≥ 101 then x-10 else 91

clone import int.Iter with type t = int, function f = f

let f91 nonrec (n0: int) =
{ }
let e = ref 1 in
let n = ref n0 in
while !e > 0 do

invariant { e ≥ 0 and iter e n = f n0 }
variant { (101 - n + 10 * e, e) } with lex
if !n > 100 then begin

n := !n - 10;
e := !e - 1

end else begin
n := !n + 11;
e := !e + 1

end
done;
!n
{ result = f n0 }

Figure 3.1: Non-recursive implementation of McCarthy’s 91 function.

clone import int.Iter with type t = int, function f = f

The code and its specification are given in Fig. 3.1. As for the recursive version,
the weakest precondition is easily discharged by all SMT solvers.

Tortoise and Hare Algorithm

The tortoise and hare algorithm is a cycle detection algorithm. It appears in
volume 2 of The Art of Computer Programming [61, ex. 6 p. 7] and is credited to
Robert Floyd. Let f be a function over a type T and x0 a value of type T . We
can define an infinite sequence with xn+1 = f(xn). Clearly, the sequence (xn) has
finitely many distinct values if and only if it becomes cyclic at some point. The
purpose of Floyd’s algorithm is precisely to detect such a cycle. It is extraordinarily

3.1. TERMINATION 41

type t
function f t : t

function x0: t
clone import int.Iter with type t = t, function f = f
function x (i: int): t = iter i x0

function mu : int
function lambda : int

axiom mu range: 0 ≤ mu
axiom lambda range: 1 ≤ lambda
axiom distinct:
∀ i j: int. 0 ≤ i < mu+lambda → 0 ≤ j < mu+lambda →
i 6= j → x i 6= x j

axiom cycle: ∀ n: int. mu ≤ n → x (n + lambda) = x n

Figure 3.2: Tortoise and Hare Algorithm: Assumptions.

simple:
T,H ← f(x0), f(f(x0))
while T 6= H do
T,H ← f(T), f(f(H))

That is, tortoise T advances at speed 1, while hare H advances at speed 2, and
we stop whenever they are equal. If so, we have detected a cycle. Otherwise, the
algorithm loops forever and there is no cycle. The beauty of this algorithm is that
it runs in constant space. Besides, it has several meaningful applications. For
instance, it can be used to check whether a singly linked list is cyclic — is that case,
it will even stop in both cases, since either it detects a cycle or reaches the null
pointer.

Let us assume that there is a cycle and let us prove that Floyd’s algorithm ter-
minates. We start with a bunch of assumptions, gathered in Fig. 3.2. We introduce
function f and the infinite sequence (xn), reusing library int.Iter for that purpose.
The existence of a cycle means that there exist smallest integers µ ≥ 0 and λ ≥ 1
such that xµ = xµ+λ. It is convenient to introduce µ and λ as constants — this is
nothing more than skolemization. The properties of µ and λ are decomposed into
four axioms. Instead of the characterization above, we adopt Knuth’s one, which is
equivalent: values x0, x1, . . . , xµ+λ−1 are all distinct, and xn+λ = xn for n ≥ µ.

The challenge is obviously to prove the termination, i.e., to figure out a variant
for the while loop. Actually, we are even going to prove that it runs in time O(µ+λ).
The code is given in Fig. 3.3. The obvious part of the loop invariant states that

42 CHAPTER 3. CASE STUDIES IN PROGRAM VERIFICATION

the tortoise is some xt while the hare is x2t. Moreover, we have checked so far that
xi 6= x2i for 1 ≤ i < t. Finally, we add t ≤ µ+λ to the invariant, which bounds the
running time.

The termination argument is the following: once it is inside the cycle, the tortoise
cannot be overtaken by the hare. Thus the distance between the hare and the
tortoise decreases. We have to turn that into a variant, which requires some care.
First, we introduce dist i j, the distance between xi and xj . Since this it is a partial
function, we only define it for µ ≤ i, j. Second, we define a custom order relation,
rel. It compares two “tortoises” and requires them to be consecutive values xi and
xi+1 with i ≤ µ + λ. Additionally, it requires the distance between x2i+2 and xi+1
to be smaller than the distance between x2i and xi, whenever the two tortoises are
within the cycle, that is i ≥ µ. Then the variant is simply the tortoise, tortoises
being compared with rel.

The proof decomposes into four goals: one lemma to prove that xn+kλ = xn
whenever n ≥ µ, and three verification conditions (the loop invariant is initialized,
the loop invariant is preserved, and the variant decreases). Apart from the loop
invariant initialization, which is discharged automatically, the remaining goals are
discharged interactively using Coq. Slightly more than 80 lines of tactics are needed.

It is worth pointing out that, beside termination, we have also proved that there
is no more than µ+ λ+ 1 loop steps.

3.2 Mathematics

Fibonacci Numbers

The sequence of Fibonacci numbers is the well-known integer sequence defined
as follows: 

F0 = 0
F1 = 1
Fn = Fn−1 + Fn−2 for n ≥ 2.

In Why3, we cannot define a logical function recursively over integers. Thus it is
axiomatized.

theory Fibonacci "Fibonacci numbers"
use export int.Int
function fib int : int
axiom fib0: fib 0 = 0
axiom fib1: fib 1 = 1
axiom fibn: ∀ n:int. n ≥ 2 → fib n = fib (n-1) + fib (n-2)

end

3.2. MATHEMATICS 43

(* the minimal distance between x i and x j *)
function dist int int : int

(* it is defined as soon as i,j >= mu *)
axiom dist def: ∀ i j: int. mu ≤ i → mu ≤ j →

dist i j ≥ 0 ∧
x (i + dist i j) = x j ∧
∀ k: int. 0 ≤ k → x (i + k) = x j → dist i j ≤ k

predicate rel (t2 t1: t) =
∃ i: int. t1 = x i ∧ t2 = x (i+1) ∧ 1 ≤ i ≤ mu + lambda ∧

(i ≥ mu → dist (2*i+2) (i+1) < dist (2*i) i)

let tortoise hare () =
let tortoise = ref (f x0) in
let hare = ref (f (f x0)) in
while !tortoise 6= !hare do

invariant {
∃ t: int. 1 ≤ t ≤ mu+lambda ∧
!tortoise = x t ∧ !hare = x (2*t) ∧
∀ i: int. 1 ≤ i < t → x i 6= x (2*i) }

variant { !tortoise } with rel
tortoise := f !tortoise;
hare := f (f !hare)

done

Figure 3.3: Tortoise and Hare Algorithm: Code.

Let us consider now the computation of Fn. A naive computation of Fn following
the recursive scheme above would have time complexity O(φn) where φ = 1+

√
5

2 is
the golden ratio. A better solution is obviously to compute it iteratively, storing
two consecutive values Fk and Fk+1 in two variables a and b and repeating the
assignment

a, b← b, a+ b

which leads to a O(n) algorithm. There is actually an even better way to compute
Fn. It is based on the identity(

1 1
1 0

)n
=
(
Fn+1 Fn
Fn Fn−1

)
(3.1)

which holds for all n ≥ 0 if we set F−1 = 1. It is easily proved by induction over
n. Using a fast exponentiation algorithm, it is thus possible to compute Fn in time
O(logn). Let us prove the correctness of a program computing Fn along this idea.

44 CHAPTER 3. CASE STUDIES IN PROGRAM VERIFICATION

We do not need to compute the four coefficients of the matrix. Computing only
Fn and Fn−1 is enough since we have Fn+1 = Fn+Fn−1. Thus we define a recursive
function logfib which takes n as argument and returns the pair (Fn−1, Fn). The
pseudocode reads as follows:

logfib n =
if n = 0 then

(1, 0)
else

let (a, b) = logfib (n/2) in
if n mod 2 = 0 then

(a2 + b2, b(2a+ b))
else

(b(2a+ b), (a+ b)2 + b2)

We could specify this code with a postcondition which simply states that it returns
(Fn−1, Fn). But proving it correct would require proving identities relating F2k and
F2k−1 to Fk−1 and Fk. Instead we keep to equation (3.1), which only requires a
trivial induction, and thus we choose the specification

let (a, b) = logfib n in
(

1 1
1 0

)n
=
(
a+ b b
b a

)
.

This is a natural cut, which makes the proof easier. We introduce a custom theory
for 2 × 2 integer matrices in Fig. 3.4. It uses a record type for matrices. It only
contains the identity matrix and two operations: multiplication and exponentia-
tion. The latter is obtained from a generic theory Exponentiation. This theory
includes the lemma xn+m = xn ·xm, from which we can deduce the patterns for fast
exponentiation, namely x2n = xn · xn and x2n+1 = xn · xn · x.

Fig. 3.5 gives the annotated code for logfib and the subsequent fibo function
which returns Fn as the second component of logfib n. In the middle, we insert
the lemma corresponding to equation (3.1). It is limited to the first column of the
matrix. It is indeed enough for the induction to be carried out, since(

1 1
1 0

)
·
(
Fn+1 ?
Fn ?

)
=
(
Fn+2 ?
Fn+1 ?

)
.

Therefore we avoid specifying F−1 = 1.
Coq is needed to prove the postcondition of logfib (in the non-trivial case), as

well as the lemma fib m. The remaining goals are discharged automatically.

3.2. MATHEMATICS 45

theory Mat22 "2x2 integer matrices"
use import int.Int
type t = {| a11: int; a12: int; a21: int; a22: int |}

function id : t = {| a11 = 1; a12 = 0; a21 = 0; a22 = 1 |}

function mult (x: t) (y: t) : t =
{| a11 = x.a11 * y.a11 + x.a12 * y.a21;

a12 = x.a11 * y.a12 + x.a12 * y.a22;
a21 = x.a21 * y.a11 + x.a22 * y.a21;
a22 = x.a21 * y.a12 + x.a22 * y.a22; |}

clone export int.Exponentiation
with type t = t, function one = id, function (*) = mult

end

Figure 3.4: A theory for 2× 2 integer matrices.

Knuth’s Program for Prime Numbers

Knuth’s program for prime numbers [60, p. 147] was discussed in the introduc-
tion (see page 5) as an example of a program whose safety proof is difficult. Knuth’s
code is given in left of Fig. 3.6. It fills the array p with the first 500 primes. Note
that p is indexed from 1, not 0. Variables are used as follows: j counts the number
of primes found so far; n stands for the candidate for next prime; k scans p to use
previously computer primes.

We make a few changes with respect to Knuth’s code. First, the array is indexed
from 0. Second, we compute the first m prime numbers, for some arbitrary m ≥ 2.
Last, we make a slight change in the code flowchart. Knuth’s flowchart is well suited
for assembly language, but not for a structured language. Thus we turn the code
into a for loop on j and a local recursive function test. The resulting pseudocode
is given in right of Fig. 3.6.

The notions of divisibility (predicate divides) and of prime number (predicate
prime) are imported from Why3’s standard library. Fig. 3.7 contains additional
material for the specification. Predicate first primes p u states that p[0], . . . , p[u−
1] contains the first u prime numbers. It makes use of predicate no primes in l u,
which states that there is no prime number between l and u; it will be conveniently
reused in the code’s annotation. Bertrand’s postulate is introduced as an axiom —
we do not intend to prove it.

The annotated code is given in Fig. 3.8. Most of the specification is obvious.
The termination of the recursive function test is ensured using a pair of integers

46 CHAPTER 3. CASE STUDIES IN PROGRAM VERIFICATION

module FibonacciLogarithmic
use import Fibonacci
use import int.EuclideanDivision
use import Mat22

function m1110 : t = {| a11 = 1; a12 = 1;
a21 = 1; a22 = 0 |}

let rec logfib n variant { n } =
{ n ≥ 0 }
if n = 0 then

(1, 0)
else begin

let a, b = logfib (div n 2) in
let c = a + b in
if mod n 2 = 0 then

(a*a + b*b, b*(a + c))
else

(b*(a + c), c*c + b*b)
end
{ let a, b = result in

power m1110 n = {|a11=a+b; a12=b; a21=b; a22=a|} }

lemma fib m :
∀ n: int. n ≥ 0 →
let p = power m1110 n in fib (n+1) = p.a11 and fib n = p.a21

let fibo n =
{ n ≥ 0 }
let _, b = logfib n in b
{ result = fib n }

end

Figure 3.5: A program computing Fn in time O(logn).

3.2. MATHEMATICS 47

p[1]← 2; j ← 1; n← 3

j ← j + 1; p[j]← n

test j = 500

n← n + 2; k ← 2

test p[k]|n

test n/p[k] ≤ p[k]

k ← k + 1

stop

p[0]← 2; p[1]← 3;n← 5
for j = 2 to m− 1 do

let rec test k =
if n mod p[k] = 0 then
n← n+ 2; test 1

else if n/p[k] > p[k] then
test (k + 1)

in
test 1; p[j]← n;n← n+ 2

Figure 3.6: Knuth’s program for prime numbers: original assembly code (left) and
equivalent structured code (right).

predicate no prime in (l u: int) =
∀ x: int. l < x < u → not (prime x)

(* p[0]...p[u-1] are the first u prime numbers *)
predicate first primes (p: array int) (u: int) =

p[0] = 2 ∧
(* sorted *)
(∀ i j: int. 0 ≤ i < j < u → p[i] < p[j]) ∧
(* only primes *)
(∀ i: int. 0 ≤ i < u → prime p[i]) ∧
(* all primes *)
(∀ i: int. 0 ≤ i < u-1 → no prime in p[i] p[i+1])

axiom Bertrand postulate:
∀ p: int. prime p → not (no prime in p (2*p))

Figure 3.7: Knuth’s program for prime numbers: specification.

48 CHAPTER 3. CASE STUDIES IN PROGRAM VERIFICATION

let prime numbers (m: int) =
{ m ≥ 2 }
let p = make m 0 in
p[0] ← 2;
p[1] ← 3;
let n = ref 5 in (* candidate for next prime *)
for j = 2 to m - 1 do

invariant { first primes p j ∧
p[j-1] < !n < 2*p[j-1] ∧ odd !n ∧ no prime in p[j-1] !n }

let rec test (k: int) variant { (2*p[j-1] - !n, j - k) } with lex =
{ 1 ≤ k < j ∧ first primes p j ∧

p[j-1] < !n < 2*p[j-1] ∧ odd !n ∧ no prime in p[j-1] !n ∧
∀ i: int. 0 ≤ i < k → not (divides p[i] !n) }

if mod !n p[k] = 0 then begin
assert { not (prime !n) }; n += 2; test 1

end else if div !n p[k] > p[k] then
test (k + 1)

else
assert { prime !n }

{ p[j-1] < !n ∧ prime !n ∧ no prime in p[j-1] !n }
in
test 1;
p[j] ← !n;
n += 2

done;
p
{ first primes result m }

Figure 3.8: Knuth’s program for prime numbers: code.

ordered lexicographically. Indeed, either n is increased and k is reset to 1, or k is
increased and n is not modified. A key annotation to establish the validity of this
variant is

p[j-1] < !n < 2*p[j-1].

That is where Bertrand’s postulate is needed: when n is increased, the right in-
equality still holds, since it would otherwise contradict Bertrand’s postulate. Thus
we can use 2*p[j-1] - !n as first component in the variant.

Five goals require interactive proof using Coq (one lemma and four verifica-
tion conditions). The remaining goals (30 verification conditions) are discharged
automatically.

3.3. DATA STRUCTURES 49

3.3 Data Structures

Same Fringe
“Same fringe” is a famous problem among functional programmers. There is no

reference for this problem; it’s simply part of folklore. The problem can be stated
as follows:

Given two binary trees,
do they contain the same elements when traversed in order?

Here we assume binary trees with elements stored at inner nodes. (The problem
would be equally interesting with elements stored at leaves.) Here is an example of
two trees with different shapes but the same list of elements, namely 1,3,4,5,8.

8
3

1 5
4

4
1

3
8

5

The nature of the elements is of no importance here. We make no assumption about
it 2, using an uninterpreted type elt for elements:

type elt
type tree =

| Empty
| Node tree elt tree

On way to specify the problem is to turn the two trees into lists and then compare
them. Turning a tree into a list is defined recursively over the structure of the tree,
with the help of list concatenation:

function elements (t : tree) : list elt = match t with
| Empty → Nil
| Node l x r → elements l ++ Cons x (elements r)

end

Solving the same fringe problem is another matter. If we naively build the two lists
and then compare them, it is likely to be inefficient, from both space and time point
of view. Ideally, we would like to come up with a O(min(n,m)) solution, where n
and m are the sizes of the two trees. Though it can be done, we are slightly less

2. Though, it can be pointed out that when elements are equipped with a total order and
sorted from left to right, such trees are binary search trees. Thus the same fringe problem is that of
deciding whether two binary search trees contain the same elements, a problem of genuine interest.

50 CHAPTER 3. CASE STUDIES IN PROGRAM VERIFICATION

ambitious here and we propose a O(max(n,m)) solution. The idea is to consider
the leftmost branch of each tree, as a list ordered from bottom up (its head is the
leftmost element). Each element on this branch comes with its associated right
subtree, which may be empty. This can be depicted as follows:

x1

x2

...

xn

t1

t2

tn

We call such a list an enumerator. Building it is easy: we simply descend the left
branch until we reach the empty tree. On the example above, the two enumerators
are the following:

1

3

8

5
4

1

4

3

8
5

The purpose of enumerators is to propose an easy and lazy comparison of the trees: if
their heads differ, we are done; otherwise, we remove it and prepend the enumerator
for its right subtree. Enumerators correspond to the following data type:

type enum =
| Done
| Next elt tree enum

Such a data structure is a degenerated form of Huet’s zipper [55]. (There is no way
to descend to the right.)

Fig. 3.9 gives the full specification and annotated code for the same fringe prob-
lem. This includes a function enum elements to turn an enumerator into a list, for
the purpose of specification, and three functions to solve the problem: enum to turn a
tree into an enumerator; eq enum to compare enumerators; and finally same fringe

3.3. DATA STRUCTURES 51

type elt
type tree =

| Empty
| Node tree elt tree

function elements (t : tree) : list elt = match t with
| Empty → Nil
| Node l x r → elements l ++ Cons x (elements r)

end
type enum =

| Done
| Next elt tree enum

function enum elements (e : enum) : list elt = match e with
| Done → Nil
| Next x r e → Cons x (elements r ++ enum elements e)

end
let rec enum t e variant { length (elements t) } =

{ }
match t with
| Empty → e
| Node l x r → enum l (Next x r e)
end
{ enum elements result = elements t ++ enum elements e }

let rec eq enum e1 e2 variant { length (enum elements e1) } =
{ }
match e1, e2 with
| Done, Done →

True
| Next x1 r1 e1, Next x2 r2 e2 →

x1 = x2 && eq enum (enum r1 e1) (enum r2 e2)
| _ →

False
end
{ result=True ↔ enum elements e1 = enum elements e2 }

let same fringe t1 t2 =
{ }
eq enum (enum t1 Done) (enum t2 Done)
{ result=True ↔ elements t1 = elements t2 }

Figure 3.9: Solution to the same fringe problem.

52 CHAPTER 3. CASE STUDIES IN PROGRAM VERIFICATION

int binary search(int* t, int n, int v) {
int l = 0, u = n-1;
while (l <= u) {

int m = (l + u) / 2;
if (t[m] < v)

l = m + 1;
else if (t[m] > v)

u = m - 1;
else

return m;
}
return -1;

}

Figure 3.10: Binary search within a sorted array (C code).

to solve the problem. Thanks to functions elements and enum elements, the spec-
ification is obvious. Note the use of list lengths to ensure termination.

The very nice thing about this proof is that it is entirely automated: Alt-Ergo
succeeds in discharging all verification conditions, in no time. Though it looks like
such a proof requires induction, it is here performed implicitly, hidden within the
verification of both recursive functions enum and eq enum. This is induction without
induction, somehow.

3.4 Using Why3 as an Intermediate Language

As explained in Section 2.1, Why has been used for years at ProVal as an
intermediate language to verify C and Java programs. This section sketches the
main ideas of this process.

Following Jon Bentley, we use the challenge of binary search as an example [10].
Let us consider a C function, binary search, which looks for a given integer value
within a sorted array. Its code is given in Fig. 3.10. The three arguments are t, the
array in which the search is performed, n, the size of this array, and v, the value
which is searched for.

This C program contains two elements which are not part of the Why3 language:

1. the pointer type int* and the associated operation t[m];

2. the presence of a return inside a while loop.

Since the code is actually not performing any pointer arithmetic, one could model
the type int* directly as an array. However, we choose to keep to a low-level model

3.4. USING WHY3 AS AN INTERMEDIATE LANGUAGE 53

type pointer
type memory
function get memory pointer int : int
val mem : memory ref

Figure 3.11: A minimal memory model.

of pointers, with more complex programs in mind. Thus we introduce a Why3 type
for C pointers of type int*:

type pointer

We introduce another type, memory, for the state of the memory:

type memory

Then we can introduce a get operation to access memory with a given pointer:

function get memory pointer int : int

If m is some given memory state, p a pointer and i an integer, then get m p i
accesses m at address p+i. We assume here that the memory is only word-addressed,
i.e. we only have pointers of type int*. A global reference mem contains the current
state of memory:

val mem : ref memory

It completes our first memory model, which is summarized in Fig. 3.11.
Translating function binary search in this memory model is straightforward:

t becomes an argument of type pointer and expression t[m] is translated into
get !mem t m. Of course, the memory model could be simplified even further. One
could simply declare a function function t int : int, suppress argument t and
translate t[m] into t m. Though, as explained above, we want to keep to a realistic
memory model. If the memory was to be mutated (which is not the case in this
program), we would introduce another operation

function set memory pointer int int : memory

and we would translate a C assignment into a mutation of reference mem.
The second obstacle is the presence of a return statement inside the while loop.

To translate it, we introduce a Why3 exception carrying an integer value:

exception Return int

Then we translate return m into raise (Return int m). The whole while loop is
surrounded with a try with, as follows:

54 CHAPTER 3. CASE STUDIES IN PROGRAM VERIFICATION

let binary search (t:pointer) (n:int) (v:int) =
try

...
with Return r →

r
end

The remaining of the translation is straightforward. Local variables l, u and m are
translated into Why3 local references, since the C operator & is not used to obtain
their addresses. For variable m, we can even use a non-mutable variable since it is
not mutated in the C code.

We still need to give the function its specification. The precondition requires
the array to be sorted.

{ ∀ k1 k2:int.
0 ≤ k1 ≤ k2 ≤ n-1 → get mem t k1 ≤ get mem t k2 }

The loop invariant maintains inequalities over l and u and the crucial property that
v, if it occurs in t[0..n-1], then necessarily occurs in t[l..u].

{ invariant 0 ≤ l and u ≤ n-1 and
∀ k:int. 0 ≤ k < n → get(mem,t,k) = v → l ≤ k ≤ u }

To prove termination, we simply add the variant u-l. Finally, the postcondition
states soundness and completeness properties, that is, either the result is non-
negative and v occurs in t at this position, or the result is -1 and v does not
occur in t.

{ (result ≥ 0 and get mem t result = v) or
(result = -1 and ∀ k:int. 0≤k<n → get mem t k 6= v) }

Function binary search is given Fig. 3.12. It is proved correct automatically.
Let us make this proof slightly more realistic by adding array bound checking.

To do this, we first introduce the notion of block size in our memory model:

function block size memory pointer : int

In this new model, each pointer points to the beginning of a block, whose size is
given by function block size. Now, instead of accessing memory with function
get inside the program, we will use instead a function with a precondition:

val get : p:pointer → ofs:int →
{ 0 ≤ ofs < block size mem p }
int reads mem
{ result = get mem p ofs }

In the Why3 code for function binary search, we replace the two occurrences of
get !mem t m with get t m, getting a a new verification condition for each. Both

3.4. USING WHY3 AS AN INTERMEDIATE LANGUAGE 55

exception Return int

let binary search (t : pointer) (n : int) (v : int) =
{ ∀ k1 k2:int.

0 ≤ k1 ≤ k2 ≤ n-1 → get mem t k1 ≤ get mem t k2 }
try

let l = ref 0 in
let u = ref (n-1) in
while !l ≤ !u do

invariant { 0 ≤ l and u ≤ n-1 and
∀ k:int. 0 ≤ k < n → get mem t k = v → l ≤ k ≤ u }

variant { u-l }
let m = div (!l + !u) 2 in
if get !mem t m < v then l := m + 1
else if get !mem t m > v then u := m - 1
else raise (Return m)

done;
raise (Return (-1))

with Return r →
r

end
{ (result ≥ 0 and get mem t result = v) or

(result = -1 and ∀ k:int. 0≤k<n → get mem t k 6= v) }

Figure 3.12: Function binary search translated to Why3.

amount to showing

0 ≤ (l + u) / 2 < block size mem t.

To be able to discharge them, we need to add an extra precondition to function
binary search, which states that n is no larger than the block size:

let binary search (t : pointer) (n : int) (v : int) =
{ n ≤ block size mem t and ... }
...

All VCs are discharged automatically.
Finally, let us make this proof even more realistic by showing the absence of

arithmetic overflow in this C code. For simplicity, we consider here that C type int
stands for 32 bit integers. We introduce a new Why3 type to model this C type.

type int32

The key idea for reasoning about fixed size integers is the following:

56 CHAPTER 3. CASE STUDIES IN PROGRAM VERIFICATION

Specifications, and thus verification conditions, should only use mathe-
matical integers, that is Why3’s type int.

There are two reasons for this. First, we do not want to loose the ATPs capabilities
regarding arithmetic, and this is the only arithmetic they are aware of. Second,
we cannot introduce partial function symbols in the logic, such as an addition over
32 bit integers. If an addition is to appear within a specification, it should be the
usual addition over mathematical integers. Thus we introduce a function which
maps values of types int32 to the corresponding value in type int.

function to int int32 : int

If the value of a C variable x is referred to within an annotation, we will write
to int x instead. More generally, we do so for any expression of type int32 oc-
curring within an annotation. For instance, the loop invariant used to be

0 ≤ l and u ≤ n-1 and
∀ k:int. 0 ≤ k < n → get mem t k = v → l ≤ k ≤ u

and now it is cluttered with to ints:

0 ≤ to int l and to int u ≤ to int n - 1 and
∀ k:int. 0 ≤ k < to int n →
to int (get mem t k) = to int v → to int l ≤ k ≤ to int u

Note that the universal quantification ∀ k is still over type int. To axiomatize
int32 and to int, we first introduce an axiom which defines the range of 32 bit
integers.

axiom int32 domain :
∀ x:int32. -2147483648 ≤ to int x ≤ 2147483647

Then we introduce an operation to build a value in type int32 from a value in type
int, provided it lies in the appropriate range.

val of int : x:int →
{ -2147483648 ≤ x ≤ 2147483647 }
int32
{ to int result = x }

To translate a C operation over 32 bit integers, say an addition such as

e1 +32 e2

we convert both operands to type int with to int, apply the corresponding oper-
ation over type int, and then convert back to type int32 with of int:

of int (to int e1 + to int e2)

3.4. USING WHY3 AS AN INTERMEDIATE LANGUAGE 57

Of course, we perform this recursively in both e1 and e2, up to variables and con-
stants. For instance, the initialization of u used to be

let u = ref (n - 1) in

and now reads as follows:
let u = ref (of int (to int n - to int (of int 1))) in

It is worth pointing out that writing to int (of int 1) instead of 1 enforces us
to prove that constant 1 fits in the range of 32 bit integers. Even if obvious in this
case, absence of arithmetic overflows in constants are to be checked as well 3. It is
clear from the two excerpts above that translating both specifications and programs
to this new model is quickly intractable in a manual process. Fortunately, this can
be easily automated during a translation from C to Why3, since the compiler has
access to abstract syntax trees fully decorated with types.

When we try to prove this third model of the C program, we are left with one
unproved verification condition. It is related to the C statement

int m = (l + u) / 2;

and more precisely with the absence of arithmetic overflow in the computation of l
+ u. Proving that it is greater or equal to −231 is easy (we know that both l and
u are non-negative at this point) but we cannot prove that it is smaller or equal to
231 − 1. And indeed this is not provable: for a large enough array, we could have
for instance l = u = 230 and the addition would overflow. We already discussed
this famous bug and its possible fixes in the first chapter. For the fix

int m = l + (u - l) / 2;

all VCs are easily discharged automatically. Proving the other fix proposed by
Joshua Bloch [12], namely int m = (l + u) >>> 2 in Java, is another matter.
Indeed, the addition may still overflow but the shift will restore a zero sign bit,
ending up with the expected value. To prove such a fix correct, we can no longer
use the model above, since it does not allow overflows. A more elaborated model
would be needed, for instance one that is faithful to the machine’s 32-bit signed
arithmetic.

Realistic Memory Models. Tools such as Krakatoa or the Jessie plug-in of Frama-C
are using even more complex memory models, to account for pointer arithmetic,
heap-allocated data, dynamic memory allocation, and so on. The basic idea is to
model memory according to structure (or objects) fields, following an old idea by
Burstall [23]. At ProVal, this was first experimented in Krakatoa and Caduceus,
and later refined using a static separation analysis of pointers [54], leading to the
intermediate language Jessie [73].

3. Most compilers report arithmetic overflows in constants.

4
Perspectives

My research perspectives are split into general perspectives for deductive pro-
gram verification (Sec. 4.1) and perspectives specific to the Why3 tool (Sec. 4.2).

4.1 Deductive Program Verification

Verification of Algorithms

Among many others, a legitimate goal for deductive program verification is the
following:

We should be able to pick up any algorithm from a standard textbook
and prove it to be correct in time and space no larger than the textbook
proof.

Let us clarify what me mean in the statement above. First, writing the code itself
in a formal language suitable for program verification should be easy, at least no
more difficult than writing pseudo-code or code in some mainstream programming
language. It means that high-level programming constructs should be available,
as well as suitable libraries. Second, performing the proof should be of a similar
difficulty to a pen-and-paper proof. Of course, we assume here that the proof
is done for the first time on both sides. Both kinds of proof require to exhibit
invariants. Then the proof process itself differs, but the time spent in writing down
a pen-and-paper proof should be comparable to the time spent in elaborating a
formal proof, provided a reasonable amount of proof automation. The latter means
suitable decision procedures, e.g. for lists, finite sets, or reflexive transitive closure.
With such tools being available, teachers and scientists should be able to ensure the
correctness of algorithms presented in lectures and research papers in a reasonable
amount of time. As far as I am concerned, I have this perspective in mind. This
document has explained what I have done so far in that direction and I definitely
intend to make further progress in the future.

59

60 CHAPTER 4. PERSPECTIVES

Verification of Static Analysis Tools

Textbook algorithms are legitimate targets for deductive verification but they are
not real programs. This is somehow frustrating. Among all real programs, relevant
candidates for formal verification are static analysis tools: compilers, abstract in-
terpretors, model checkers, slicers, etc. They are often used on critical code, and
thus are critical programs themselves. We already mentioned Leroy’s verified com-
piler CompCert, but most static analyzers are still waiting to be proved sound. I
think Why3 can be seriously considered to tackle such challenges: indeed, it fea-
tures algebraic data types (for abstract syntax trees), inductive predicates (to define
semantics), relevant libraries (e.g. finite sets), and a nice combination of proof au-
tomation and interactive proof.

Bootstrapping Verification Tools

Among static analysis tools are the verification tools themselves. They are obvious
candidate for being verified, as we want them to be sound in the first place. There
had been already several steps in that direction. For instance, Nipkow formalized the
first 100 pages of Winskel’s book using Isabelle/HOL [82]. This includes soundness
and relative completeness of Hoare logic, the latter using a weakest precondition cal-
culus. Later, Yves Bertot conducted a similar experience in Coq, though introducing
new ingredients such as computational reflection and abstract interpretation [11].
Along these lines, the undergoing Ph.D. thesis of Paolo Herms [51] at ProVal aims
at certifying the whole chain from C programs to verification conditions used in
Frama-C.

However, formally verifying a tool such as Why3 is a lot of work and it is not that
obvious that we should do it right now. We should probably focus first on improving
the capacity of our tools before considering proving them. Who cares about a
sound, but useless tool? I remember a discussion with Natarajan Shankar during
my postdoc on a related topic: I was (very naively) comparing the relative soundness
of Coq and PVS and Shankar was replying that providing new, useful features to
PVS was more important than increasing the trust in PVS’s own soundness. Today,
I definitely agree with him.

4.2 Why3

We can already do a lot of program verification with Why3, as demonstrated
in the previous chapter. Yet we have a lot of possible improvements in mind. We
discuss them here.

4.2. WHY3 61

Ghost Code. It is sometimes useful to insert additional code into a program for the
sole purpose of writing its specification. Such a code is called ghost code. Ghost code
is similar to regular code: it is parsed, type checked, and turned into verification
conditions in the same way. The only constraint is that it does not interfere with
regular code, in the sense that we can remove ghost code without affecting the
behavior of the regular code. This does not prevent ghost code from performing side
effects, but it limits those side effects to ghost data. We have already demonstrated
the usefulness of ghost code in a paper describing the proof of a two line C program
computing the number of solutions to the N -queens problem [42].

Somehow, ghost code is reminiscent of program extraction in Coq [78, 70]: sort
Set is used for programs and sort Prop for annotations, and the latter can be safely
removed thanks to non-interference ensured by type checking. However, separating
regular and ghost code using types is not the only way to go. One can instead tag
some variables and functions as ghost. This is the way followed in Dafny [65] for
instance.

Program Execution. Currently, there is no way to execute Why3 code. We plan
to provide a translator from Why3 to OCaml, so that Why3 programs can be
executed interactively in the OCaml interpreter or compiled and linked into stan-
dalone OCaml programs. OCaml is the target of choice since it provides almost
all WhyML features (exceptions, polymorphism, algebraic data types, records with
mutable fields, etc.). Getting executable code from Why3 raises some interesting
issues:

– First, there are several possible reasons for a Why3 code not to be executable:
it may refer to a program function which is declared but not defined (val);
equivalently, it may use the non-deterministic program construct (any); fi-
nally, it may involve some logical term which is not executable. Thus the
user must be able to provide some OCaml implementation to fill the gaps.
An example is type int, which should be mapped to some implementation of
arbitrary-precision arithmetic. Such mapping could be done using a config-
uration file along the lines of prover drivers. But this could also be done by
turning the whole code into an OCaml functor whose parameters correspond
to the missing implementations.

– Second, since WhyML programs may involve arbitrary logic expressions, we
need to be able to translate them to OCaml as well. This is not always
possible. An obvious case is when a logic symbol is declared but not defined.
Even when a logic symbol is defined, it may not be possible to translate it
to OCaml code. For instance, its definition may involve quantifiers or non
deterministic inductive predicates, which are not executable in most cases. It
may also involve the equality predicate. If it is used on some algebraic data
type, we can use OCaml’s polymorphic and structural equality. If it is used

62 CHAPTER 4. PERSPECTIVES

on some uninterpreted type, we cannot.
– Finally, one can imagine turning annotations into code as well, to perform

run-time assertion checking. This implies turning logic expressions into code,
which we just discussed. But this also implies saving state values in order
to interpret constructs old and at within annotations. This is a well-known
issue in the run-time assertion checking community (see for instance [62]).
Even if it is likely to be simpler in the case of Why3, due to the absence of
aliases, it remains a nontrivial problem.

Invariants. Currently, there is no easy way to associate an invariant to a given
Why3 data type. For instance, we showed earlier how arrays are modeled in Why3
(see page 26), namely

type array α model {| length: int; mutable elts: map int α |}
but we have no way to state and prove that the length of any array is non-negative.
We should be able to do that, however, since array is an abstract data type and
since the only operations returning arrays (make, append, etc.) all ensure that the
returned array has a non-negative length. Currently, the user has to insert suitable
preconditions regarding array lengths, when necessary. Said otherwise, we already
have a mechanism for data abstraction so we should be able to give it a suitable
mechanism for data invariant.

Encapsulation. Our model of arrays is elegant and genuinely useful. However, ar-
rays belong to the category of data structures that we do not implement in Why3;
we only give them a signature. On the contrary, there are many data structures
that we can implement in Why3, such as hash tables, binary search trees, priority
queues, etc. For such data structures, we want to define a signature and an imple-
mentation, separately, and then to confront them. For instance, the signature for
imperative sets of integers would look like

type t model {| mutable elts: set int |}
val create: unit → {} t { result.elts = empty }
val add: x: int → s: t →

{} unit writes s { s.elts = add x (old s.elts) }
...

and a possible implementation using hash tables would look like
type t = array (list int)
let create () = Array.make 17 Nil
...

As usual in data abstraction, verifying the implementation against the signature
will typically require invariants. In the example above, the invariant will relate the

4.2. WHY3 63

abstract set to the set of all elements appearing in the hash table. Currently, there
is no way to do that in Why3: we can define the signature, we can use it in some
client code, and, independently, we can implement a data structure, but we cannot
verify the implementation against the signature — unless we manually insert the
specifications from the signature into the implementation.

Module Cloning. As we showed earlier, theory cloning is a powerful concept to
reuse specifications. It is natural to consider doing the same for modules. Module
cloning would be a way to get a new module by partially instantiating some unin-
terpreted symbols from another module (types, constants, functions), reusing code,
specification, and proof in a single step. Somehow, module cloning is no different
from ML functors [68]; it is only easier to use and more flexible. As an example,
let us consider priority queues. A signature module can be designed as follows. An
abstract type for elements is declared

module Q
type elt

and is equipped with a total order

clone export relations.TotalOrder with type t = elt

The priority queue itself can be modeled as a list of elements, though it is not of
importance here:

type pqueue model {| mutable elts: list elt |}

Then operations can be declared, such as create, push, pop, and so on. Once the
signature module Q is complete, module cloning would allow us to instantiate type
elt, and possible relation rel as well, to get priority queues specialized for this
type. For instance, priority queues containing integers could be used as easily as

clone import module Q with type elt = int, predicate rel = (≤)

A nice idea by Andrei Paskevich is that data encapsulation, as discussed in the previ-
ous paragraph, could be implemented using module cloning: cloning the signature
module and instantiating its parameters with functions from the implementation
module should generate the expected verification conditions.

Higher-Order Programs. WhyML is already so close to OCaml that it is natural to
consider going one step further and tackle higher-order programs. Actually, there is
already some limited support for higher-order functions in Why3. Indeed, the type
checker already allows function arguments with arbitrary types. Since function
types include specifications, one can perfectly write some code like

let f (g: n:int → {} unit writes x { !x = old !x + n }) = ...

64 CHAPTER 4. PERSPECTIVES

(assuming some global reference x). After all, this is no different from having a global
function g in the context and then prove function f. However, it is already limited
when it comes to applying function f to some particular function: the argument
function must have exactly the type of g. Thus the following is legal

f (fun n:int → {} x := !x + n { !x = old !x + n })

but applying f to a function with a different specification or effect is not. Obviously,
we could relax this a little bit to allow a function with a weaker precondition,
a stronger postcondition, or a smaller effect. Yet we would be far from idiomatic
higher-order programs. Indeed, higher-order is particularly powerful when combined
with polymorphism. A typical example is an iterator. Iterators are the idiomatic
way to traverse the elements of a collection in functional programming, either to
perform some action on each (iter), to build a value from them (fold), or to rebuild
a new collection (map). Here is for instance the type of the iter function over lists
from OCaml standard library:

List.iter: (α → unit) → α list → unit

Specifying, proving, and using such a function in a verification context is quite a
challenge. Indeed, the function argument of type α → unit may have some arbi-
trary effect and specification, thus we need some kind of effect polymorphism and
higher-order logic. A huge step in that direction was made in Johannes Kanig’s
PhD thesis [56], which extended previous work by Regis-Gianas on purely applica-
tive programs [88] to programs with effects. We still need to find a way to integrate
Kanig’s work smoothly into Why3. (Incidentally, it is Johannes’s work that inspired
the use of regions in Why3.)

Obviously, specifying and proving higher-order programs quickly requires higher-
order logic, as demonstrated in Kanig’s thesis for instance. Since automated theo-
rem provers are limited to first-order logic, higher-order logic must be encoded into
first-order logic in some way or another. A simple, yet limited, solution is to spot
higher-order schemes and to translate all their instantiations into first-order logic,
as done by Leino and Monahan [67]. Otherwise a systematic translation can be
considered, as done for instance by Meng and Paulon in Isabelle/HOL [75] or by
Regis-Gianas and Kanig in the aforementioned work [88, 56].

Interactive Proof. When a verification condition is not discharged by any automated
theorem prover, we turn to a proof assistant, typically Coq. There we apply tactics
to discharge the goal interactively. This includes high-level reasoning steps, such
as applying an induction principle or inverting some inductive predicate definition.
Once these are performed, we are left with simpler goals, most of them could be
discharged by automated theorem provers. Unfortunately, there is currently no way
to use these provers from Coq. We consider implementing a Coq plug-in to do this.

4.2. WHY3 65

This is not a new idea, as such a technology already exists in Isabelle/HOL — this
is the Sledgehammer tool [75] we already mentioned in the first chapter.

However, we consider doing it slightly differently. First, we do not really care
about reconstructing a proof in Coq, since we are already assuming the soundness
of automated theorem provers. (Of course, checking such proofs when they exist
cannot harm, but the point here is that we are perfectly fine with calling provers
that do not produce any proof.) Second, we will use Why3 and its OCaml API
to implement this Coq plug-in, thus performing a round trip from Why3 to Coq
and back. Hopefully, this round trip should not have any impact on the terms and
formulas coming from the original Why3 goal. Of course, there is no reason why
such a plug-in could not be used for other kinds of Coq proofs, at least when they use
the first-order fragment of Coq’s logic. Somehow, it would provide a first (modest)
step towards a Sledgehammer-like tactic for Coq. This Coq plug-in is already work
in progress.

Bibliography

[1] Jean-Raymond Abrial. The B-Book, assigning programs to meaning. Cam-
bridge University Press, 1996.

[2] M. Barbosa, Jean-Christophe Filliâtre, J. Sousa Pinto, and B. Vieira. A De-
ductive Verification Platform for Cryptographic Software. In 4th International
Workshop on Foundations and Techniques for Open Source Software Certifi-
cation (OpenCert 2010), volume 33, Pisa, Italy, September 2010. Electronic
Communications of the EASST.

[3] Romain Bardou, Jean-Christophe Filliâtre, Johannes Kanig, and Stéphane
Lescuyer. Faire bonne figure avec Mlpost. In Vingtièmes Journées Fran-
cophones des Langages Applicatifs, Saint-Quentin sur Isère, January 2009.
INRIA.

[4] Mike Barnett, Robert DeLine, Bart Jacobs, Bor-Yuh Evan Chang, and
K. Rustan M. Leino. Boogie: A Modular Reusable Verifier for Object-Oriented
Programs. In Frank S. de Boer, Marcello M. Bonsangue, Susanne Graf, and
Willem-Paul de Roever, editors, Formal Methods for Components and Objects:
4th International Symposium, volume 4111 of Lecture Notes in Computer Sci-
ence, pages 364–387, 2005.

[5] Mike Barnett, K. Rustan M. Leino, K. Rustan, M. Leino, and Wolfram
Schulte. The Spec# Programming System: An Overview. pages 49–69.
Springer, 2004.

[6] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# Pro-
gramming System: An Overview. In Construction and Analysis of Safe, Se-
cure, and Interoperable Smart Devices (CASSIS’04), volume 3362 of Lecture
Notes in Computer Science, pages 49–69. Springer, 2004.

[7] Clark Barrett and Cesare Tinelli. CVC3. In Damm and Hermanns [31], pages
298–302.

67

68 BIBLIOGRAPHY

[8] Patrick Baudin, Jean-Christophe Filliâtre, Claude Marché, Benjamin Monate,
Yannick Moy, and Virgile Prevosto. ACSL: ANSI/ISO C Specification Lan-
guage, version 1.4, 2009. http://frama-c.cea.fr/acsl.html.

[9] Bernhard Beckert, Reiner Hähnle, and Peter H. Schmitt, editors. Verifica-
tion of Object-Oriented Software: The KeY Approach, volume 4334 of Lecture
Notes in Computer Science. Springer, 2007.

[10] J.L. Bentley. Programming Pearls. Addison-Wesley, 1986.

[11] Yves Bertot. From Semantics to Computer Science, essays in Honour of Gilles
Kahn, chapter Theorem proving support in programming language semantics,
pages 337–361. Cambridge University Press, 2009.

[12] Joshua Bloch. Nearly all binary searches and mergesorts are
broken, 2006. http://googleresearch.blogspot.com/2006/06/
extra-extra-read-all-about-it-nearly.html.

[13] François Bobot. Logique de séparation et vérification déductive. Thèse de
doctorat, Université Paris-Sud, 2011.

[14] François Bobot, Sylvain Conchon, Évelyne Contejean, Mohamed Iguernelala,
Stéphane Lescuyer, and Alain Mebsout. The Alt-Ergo automated theorem
prover, 2008. http://alt-ergo.lri.fr/.

[15] François Bobot, Jean-Christophe Filliâtre, Claude Marché, and Andrei Paske-
vich. The Why3 platform. LRI, CNRS & Univ. Paris-Sud & INRIA Saclay,
version 0.64 edition, February 2011. http://why3.lri.fr/.

[16] François Bobot, Jean-Christophe Filliâtre, Claude Marché, and Andrei Paske-
vich. Why3: Shepherd your herd of provers. In Boogie 2011: First Interna-
tional Workshop on Intermediate Verification Languages, Wroc law, Poland,
August 2011.

[17] François Bobot and Andrei Paskevich. Expressing Polymorphic Types in a
Many-Sorted Language, 2011. Preliminary report. http://hal.inria.fr/
inria-00591414/.

[18] Sylvie Boldo, François Clément, Jean-Christophe Filliâtre, Micaela Mayero,
Guillaume Melquiond, and Pierre Weis. Formal Proof of a Wave Equation
Resolution Scheme: the Method Error. In Matt Kaufmann and Lawrence C.
Paulson, editors, Proceedings of the first Interactive Theorem Proving Confer-
ence, volume 6172 of LNCS, pages 147–162, Edinburgh, Scotland, July 2010.
Springer. (merge of TPHOLs and ACL2).

[19] Sylvie Boldo and Jean-Christophe Filliâtre. Formal Verification of Floating-
Point Programs. In 18th IEEE International Symposium on Computer Arith-
metic, pages 187–194, Montpellier, France, June 2007.

BIBLIOGRAPHY 69

[20] Sylvie Boldo, Jean-Christophe Filliâtre, and Guillaume Melquiond. Combin-
ing Coq and Gappa for Certifying Floating-Point Programs. In 16th Sympo-
sium on the Integration of Symbolic Computation and Mechanised Reasoning,
volume 5625 of Lecture Notes in Artificial Intelligence, pages 59–74, Grand
Bend, Canada, July 2009. Springer.

[21] Richard Bornat. Proving pointer programs in Hoare logic. In Mathematics of
Program Construction, pages 102–126, 2000.

[22] Frederick P. Brooks, Jr. The mythical man-month (anniversary ed.). Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1995.

[23] Rod Burstall. Some techniques for proving correctness of programs which
alter data structures. Machine Intelligence, 7:23–50, 1972.

[24] Arthur Charguéraud. Characteristic formulae for the verification of imperative
programs. In Manuel M. T. Chakravarty, Zhenjiang Hu, and Olivier Danvy,
editors, Proceeding of the 16th ACM SIGPLAN international conference on
Functional Programming (ICFP), pages 418–430, Tokyo, Japan, September
2011. ACM.

[25] Sylvain Conchon and Jean-Christophe Filliâtre. Type-Safe Modular Hash-
Consing. In ACM SIGPLAN Workshop on ML, Portland, Oregon, September
2006.

[26] Sylvain Conchon and Jean-Christophe Filliâtre. A Persistent Union-Find Data
Structure. In ACM SIGPLAN Workshop on ML, pages 37–45, Freiburg, Ger-
many, October 2007. ACM.

[27] Sylvain Conchon and Jean-Christophe Filliâtre. Semi-Persistent Data Struc-
tures. In 17th European Symposium on Programming (ESOP’08), Budapest,
Hungary, April 2008.

[28] Sylvain Conchon, Jean-Christophe Filliâtre, and Julien Signoles. Designing
a Generic Graph Library using ML Functors. In Marco T. Morazán, editor,
Trends in Functional Programming Volume 8: Selected Papers of the 8th In-
ternational Symposium on Trends in Functional Programming (TFP’07), New
York, USA, volume 8. Intellect, 2008.

[29] Jean-François Couchot and Stéphane Lescuyer. Handling polymorphism in
automated deduction. In 21th International Conference on Automated De-
duction (CADE-21), volume 4603 of LNCS (LNAI), pages 263–278, Bremen,
Germany, July 2007.

[30] Markus Dahlweid, Michal Moskal, Thomas Santen, Stephan Tobies, and Wol-
fram Schulte. VCC: Contract-based modular verification of concurrent C.
In 31st International Conference on Software Engineering, ICSE 2009, May

70 BIBLIOGRAPHY

16-24, 2009, Vancouver, Canada, Companion Volume, pages 429–430. IEEE
Comp. Soc. Press, 2009.

[31] Werner Damm and Holger Hermanns, editors. Computer Aided Verification,
volume 4590 of Lecture Notes in Computer Science, Berlin, Germany, July
2007. Springer.

[32] Leonardo de Moura and Nikolaj Bjørner. Z3, an efficient SMT solver. http:
//research.microsoft.com/projects/z3/.

[33] Leonardo de Moura and Bruno Dutertre. Yices: An SMT Solver. http:
//yices.csl.sri.com/.

[34] David Detlefs, Greg Nelson, and James B. Saxe. Simplify: a theorem prover
for program checking. J. ACM, 52(3):365–473, 2005.

[35] Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal deriva-
tion of programs. Commun. ACM, 18:453–457, August 1975.

[36] Jean-Christophe Filliâtre. Preuve de programmes impératifs en théorie des
types. PhD thesis, Université Paris-Sud, July 1999.

[37] Jean-Christophe Filliâtre. Verification of non-functional programs using inter-
pretations in type theory. Journal of Functional Programming, 13(4):709–745,
July 2003.

[38] Jean-Christophe Filliâtre. Backtracking iterators. In ACM SIGPLAN Work-
shop on ML, Portland, Oregon, September 2006.

[39] Jean-Christophe Filliâtre. Formal Proof of a Program: Find. Science of
Computer Programming, 64:332–240, 2006.

[40] Jean-Christophe Filliâtre. Formal Verification of MIX Programs. In Journées
en l’honneur de Donald E. Knuth, Bordeaux, France, October 2007. http:
//knuth07.labri.fr/exposes.php.

[41] Jean-Christophe Filliâtre. A Functional Implementation of the Garsia–Wachs
Algorithm. In ACM SIGPLAN Workshop on ML, Victoria, British Columbia,
Canada, September 2008. ACM.

[42] Jean-Christophe Filliâtre. Verifying two lines of C with Why3: an exercise in
program verification. In Verified Software: Theories, Tools and Experiments
(VSTTE), Philadelphia, USA, January 2012.

[43] Jean-Christophe Filliâtre and K. Kalyanasundaram. Functory: A distributed
computing library for Objective Caml. In Trends in Functional Programming,
Madrid, Spain, May 2011.

BIBLIOGRAPHY 71

[44] Jean-Christophe Filliâtre and Pierre Letouzey. Functors for Proofs and Pro-
grams. In Proceedings of The European Symposium on Programming, volume
2986 of Lecture Notes in Computer Science, pages 370–384, Barcelona, Spain,
April 2004.

[45] Jean-Christophe Filliâtre and Nicolas Magaud. Certification of Sorting Al-
gorithms in the System Coq. In Theorem Proving in Higher Order Logics:
Emerging Trends, Nice, France, 1999.

[46] Jean-Christophe Filliâtre and Claude Marché. Multi-Prover Verification of C
Programs. In Sixth International Conference on Formal Engineering Methods,
pages 15–29. Springer, 2004.

[47] Jean-Christophe Filliâtre and Claude Marché. The Why/Krakatoa/Caduceus
platform for deductive program verification. In Damm and Hermanns [31],
pages 173–177.

[48] Jean-Christophe Filliâtre and F. Pottier. Producing All Ideals of a Forest,
Functionally. Journal of Functional Programming, 13(5):945–956, September
2003.

[49] Robert W. Floyd. Assigning meanings to programs. In J. T. Schwartz, editor,
Mathematical Aspects of Computer Science, volume 19 of Proceedings of Sym-
posia in Applied Mathematics, pages 19–32, Providence, Rhode Island, 1967.
American Mathematical Society.

[50] The Frama-C platform for static analysis of C programs, 2008. http://www.
frama-c.cea.fr/.

[51] Paolo Herms, Claude Marché, and Benjamin Monate. A certified multi-prover
verification condition generator. In Rajeev Joshi, Peter Müller, and Andreas
Podelski, editors, VSTTE, Lecture Notes in Computer Science. Springer, 2012.

[52] C. A. R. Hoare. An axiomatic basis for computer programming. Communi-
cations of the ACM, 12(10):576–580 and 583, October 1969.

[53] C. A. R. Hoare. Proof of a program: Find. Commun. ACM, 14:39–45, January
1971.

[54] Thierry Hubert and Claude Marché. Separation analysis for deductive ver-
ification. In Heap Analysis and Verification (HAV’07), pages 81–93, Braga,
Portugal, March 2007.

[55] Gérard Huet. The Zipper. Journal of Functional Programming, 7(5):549–554,
Septembre 1997.

[56] Johannes Kanig. Spécification et preuve de programmes d’ordre supérieur.
Thèse de doctorat, Université Paris-Sud, 2010.

72 BIBLIOGRAPHY

[57] Johannes Kanig and Jean-Christophe Filliâtre. Who: A Verifier for Effectful
Higher-order Programs. In ACM SIGPLAN Workshop on ML, Edinburgh,
Scotland, UK, August 2009.

[58] Matt Kaufmann, J. Strother Moore, and Panagiotis Manolios. Computer-
Aided Reasoning: An Approach. Kluwer Academic Publishers, Norwell, MA,
USA, 2000.

[59] Gerwin Klein, June Andronick, Kevin Elphinstone, Gernot Heiser, David
Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski,
Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. seL4:
Formal verification of an OS kernel. Communications of the ACM, 53(6):107–
115, June 2010.

[60] Donald E. Knuth. The Art of Computer Programming, volume 1 (3rd ed.):
Fundamental Algorithms. Addison Wesley Longman Publishing Co., Inc.,
1997.

[61] Donald E. Knuth. The Art of Computer Programming, volume 2 (3rd ed.):
Seminumerical Algorithms. Addison-Wesley Longman Publishing Co., Inc.,
1997.

[62] Piotr Kosiuczenko. An abstract machine for the old value retrieval. In Claude
Bolduc, Jules Desharnais, and Béchir Ktari, editors, MPC, volume 6120 of
Lecture Notes in Computer Science, pages 229–247. Springer, 2010.

[63] Gary T. Leavens, K. Rustan M. Leino, Erik Poll, Clyde Ruby, and Bart
Jacobs. JML: notations and tools supporting detailed design in Java. In
OOPSLA 2000 Companion, Minneapolis, Minnesota, pages 105–106, 2000.

[64] K. Rustan M. Leino. Efficient weakest preconditions. Information Processing
Letters, 93(6):281–288, 2005.

[65] K. Rustan M. Leino. Dafny: An Automatic Program Verifier for Functional
Correctness. In Springer, editor, LPAR-16, volume 6355, pages 348–370, 2010.

[66] K. Rustan M. Leino and Micha l Moskal. VACID-0: Verification of ample
correctness of invariants of data-structures, edition 0. In Proceedings of Tools
and Experiments Workshop at VSTTE, 2010.

[67] Rustan Leino and Rosemary Monahan. Automatic verification of textbook
programs that use comprehensions. In Formal Techniques for Java-like Pro-
grams (FTfJP 2007), Berlin, Germany, July 2007.

[68] Xavier Leroy. A modular module system. Journal of Functional Programming,
10(3):269–303, 2000.

BIBLIOGRAPHY 73

[69] Xavier Leroy. A formally verified compiler back-end. Journal of Automated
Reasoning, 43(4):363–446, 2009.

[70] Pierre Letouzey. Programmation fonctionnelle certifiée: l’extraction de pro-
grammes dans l’assistant Coq. Thèse de doctorat, Université Paris-Sud, July
2004.

[71] Z. Manna and J. Mccarthy. Properties of programs and partial function logic.
In Machine Intelligence, volume 5, 1970.

[72] Maŕıa Manzano. Extensions of first order logic. Cambridge University Press,
New York, NY, USA, 1996.

[73] Claude Marché. Jessie: an intermediate language for Java and C verification.
In Programming Languages meets Program Verification (PLPV), pages 1–2,
Freiburg, Germany, 2007. ACM.

[74] Claude Marché, Christine Paulin-Mohring, and Xavier Urbain. The Kraka-
toa tool for certification of Java/JavaCard programs annotated in JML.
Journal of Logic and Algebraic Programming, 58(1–2):89–106, 2004. http:
//krakatoa.lri.fr.

[75] Jia Meng and Lawrence C. Paulson. Translating higher-order clauses to first-
order clauses. Journal of Automated Reasoning, 40:35–60, 2008.

[76] Bertrand Meyer. Eiffel: The Language. Prentice Hall, Hemel Hempstead,
1992.

[77] R. Milner. A theory of type polymorphismn in programming. Journal of
Computer and System Sciences, 17, 1978.

[78] Christine Paulin Mohring and Benjamin Werner. Synthesis of ml programs
in the system coq. Journal of Symbolic Computation, 15:607–640, 1993.

[79] F. L. Morris and C. B. Jones. An early program proof by Alan Turing. IEEE
Annals of the History of Computing, 6(2):139–143, April 1984.

[80] Aleksandar Nanevski, Greg Morrisett, Avi Shinnar, Paul Govereau, and Lars
Birkedal. Ynot: Reasoning with the awkward squad. In Proceedings of
ICFP’08, 2008.

[81] Greg Nelson and Derek C. Oppen. Fast decision procedures based on congru-
ence closure. J. ACM, 27(2):356–364, 1980.

[82] Tobias Nipkow. Winskel is (almost) right: Towards a mechanized semantics
textbook. Formal Aspects of Computing, 10:171–186, 1998.

[83] S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS
Language Reference. Computer Science Laboratory, SRI International, Menlo
Park, CA, September 1999.

74 BIBLIOGRAPHY

[84] Sam Owre and N. Shankar. Theory interpretations in PVS. Technical Report
SRI-CSL-01-01, SRI International, 2001.

[85] Lawrence C. Paulson. Introduction to isabelle. Technical report, University
of Cambridge, 1993.

[86] Benjamin C. Pierce, Chris Casinghino, Michael Greenberg, Vilhelm Sjoberg,
and Brent Yorgey. Software Foundations. Distributed electronically, 2011.

[87] Silvio Ranise and David Deharbe. Light-weight theorem proving for debugging
and verifying units of code. In Proc. SEFM’03, Canberra, Australia, Septem-
ber 2003. IEEE Computer Society Press. http://www.loria.fr/equipes/
cassis/softwares/haRVey/.

[88] Yann Régis-Gianas and François Pottier. A Hoare logic for call-by-value func-
tional programs. In Proceedings of the Ninth International Conference on
Mathematics of Program Construction (MPC’08), pages 305–335, 2008.

[89] J. C. Reynolds. Separation logic: a logic for shared mutable data structures.
In 17h Annual IEEE Symposium on Logic in Computer Science. IEEE Comp.
Soc. Press, 2002.

[90] Norbert Schirmer. Verification of Sequential Imperative Programs in Is-
abelle/HOL. PhD thesis, Technische Universität München, 2006.

[91] Natarajan Shankar and Peter Mueller. Verified Software: Theories, Tools and
Experiments (VSTTE’10). Software Verification Competition, August 2010.
http://www.macs.hw.ac.uk/vstte10/Competition.html.

[92] R. E. Shostak. Deciding combinations of theories. Journal of the ACM, 31:1–
12, 1984.

[93] Julien Signoles. Extension de ML avec raffinement : syntaxe, sémantiques et
système de types. Thèse de doctorat, Université Paris-Sud, July 2006.

[94] G. Sutcliffe and C. Suttner. The State of CASC. AI Communications,
19(1):35–48, 2006.

[95] G. Sutcliffe and C.B. Suttner. The TPTP Problem Library: CNF Release
v1.2.1. Journal of Automated Reasoning, 21(2):177–203, 1998.

[96] Jean-Pierre Talpin and Pierre Jouvelot. Polymorphic type, region and effect
inference. Journal of Functional Programming, 2(3):245–271, 1992.

[97] Jean-Pierre Talpin and Pierre Jouvelot. The type and effect discipline. Infor-
mation and computation, 111(4):245–298, June 1994.

[98] The Coq Development Team. The Coq Proof Assistant Reference Manual –
Version V8.2, 2008. http://coq.inria.fr.

BIBLIOGRAPHY 75

[99] Laurent Théry. Proving pearl: Knuth’s algorithm for prime numbers. In
David Basin and Burkhart Wolff, editors, Proceedings of the 16th International
Conference on Theorem Proving in Higher Order Logics (TPHOLs 2003),
volume 2758 of LNCS. Springer-Verlag, 2003.

[100] Harvey Tuch, Gerwin Klein, and Michael Norrish. Types, bytes, and separa-
tion logic. In Martin Hofmann and Matthias Felleisen, editors, Proc. 34th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL’07), pages 97–108, Nice, France, January 2007.

[101] Alan Mathison Turing. Checking a large routine. In Report of a Conference
on High Speed Automatic Calculing Machines, pages 67–69, Cambridge, 1949.
Mathematical Laboratory.

[102] Andrew K. Wright. Simple imperative polymorphism. LISP and symbolic
computation, 8:343–355, 1995.

Index

∇, 32
42, 42
91 function, 4, 38

alias, 30
Alt-Ergo, 11, 14, 16, 17, 38, 52
arithmetic

overflow, 3, 55
Presburger, 13

array, 24

Barthe, Gilles, x
Bentley, Jon, 4, 52
Bertot, Yves, x, 60
Bertrand’s postulate, 5
binary search, 3, 52
Bobot, François, ix, 15, 16, 20
Boldo, Sylvie, ix

Caduceus, ix, 15, 57
Castéran, Pierre, x
Charguéraud, Arthur, 9
cloning

modules, 63
theories, 21

CompCert, xi, 9, 10, 60
Conchon, Sylvain, x
consistance, see crème de marrons
Coq, ix, 5, 13, 14, 60, 64, 65
Couchot, Jean-François, 15
Courant, Judicaël, 38
Cousineau, Guy, x

crème de marrons, see consistance
CVC Lite, 14
CVC3, 10, 38
cycle detection, 4, 40

Dafny, 6, 9, 61
Danvy, Olivier, xi
di Cosmo, Roberto, xi
Doligez, Damien, x
driver, 22

exponentiation
fast, 44

Fibonacci, 42
FIND (program), 3
Floyd, Robert, 4, 40
Frama-C, 57, 60
fringe, see same fringe

Gappa, x
ghost code, 61

haRVey, 14
Herms, Paolo, 60
higher-order, 63
Hoare, Tony, 3
HOL Light, 14
HOL4, 14
Huet, Gérard, 50
Huet, Gérard, xi

IDE

77

78 INDEX

of Why3, 22
induction, 52
invariant, 15
Isabelle/HOL, 14

Jessie, 15, 57
Jouvelot, Pierre, 30

Kanig, Johannes, 64
Knuth, Donald E., 5, 15, 45
Krakatoa, 14, 15, 57

Leino, K. Rustan M., x, 64
Leroy, Xavier, x, xi, 9
Lescuyer, Stéphane, 15
Letouzey, Pierre, ix
lexicographic order, 18, 39, 48

Magaud, Nicolas, 13
Marché, Claude, ix, 14–16, 22
McCarthy, John, 4, 38
Melquiond, Guillaume, x
memory model, 53
MIX, 5, 15
Mizar, 14
model type, 24, 25

N -queens, 37

OCaml, x, 24, 61, 63–65
overflow, 3

Paskevich, Andrei, 15, 16, 20, 63
Paulin, Christine, xi, 14
prime number, 45
procrastination, 1–78
programs

of Why3, see WhyML
ProVal, ix, x, 13, 15, 52, 57, 60
PVS, 14, 15, 22, 60

reference, 24
region, 26

run-time assertion checking, 62

same fringe, 49
Shankar, Natarajan, x, 60
Signoles, Julien, x
Simplify, 14

Talpin, Jean-Pierre, 30
termination, 4, 38
Théry, Laurent, 5, 13
theory, 20
tortoise and hare (algorithm), 4, 40
Turing, Alan, 2

Urbain, Xavier, 14

variant, 4, 29, 38, 41
Vieira, Bárbara, 15

W, algorithm, 30
weakest precondition, 31
Why, x, 5, 13, 14, 15, 37, 52
Why3, 13, 13, 16–18, 20, 22–25, 29–

31, 35, 37–39, 42, 45, 52–57,
59–65

WhyML, 17, 23, 23, 24–28, 61, 63, 78

Yices, 10
Ynot, 9

Z3, 10, 38
Zenon, 14
zipper, 50

