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Abstract. We present Functory, a distributed computing library for
Objective Caml. The main features of this library include (1) a polymor-
phic API, (2) several implementations to adapt to different deployment
scenarios such as sequential, multi-core or network, and (3) a reliable
fault-tolerance mechanism. This paper describes the motivation behind
this work, as well as the design and implementation of the library. It also
demonstrates the potential of the library using realistic experiments.

1 Introduction

This paper introduces Functory, a generic library for distributed computing for
a widely used functional programming language, Objective Caml (OCaml for
short). This work was initially motivated by the computing needs that exist in
our own research team. Our applications include large-scale deductive program
verification, which amounts to checking the validity of a large number of logi-
cal formulas using a variety of automated theorem provers [7]. Our computing
infrastructure consists of a few powerful multi-core machines (typically 8 to 16
cores) and several desktop PCs (typically dual-core). However, for our applica-
tion needs, no existing library provides a polymorphic API with usual map/fold
higher-order operations, built-in fault-tolerance, and the ability to easily switch
between multi-core and network infrastructures. Hence we designed and imple-
mented such a library, which is the subject of this paper. The library is available
at http://functory.lri.fr/.

The distributed computing library presented in this paper is not a library
that helps in parallelizing computations. Rather, it provides facilities for reliable,
distributed execution of parallelizable computations. In particular, it provides a
set of user-friendly APIs that allows distributed execution of large-scale paral-
lelizable computations, very relevant to our application needs (and also relevant
to a variety of real-world applications). Further, the distributed execution could
be over multiple cores in the same machine or over a network of machines. The
most important features of our library are the following:

? This research was partly supported by the French national project U3CAT (Unifi-
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– Genericity : it allows various patterns of polymorphic computations;
– Simplicity : switching between multiple cores on the same machine and a

network of machines is as simple as changing a couple of lines of code;
– Task distribution and fault-tolerance: it provides automatic task distribu-

tion and a robust fault-tolerance mechanism, thereby relieving the user from
implementing such routines.

The application domain of such a distributed computing library is manyfold. It
serves a variety of users and a wide spectrum of needs, from desktop PCs to net-
works of machines. Typical applications would involve executing a large number
of computationally expensive tasks in a resource-optimal and time-efficient man-
ner. This is also the case in our research endeavours, that is validating thousands
of verification conditions using automated theorem provers, utilizing the com-
puting infrastructure to the maximum. It is worth noting that Functory is not
targeted at applications running on server farms, crunching enormous amounts
of data, such as Google’s MapReduce [6].

In the following, we introduce our approach to distributed computing in a
functional programming setting and distinguish it from related work.

Distributed Computing. A typical distributed computing library, as Functory,
provides the following (we borrow some terminology from Google’s MapReduce):

– A notion of tasks which denote atomic computations to be performed in a
distributed manner;

– A set of processes (possibly executing on remote machines) called workers
that perform the tasks, producing results;

– A single process called a master which is in charge of distributing the tasks
among the workers and managing results produced by the workers.

In addition to the above, distributed computing environments also implement
mechanisms for fault-tolerance, efficient storage, and distribution of tasks. This
is required to handle network failures that may occur, as well as to optimize the
usage of machines in the network. Another concern of importance is the trans-
mission of messages over the network. This requires efficient marshaling of data,
that is encoding and decoding of data for transmission over different computing
environments. It is desirable to maintain architecture independence while trans-
mitting marshalled data, as machines in a distributed computing environment
often run on different hardware architectures and make use of different software
platforms. For example, machine word size or endianness may be different across
machines on the network.

A Functional Programming Approach. Our work was initially inspired by Google’s
MapReduce1. However, our functional programming environment allows us to be

1 Ironically, Google’s approach itself was inspired by functional programming primi-
tives.



more generic. The main idea behind our approach is that workers may implement
any polymorphic function:

worker: ’a -> ’b

where ’a denotes the type of tasks and ’b the type of results. Then the master
is a function to handle the results together with a list of initial tasks:

master: (’a -> ’b -> ’a list) -> ’a list -> unit

The function passed to the master is applied whenever a result is available. The
first argument is the task (of type ’a) and the second one its result (of type ’b).
It may in turn generate new tasks, hence the return type ’a list. The master is
executed as long as there are pending tasks.

Our library makes use of OCaml’s marshaling capabilities as much as pos-
sible. Whenever master and worker executables are exactly the same, we can
marshal polymorphic values and closures. However, it is not always possible to
have master and workers running the same executable. In this case, we cannot
marshal closures anymore but we can still marshal polymorphic values as long
as the same version of OCaml is used to compile master and workers. When
different versions of OCaml are used, we can no longer marshal values but we
can still transmit strings between master and workers. Our library adapts to all
these situations, by providing several APIs.

Related Work. In order to compare and better distinguish Functory from others
work with related goals and motivations, we can broadly classify the related
work in this domain into:

1. Distributed Functional Languages (DFLs) — functional languages that pro-
vide built-in primitives for distribution. Examples include ML5, JoCaml,
Glasgow Distributed Haskell, Erlang, etc.

2. Libraries for existing functional languages — that could be readily used in
order to avoid implementing details like task distribution, fault-tolerance,
socket programming, etc.

Functory belongs to the second category. For reasons of completeness, though,
we first describe some existing DFLs related to functional programming.

JoCaml is one of the DFLs which provides communication primitives (like
channels) for facilitating transmission of computations. However, it does not pro-
vide ready-made language features for fault-tolerance, which is indispensable in
a distributed setting. The user has to include code for fault-tolerance, as already
demonstrated in some JoCaml library [10]. ML5 [11], a variant of ML, is a pro-
gramming language for distributed computing, specialized for web programming.
It provides primitives for transferring control between the client and the server,
as well as low-level primitives for marshaling the data. As in the case before,
ML5 is a programming language that offers primitives for code mobility, and the
code for distribution of computation and fault-tolerance has to be included by
the user. ML5 implements type-safe marshaling and Functory does not, though
an existing type-safe marshaling library could be used with Functory. Glasgow



Distributed Haskell (GdH) [13] is a pure distributed functional language that
is built on top of Glasgow Haskell and provides features for distributed com-
puting. It is an extension of both Glasgow Parallel Haskell, that supports only
one process and multiple threads and Concurrent Haskell that supports multiple
processes. It also offers features for fault-tolerance - error detection and error
recovery primitives in the language.

CamlP3l [1] mixes the features of functional programming with predefined
patterns for parallel computation to offer a parallel programming environment.
Again, it is a programming language offering primitives for distributing compu-
tation to parallel processes and also to merge the results from parallel executions.
Erlang [3] is a programming language which has features for distribution and
fault-tolerance. In particular, it has features for task distribution and is more
well-known for its rich error detection primitives and the ability to support
hot-swapping. The error detection primitives of Erlang allow nodes to monitor
processes in other nodes and also facilitate automatic migration of tasks in failed
nodes to recovered or active nodes.

Any DFL above could have been used to implement our library. Our moti-
vation, though, was neither to implement our system using any existing DFL
nor to come up with a new DFL. The goal of Functory is rather to provide the
users of an existing general-purpose functional programming language, namely
OCaml, high-level user-friendly APIs that hide the messy details of task distri-
bution and fault-tolerance. We now turn to distributed computing libraries for
general purpose functional languages and weed out the distinguishing features
of Functory.

There are several implementations of Google’s MapReduce in functional pro-
gramming languages. But Functory was just inspired by Google’s MapReduce
and is not exactly a MapReduce implementation. The simplest difference comes
from the very fact that Functory does not operate on key/value pairs. Plas-
maMR [2] is an OCaml implementation of Google’s MapReduce on a distributed
file system PlasmaFS. It is able to use PlasmaFS to its advantage — the abil-
ity of the file system to handle large files and query functions that implement
data locality to optimize network traffic. However, PlasmaMR does not support
fault-tolerance which is indispensable in any distributed computing application.
Another MapReduce implementation in OCaml is Yohann Padioleau’s [12]. It is
built on top of OCamlMPI [9], while our approach uses a homemade protocol
for message passing. Currently, we have less flexibility w.r.t. deployment of the
user program than OCamlMPI; on the other hand, we provide a more generic
API together with fault-tolerance. We feel that an indispensible need for any dis-
tributed computing library is fault-tolerance, and using a homemade protocol
enables us to tune our implementation to our needs of fault-tolerance.

The iTask system [8] is a library for the functional language ‘Clean’ targeted
at distributed workflow management. The library provides a set of combinators
(some of which perform map/fold operations) that facilitate applications running
in different nodes of a distributed system to communicate, exchange information
and coordinate their computations in a type-safe manner.



2 API

This section describes our API. We start from a simple API which is reduced to
a single higher-order polymorphic function. Then we explain how this function
is actually implemented in terms of low-level primitives, which are also provided
in our API. Conversely, we also explain how the same function can be used to
implement high-level distribution functions for map and fold operations. Finally,
we explain how our API is implemented in five different ways, according to five
different deployment scenarios.

2.1 A Generic Distribution Function

The generic distribution function in our API follows the idea sketched in the
introduction. It has the following signature:

val compute:
worker:(’a -> ’b) ->
master:(’a * ’c -> ’b -> (’a * ’c) list) -> (’a * ’c) list -> unit

Tasks are pairs, of type ’a * ’c, where the first component is passed to the
worker and the second component is local to the master. The worker function
should be pure2 and is executed in parallel in all worker processes. The function
master, on the contrary, can be impure and is only executed sequentially in the
master process. The master function typically stores results in some internal data
structure. Additionally, it may produce new tasks, as a list of type (’a * ’c) list,
which are then appended to the current set of pending tasks.

2.2 Low-level Primitives

The function compute above can actually be implemented in terms of low-level
primitives, such as adding a task, adding a worker, performing some communi-
cation between master and workers, etc. These primitives are provided in our
API, such that the user can interact with the execution of the distributed com-
putation. For instance, a monitoring-like application can use these primitives
to allow observation and modification of resources (tasks, workers) during the
course of a computation. A type for distributed computations is introduced:

type (’a, ’c) computation

A computation is created with a function create, which accepts the same worker
and master as compute:

val create: worker:(’a -> ’b) ->
master:(’a * ’c -> ’b -> (’a * ’c) list) -> (’a, ’c) computation

Contrary to compute, it takes no list of tasks and returns immediately. Tasks
can be added later using the following function:
2 We mean observationally pure here but we allow exceptions to be raised to signal
failures.



val add_task: (’a, ’c) computation -> ’a * ’c -> unit

A function is provided to perform one step of a given computation:

val one_step: (’a, ’c) computation -> unit

Calling this function results in one exchange of messages between master and
workers: task assignments to workers, results returned to the master, etc. A few
other functions are provided, such as status to query the status of a computation,
clear to remove all tasks, etc.

Using these low-level primitives, it is straightforward to implement the com-
pute function. Basically, it is as simple as the following:

let compute ~worker ~master tasks =
let c = create worker master in
List.iter (add_task c) tasks;
while status c = Running do one_step c done

2.3 High-level API

In most cases, the easiest way to parallelize an execution is to make use of
operations over lists, where processing of the list elements are done in parallel.
To facilitate such a processing, our library provides most commonly used list
operations, all implemented using our generic compute function.

The most obvious operation is the traditional map operation over lists, that
is val map: f:(’a -> ’b) -> ’a list -> ’b list. Each task consists of the appli-
cation of function f to a list element. More interesting is a combination of map
and fold operations. For instance, we provide different flavors of function

val map_fold: f:(’a -> ’b) -> fold:(’c -> ’b -> ’c) -> ’c -> ’a list -> ’c

which, given two functions, an accumulator a and a list l, computes

fold...(fold(fold a (f x1))(f x2))...(f xn) (1)

for some permutation [x1, x2, ..., xn] of the list l. We assume that the f operations
are always performed in parallel. Regarding fold operations, we distinguish two
cases: either fold operations are computationally less expensive than f and we
perform them locally; or fold operations are computationally expensive and we
perform them in parallel. Thus we provide two functions map_local_fold and
map_remote_fold.

In the case of map_remote_fold, only one fold operation can be performed
at a time (possibly in parallel with f operations), as obvious from (1). However,
there are cases where several fold operations can be performed in parallel, as
early as intermediate results of fold operations are available. This is the case
when fold is an associative operation (which implies that types ’b and ’c are
the same). Whenever fold is also commutative, we can perform even more fold



operations in parallel. Thus our API provides two functions map_fold_a and
map_fold_ac for these two particular cases, with types

val map_fold_ac, map_fold_a:
f:(’a -> ’b) -> fold:(’b -> ’b -> ’b) -> ’b -> ’a list -> ’b

It is rather straightforward to derive these five functions from the generic com-
pute function; we invite readers interested in details to refer to the source code.

2.4 Deployment Scenarios

Actually, our library provides not just one implementation for the API above,
but instead five different implementations depending on the deployment scenario.
The first two scenarios are the following:
1. Purely sequential execution: this is mostly intended to be a reference

implementation for performance comparisons, as well as for debugging;
2. Several cores on the same machine: this implementation is intended to

distribute the computation over a single machine and it makes use of Unix
processes;

The next three scenarios are intended for distributing the computation over a
network of machines.
3. Same executable run on master and worker machines: this implemen-

tation makes use of the ability to marshal OCaml closures and polymorphic
values.

4. Master and workers are different programs, compiled with the
same version of OCaml: we can no longer marshal closures but we can
still marshal polymorphic values. API functions are split into two sets, used
to implement master and workers respectively.

5. Master and workers are different programs, not even compiled with
the same version of OCaml: we can no longer use marshaling, so API
functions are restricted to work on strings instead of polymorphic values.

Our library is organized into three modules: Sequential for the pure sequential
implementation, Cores for multiple cores on the same machine and Network for
a network of machines, respectively. The Network module itself is organized into
three sub-modules, called Same, Poly and Mono, corresponding to contexts 3, 4
and 5 above.

2.5 Several Libraries in One

From the description above, it is clear that our library provides several APIs of
different granularities, as well as several implementations for various deployment
scenarios. Most combinations are meaningful, resulting in thirteen possible dif-
ferent ways of using our library. For instance, one may use the low-level API on a
single multi-core machine, or use the high-level API on a network of machines all
running the same executable, etc. From the implementation point of view, there
is almost no code duplication. We are using OCaml functors to derive specific
implementations from generic ones.



3 Implementation Details

The implementation of the Sequential module is straightforward and does not
require any explanation. The Cores module is implemented with Unix processes,
using the fork and wait system calls provided by the Unix library of OCaml. We
do not describe this implementation but rather focus on the more interesting
module Network.

3.1 Marshaling

As mentioned in Section 2, the Network module actually provides three different
implementations as sub-modules, according to three different execution scenar-
ios, the details of which are presented below:

Same. This module is used when master and workers are running the same
executable. The master and workers have to be differentiated in some manner.
We use an environment variable WORKER for this purpose. When set, it indicates
that the executable acts as a worker. At runtime, a worker immediately enters a
loop waiting for tasks from the master, without even getting into the user code.
As explained in Section 2, the master function has the following signature.

val compute: worker:(’a -> ’b) ->
master:(’a * ’c -> ’b -> (’a * ’c) list) -> (’a * ’c) list -> unit

The master uses marshaling to send both a closure of type ’a -> ’b and a task
of type ’a to the worker. The resulting strings are passed as argument f and x
in message Assign. Similarly, the worker uses marshaling to send back the result
of the computation of type ’b, which is the argument s in message Completed.
These messages are described in detail in Section 3.2.

Though the ability to run the same executable helps a lot in deploying the
program in different machines, it comes at a small price. Since the worker is
not getting into the user code, closures which are transmitted from the master
cannot refer to global variables in the user code. Indeed, the initialization code
for these global variables is never reached on the worker side. For instance, some
code for drawing Mandelbrot’s set could be written as follows:

let max_iterations = 200
let worker si = ... draw sub-image si using max_iterations ...

That is, the global function worker makes use of the global variable max_iterations.
The worker gets the function to compute from the master, namely the closure
corresponding to function worker in that case, but on the worker side the initial-
ization of max_iterations is never executed.

One obvious solution is not to use global variables in the worker code. This
is not always possible, though. To overcome this, the Same sub-module also pro-
vides a Worker.compute function to start the worker loop manually from the user
code. This way, it can be started at any point, in particular after the initializa-
tion of the required global variables. Master and worker are still running the



same executable, but are distinguished using a user-defined way (command-line
argument, environment variable, etc.).

There are situations where it is not possible to run the same executable for
master and workers. For instance, architectures or operating systems could be
different across the network. For that reason, the Network module provides two
other implementations.

Poly. When master and workers are compiled with the same version of OCaml,
we can no longer marshal closures but we can still marshal polymorphic val-
ues. Indeed, an interesting property of marshaling in OCaml is to be fully
architecture-independent, as long as a single version of OCaml is used. It is
worth pointing out that absence of marshaled closures now enables the use of
two different programs for master and workers. This is not mandatory, though,
since master and workers could still be distinguished at runtime as in the previ-
ous case.

On the worker side, the main loop is started manually using Worker.compute.
The computation to be performed on each task is given as an argument to this
function. It thus looks as follows:

Worker.compute: (’a -> ’b) -> unit -> unit

On the master side, the compute function is simpler than in the previous case,
as it has one argument less, and thus has the following signature.

Master.compute:
master:(’a * ’c -> ’b -> (’a * ’c) list) -> (’a * ’c) list -> unit

For realistic applications, where master and workers are completely different
programs, possibly written by different teams, this is the module of choice in
our library, since it can still pass polymorphic values over the network. The
issues of marshaling are automatically taken care of by the OCaml runtime.

The derived API presented in Section 2.3 is adapted to deal with the absence
of closures. Exactly as the compute function, each API now takes two forms, one
for the master and another for the workers. For example, map_fold_ac takes the
following forms.

Worker.map_fold_ac: f:(’a -> ’b) -> fold:(’b -> ’b -> ’b) -> unit
Master.map_fold_ac: ’b -> ’a list -> ’b

It is the responsibility of the user to ensure consistency between master and
workers.

Mono. When master and workers are compiled using different versions of OCaml,
we can no longer use marshaling. As in the previous case, we split compute into
two functions, one for master and one for workers. In addition, values transmitted
over the network can only be strings. The signature thus takes the following form.

Worker.compute: (string -> string) -> unit
Master.compute: master:(string * ’c -> string -> (string * ’c) list) ->

(string * ’c) list -> unit



Any other datatype for tasks should be encoded to/from strings. This conver-
sion is left to the user. Note that the second component of each task is still
polymorphic (of type ’c here), since it is local to the master.

3.2 Protocol

The Network module implements the distributed computing library for a network
of machines. It provides a function declare_workers: n:int -> string -> unit to
fill a table of worker machines.

The Network module is based on a traditional TCP-based client/server archi-
tecture, where each worker is a server and the master is the client of each worker.
The main execution loop is similar to the one in the Cores module, where distant
processes on remote machines correspond to sub-processes and idle cores are the
idle cores of remote workers. The master is purely sequential. In particular, when
running the user master function, it is not capable of performing any task-related
computation. This is not an issue, as we assume the master function not to be
time-consuming. The worker, on the other hand, forks a new process to execute
the task and hence can communicate with the master during its computation.
We subsequently describe issues of message transfer and fault-tolerance.

Messages sent from master to workers could be any of the following kinds:

Assign(id:int, f:string, x:string) This message assigns a new task to the worker,
the task being identified by the unique integer id. The task to be performed
is given by strings f and x, which are interpreted depending on the context.

Kill(id:int) This message tells the worker to kill the task identified by id.
Stop This message informs the worker about completion of the computation, so

that it may choose to exit.
Ping This message is used to check if the worker is still alive, expecting a Pong

message from the worker in return.

Messages sent by workers could be any of the following kinds:

Pong This message is an acknowledgment for a Ping message from the master.
Completed(id:int, s:string) This message indicates the completion of a task

identified by id, with result s.
Aborted(id:int) This message informs the master that the task identified by id

is aborted, either as a response to a Kill message or because of a worker
malfunction.

Our implementation of the protocol works across different architectures, so that
master and workers could be run on completely different platforms w.r.t. endi-
anness, version of OCaml and operating system.

3.3 Fault-Tolerance

The main issue in any distributed computing environment is the ability to handle
faults, which is also a distinguishing feature of our library. The fault-tolerance



mechanism of Functory is limited to workers; handling master failures is the
responsibility of the user, for instance by periodically logging the master’s state.
Worker faults are mainly of two kinds: either a worker is stopped, and possibly
later restarted; or a worker is temporarily or permanently unreachable on the
network. To provide fault-tolerance, our master implementation is keeping track
of the status of each worker. This status is controlled by two timeout parameters
T1 and T2 and Ping and Pong messages sent by master and workers, respectively.
There are four possible statuses for a worker:

not connected: there is no ongoing TCP connection between the master and
the worker;

alive: the worker has sent some message within T1 seconds;
pinged: the worker has not sent any message within T1 seconds and the master

has sent the worker a Ping message within T2 seconds;
unreachable: the worker has not yet responded to the Ping message (for more

than T2 seconds).

Whenever we receive a message from a worker, its status changes to alive and
its timeout value is reset.

not connected alive

pinged

unreachableconnect

ping

any msg.

pong/any msg.

lost connection

Fault tolerance is achieved by exploiting the status of workers as follows.
First, tasks are only assigned to workers with either alive or pinged status. Sec-
ond, whenever a worker executing a task t moves to status not connected or
unreachable, the task t is rescheduled, which means it is put back in the set of
pending tasks. Whenever a task is completed, any rescheduled copy of this task
is either removed from the set of pending tasks or killed if it was already assigned
to another worker.

It is worth noticing that our library is also robust w.r.t. exceptions raised
by the user-provided worker function. In that case, an Aborted message is sent
to the master and the task is rescheduled. It is the responsibility of the user to
handle such exceptions if necessary.

4 Experiments

In this section, we demonstrate the potential of using Functory on several case
studies. The source code for all these case studies is contained in the distribution,
in sub-directory tests/.

The purpose of the following experiments is to compare the various deploy-
ments, namely sequential, cores and network. For this comparison to be fair, all
computations are performed on the same machine, an 8 core Intel Xeon 3.2 GHz
running Debian Linux. The sequential implementation uses a single core. The



multi-core implementation uses up to 8 cores of the machine. The network im-
plementation uses 8 workers running locally and a master running on a remote
machine over a LAN (which incurs communication cost).

4.1 N-queens

The first example is the classical N -queens problem, where we compute the total
number of ways to place N queens on a N × N chessboard in such a way no
two queens attack each other. We use a standard backtracking algorithm for
this problem, which places the queens one by one starting from the first row.
Distributing the computation is thus quite easy: we consider all possible ways
to place queens on the first D rows and then perform the subsequent search in
parallel. Choosing D = 1 will result in exactly N tasks; choosing D = 2 will
result in N2−3N +2 tasks; greater values for D would result in too many tasks.

Each task only consists of three integers and its result is one integer, which is
the total number of solutions for this task. We make use of function map_local_fold
from the derived API, where f is performing the search and fold simply adds
the intermediate results. In the network configuration, we make use of the Net-
work.Same module, workers and master being the same executable.

The following table shows execution times for various values of N and our
three different implementations: Sequential, Cores, and Network. The purpose of
this experiment is to measure the speedup w.r.t. the sequential implementation.
The first column shows the value of N . The number of tasks is shown in sec-
ond column. Then the last three columns show execution times in seconds for
the three implementations. The figures within brackets show the speedup w.r.t.
sequential implementation. Speedup ratios are also displayed in Fig. 1 (note the
logarithmic scale).

N D #tasks Sequential Cores Network
16 1 16 15.2 2.04 (7.45×) 2.35 (6.47×)

2 210 15.2 2.01 (7.56×) 21.80 (0.69×)
17 1 17 107.0 17.20 (6.22×) 16.20 (6.60×)

2 240 107.0 14.00 (7.64×) 24.90 (4.30×)
18 1 18 787.0 123.00 (6.40×) 125.00 (6.30×)

2 272 787.0 103.00 (7.64×) 124.00 (6.34×)
19 1 19 6120.0 937.00 (6.53×) 940.00 (6.51×)

2 306 6130.0 796.00 (7.70×) 819.00 (7.48×)

From the table above and Fig. 1, it is clear that the Cores and Network implemen-
tations provide a significant speedup. As evident from the last row, the speedup
is almost 8, which is also the number of cores we use. It is also evident from the
last column that the Network implementation performs significantly better when
the computation time dominates in the total execution time. The two extreme
cases correspond to the second and the last row: in the second row, the com-
munication time dominates and is in fact more than 91% of the total execution
time; on the other hand, for the last row communication time amounts to just
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Fig. 1. Speedup ratios for the N -queens experiment.

4.6% of the total execution time. As expected, the network implementation is
only beneficial when the computation time for each individual task is significant,
which is the case in realistic examples.

4.2 Matrix Multiplication

This benchmark was inspired by the PASCO’10 programming contest [5]. It
consists of multiplication of two square matrices of dimension 100 with integer
coefficients. Coefficients have several thousands of digits, hence we use GMP [4]
to handle operations over coefficients.

We compare the performances of two different implementations. In the first
one, called mm1, each task consists of the computation of a single coefficient of
the resultant matrix. In the second one, called mm2, each task consists of the
computation of a whole row of the resultant matrix. As a consequence, the total
number of tasks is 10, 000 for mm1 and only 100 for mm2. On the contrary, each
task result for mm1 is a single integer, while for mm2 it is a row of 100 integers.
The experimental results (in seconds) are tabulated below.

mm1 mm2
(10,000 tasks) (100 tasks)

Sequential 20.3 20.2
Cores (2 cores) 22.7 (0.89×) 11.3 (1.79×)

(4 cores) 12.3 (1.65×) 6.1 (3.31×)
(6 cores) 8.6 (2.36×) 4.3 (4.70×)
(8 cores) 8.0 (2.54×) 3.5 (5.77×)



The difference in the number of tasks explains the differences in the speedup
ratios above. We do not include results for the network configuration, as they
do not achieve any benefit with respect to the sequential implementation. The
reason is that the communication cost dominates the computation cost in such a
way that the total execution time is always greater than 30 seconds. Indeed, irre-
spective of the implementation (mm1 or mm2), the total size of the transmitted
data is 106 integers, which in our case amounts to billions of bytes.

A less naive implementation would have the worker read the input matrices
only once, e.g. from a file, and then have the master send only row and column
indices. This would reduce the amount of transmitted data to 10, 000 integers
only.

4.3 Mandelbrot Set

Drawing the Mandelbrot set is another classical example that could be dis-
tributed easily, since the color of each point can be computed independently of
the others. This benchmark consists in drawing the fragment of the Mandelbrot
set with lower left corner (−1.1, 0.2) and upper right corner (−0.8, 0.4), as a
9, 000× 6, 000 image. If the total number of tasks t ≥ 1 is given as a parameter,
it is straight forward to split the image into t sub-images, each of which is com-
puted in parallel with and independently of the others. In our case, the image is
split into horizontal slices. Each task is thus four floating-point numbers denot-
ing the region coordinates, together with two integers denoting the dimensions
of the sub-image to be drawn. The result of the task is a matrix of pixels, of
size 54, 000, 000/t. For instance, using t = 20 tasks will result in 20 sub-images
of size 10.3 Mb each, assuming each pixel is encoded in four bytes.

The sequential computation of this image consumes 29.4 seconds. For Cores
and Network implementations, the computation times in seconds are tabulated
below.

#cores #tasks Cores Network
2 10 15.8 (1.86×) 20.3 (1.45×)

30 15.7 (1.87×) 18.7 (1.57×)
100 16.1 (1.83×) 19.8 (1.48×)
1000 19.6 (1.50×) 38.6 (0.76×)

4 10 9.50 (3.09×) 14.4 (2.04×)
30 8.26 (3.56×) 11.4 (2.58×)
100 8.37 (3.51×) 11.4 (2.58×)
1000 10.6 (2.77×) 20.5 (1.43×)

8 10 9.40 (3.13×) 12.6 (2.33×)
30 4.24 (6.93×) 7.6 (3.87×)
100 4.38 (6.71×) 7.5 (3.92×)
1000 6.86 (4.29×) 11.3 (2.60×)

The best timings are achieved for the Cores configuration, where communica-
tions happen within the same machine and are thus cheaper. There are two



significant differences with respect to the n-queens benchmark. On one hand,
the number of tasks can be controlled more easily than in the case of n-queens.
We experimentally figured out the optimal number of tasks to be 30. On the
other hand, each computation result is an image, rather than just an integer as
in the case of n-queens. Consequently, communication costs are much greater.
In this particular experiment, the total size of the results transmitted is more
than 200 Mb.

4.4 SMT Solvers

Here we demonstrate the potential of our library for our application needs as
mentioned in the introduction. We consider 80 challenging verification conditions
(VC) obtained from the Why platform [7]. Each VC is stored in a file, which is
accessible over NFS. The purpose of the experiment is to check the validity of
each VC using several automated provers (namely Alt-Ergo, Simplify, Z3 and
CVC3).

The master program proceeds by reading the file names, turning them into
tasks by multiplying them by the number of provers, resulting in 320 tasks in
total. Each worker in turn invokes the given prover on the given file, within a
timeout limit of 1 minute. Each task completes with one of the four possible
outcomes: valid, unknown (depending on whether the VC is valid or undecided
by the prover), timeout and failure. The result of each computation is a pair
denoting the status and the time spent in the prover call. The master collects
these results and sums up the timings for each prover and each possible status.

Our computing infrastructure for this experiment consists of 3 machines with
4, 8 and 8 cores respectively, the master being run on a fourth machine. The
figure below shows the total time in minutes spent by each prover for each
possible outcome.

prover valid unknown timeout failure
Alt-ergo 406.0 3.0 11400.0 0.0
Simplify 0.5 0.4 1200.0 222.0

Z3 80.7 0.0 1800.0 1695.0
CVC3 303.0 82.7 4200.0 659.0

These figures sum up to more than 6 hours if provers were executed sequen-
tially. However, using our library and our 3-machine infrastructure, it completes
in 22 minutes and 37 seconds, giving us a speedup of more than 16×. We are still
far away from the ideal ratio of 20× (we are using 20 cores), since some provers
are allocating a lot of memory and time spent in system calls is not accounted
for in the total observed time. However, a ratio of 16× is already a significant
improvement for our day-to-day experiments. Further a large parallelizable com-
putation could be distributed by just adding 3-4 lines of code (to just specify the
module to be used and the tasks) which is an important user-friendly feature of
the library. Further we assume files available over NFS. Intelligent distribution
of data over a network is in itself an area of research which is beyond the scope
of our work.



5 Conclusions and Future Work

In this paper, we presented a distributed programming library for OCaml. The
main features are the genericity of the interface, which makes use of polymor-
phic higher-order functions, and the ability to easily switch between sequential,
multi-core, and network implementations. In particular, Functory allows to use
the same executable for master and workers, which makes the deployment of
small programs immediate — master and workers being only distinguished by
an environment variable. Functory also allows master and workers to be com-
pletely different programs, which is ideal for large scale deployment. Another
distinguishing feature of our library is a robust fault-tolerance mechanism which
relieves the user of cumbersome implementation details. Yet another interesting
feature of the library is the ability to add workers dynamically. Functory also
allows to cascade several distributed computations inside the same program. Fi-
nally, the low-level API of Functory can be used to write interactive programs
where one can adjust certain parameters in a GUI, like increasing or decreas-
ing the number of workers, to observe the progress in computation, resource
consumption, etc.

Future Work. There are still some interesting features that could be added to
our library.

– One is the ability to efficiently assign tasks to workers depending on resource
parameters, such as data locality, CPU power, memory, etc. This could be
achieved by providing the user with the means to control task scheduling.
This would enable Functory to scale up to MapReduce-like applications.
Currently, without any information about the tasks, the scheduling is com-
pletely arbitrary. In both Cores and Network modules, we use traditional
queues for the pending tasks; in particular, new tasks produced by the mas-
ter are appended to the end of the queue.

– Our library provides limited support for retrieving real-time information
about computations and communications. Processing and storing informa-
tion about workers and tasks locally in the master is straightforward.

– One very nice feature of Google’s MapReduce is the possibility to use redun-
dantly several idle workers on the same tasks for speedup when reaching the
end of computation. Since we already have the fault-tolerance implemented,
this optimization should be straightforward to add to our library.

We intend to enrich our library with all above features.
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