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ing All Ideals of a Forest, Fun
tionallyJEAN-CHRISTOPHE FILLIÂTRE�Laboratoire de Re
her
he en Informatique,Universit�e Paris Sud,91405 Orsay Cedex, Fran
eFRANC�OIS POTTIERyINRIA Ro
quen
ourtB.P. 10578153 Le Chesnay Cedex, Fran
eAbstra
tWe present fun
tional implementations of Koda and Ruskey's algorithm for generatingall ideals of a forest poset as a Gray 
ode. Using a 
ontinuation-based approa
h, we givean extremely 
on
ise formulation of the algorithm's 
ore. Then, in a number of steps, wederive a �rst-order version whose eÆ
ien
y is 
omparable to that of a C implementationgiven by Knuth. 1 Introdu
tionIt is sometimes said that fun
tional programming languages are inherently lesseÆ
ient than their imperative 
ounterparts. Today, su
h an opinion has be
ome astereotype without substan
e. Yet, we still 
onfront it regularly, and must provide
onvin
ing \pra
ti
al" eviden
e. In this paper, we show how a 
omplex algorithm,heretofore presented only in an imperative form, 
an be expressed in a programminglanguage equipped with �rst-
lass fun
tions. We obtain 
ode that is more 
on
ise,signi�
antly easier to prove 
orre
t, yet equally eÆ
ient as the original. Then, wederive a �rst-order version of our 
ode, whi
h 
an be easily implemented in C, ifdesired.The algorithm we are interested in is due to Y. Koda and F. Ruskey (Koda &Ruskey, 1993). It enumerates the ideals of 
ertain �nite partially ordered sets|namely, those whose Hasse diagram is a forest|as a Gray 
ode. In general, a Gray
ode is a sequen
e of words su
h that two 
onse
utive words di�er by only oneletter. A widely studied parti
ular 
ase 
onsists in enumerating all binary integers,from 00 � � �0 to 11 � � � 1, as a Gray 
ode. Gray 
odes �nd appli
ation in mathe-mati
s, ele
tri
al engineering, opti
s, s
heduling, network reliability, et
. In fa
t, a� (e-mail: Jean-Christophe.Filliatre�lri.fr)y (e-mail: Fran
ois.Pottier�inria.fr)
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Fig. 1. Koda and Ruskey's algorithm applied to the forest (1).whole se
tion is devoted to them in the fourth volume of Knuth's Art of ComputerProgramming. A preliminary version of this se
tion is 
urrently available ele
troni-
ally (Knuth, 2001b). While writing it, Knuth took interest in Koda and Ruskey'salgorithm, and published two implementations of it (Knuth, 2001a). Our interestarose from these readings.Koda and Ruskey's algorithm 
an be des
ribed in a simple way. The task is toenumerate all 
olorings of a given, arbitrary forest. A 
oloring 
onsists in markingevery node as either bla
k or white, with the sole 
onstraint that all des
endantsof a white node be white as well. For instan
e, the following forest: (1)admits exa
tly 15 distin
t 
olorings, all of whi
h are given in Figure 1. By de�nition,a sequen
e of 
olorings forms a Gray 
ode if and only if every 
oloring of the forestappears exa
tly on
e in it and two 
onse
utive 
olorings di�er by the 
olor of exa
tlyone node.Let us illustrate the algorithm's fun
tioning on the forest (1). The main idea isto interleave the sequen
es of 
olorings whi
h 
orrespond to ea
h of the trees thatform the forest. Here, one must interla
e the sequen
e of the three 
olorings of theleft-hand tree, namely: (2)with the sequen
e of the �ve 
olorings of the right-hand tree, given below: (3)Thus, the �rst line of Figure 1 exhibits the �rst 
oloring of the left-hand tree,
ombined su

essively with all 
olorings of the right-hand tree. The se
ond lineshows the se
ond 
oloring of the left-hand tree, again 
ombined with all 
oloringsof the right-hand tree, but this time in reverse order|indeed, it is 
lear that themirror image of a Gray 
ode remains a Gray 
ode. Lastly, the third line exhibitsthe third 
oloring of the left-hand tree and all 
olorings of the right-hand tree, thistime again in their initial order.



Fun
tional pearl 947There remains to explain how to enumerate all 
olorings of a tree. Let the �rst
oloring be uniformly white. Then, to obtain the remainder of the sequen
e, 
olorthe root node bla
k and enumerate all 
olorings of the forest formed by its 
hildren.The sequen
e thus obtained is indeed a Gray 
ode, be
ause (i) the �rst and se
ond
olorings di�er only by the 
olor of the root node and (ii) from then on, the rootnode remains una�e
ted, and the sequen
e of the 
olorings of the 
hildren forms aGray 
ode by 
onstru
tion. This pro
ess is illustrated by (2) and (3) above. Notethat the 
oloring where every node is bla
k does not ne
essarily appear last in asequen
e.Koda and Ruskey's paper (Koda & Ruskey, 1993) des
ribes two versions of thisalgorithm, written as imperative pseudo-
ode and as Pas
al 
ode. One has 
om-plexity O(nN), where n is the number of nodes in the forest and N is the numberof its 
olorings, that is, the length of the Gray 
ode to be produ
ed. The other isa re�nement with optimal 
omplexity, namely O(N). More re
ently, two C imple-mentations were given by Knuth (Knuth, 2001a). All of these implementations are
omplex: they are typi
ally 50 to 80 lines long and involve imperative modi�
ationsof subtle data stru
tures.The present paper des
ribes an alternative approa
h to implementing Koda andRuskey's algorithm. We begin with a simple algorithm (Se
tion 2), whi
h we �rstimplement in a purely fun
tional manner and then translate into a slightly more im-perative style. Indeed, our programming language is Obje
tive Caml (Leroy et al.,2002), so it is natural to exploit|to some degree|its imperative features. However,it would be possible to use any language that supports �rst-
lass fun
tions and mu-table arrays, su
h as other ML diale
ts, Haskell, Lisp, S
heme, et
. In Se
tion 3,we slightly modify the algorithm so as to a
hieve optimal 
omplexity O(N). Then,Se
tions 4 and 5 present re�ned implementations of the se
ond algorithm, elimi-nating �rst-
lass fun
tions in favor of lower-level representations, while preservingmost of the simpli
ity a�orded by our approa
h. Lastly, Se
tion 6 
ompares ourimplementations with those proposed by Knuth, performan
e-wise.2 A 
ontinuation-based algorithmWe represent a forest as a value of OCaml type forest, de�ned as follows:type tree = Node of int � forestand forest = tree list� list is OCaml's prede�ned type for lists of elements of type �. The list 
ontainingx1; x2; : : : ; xn in this order is written [x1; x2; ...; xn℄. The empty list is written[℄. The addition of an element x at the beginning of a list l is written x :: l. The nnodes of the forest are labeled by the integers 0; 1; : : : ; n�1 in an arbitrary manner.The algorithm needs to maintain a 
urrent 
oloring. It also needs to display every
oloring after it is 
omputed. Thus, our purely fun
tional implementation uses a
ombined I/O and state monad, whose OCaml signature is given in the top halfof Figure 2. A state 
ontains both the 
oloring, represented as an array of integerswhere 0 stands for white and 1 stands for bla
k, and the output displayed so far,



948 J.-C. Filliâtre and F. Pottiertype state = int array � stringtype 
omputation = state ! stateval 
reate : int ! stateval update : int ! int ! 
omputationval get : int ! state ! intval print : 
omputationlet re
 enum_forest k f s = mat
h f with| [℄ ! k s| t :: f ! enum_tree (enum_forest k f) t sand enum_tree k (Node (i,f)) s =if get i s == 0 then(k ++ update i 1 ++ enum_forest k f) selse(enum_forest k f ++ update i 0 ++ k) sFig. 2. A 
ontinuation-based version of Koda and Ruskey's algorithm (C0).represented as a string. A 
omputation is a state transformer, that is, a fun
tionfrom states to states. The state 
reate n is the algorithm's initial state, where everynode is 
olored white. The 
omputation update i 
 
olors node i with 
olor 
. Theoperation get i returns the 
olor of node i. Lastly, the 
omputation print appendsthe des
ription of the 
urrent 
oloring to the output string. Implementing thismonad in OCaml is straightforward; we omit the 
ode. To sequen
e 
omputations,it is 
onvenient to introdu
e the following in�x operation, whi
h is nothing butfun
tion 
omposition:val (++) : 
omputation ! 
omputation ! 
omputationLet us now des
ribe the 
ore of the algorithm. Be
ause trees and forests arede�ned in a mutually indu
tive way, we naturally de�ne two mutually re
ursivefun
tions enum tree and enum forest, whi
h enumerate the 
olorings of a tree andof a forest, respe
tively. The key idea is to give these fun
tions an extra argumentk, of type 
omputation, whi
h will be 
alled after every 
oloring of the tree (resp.forest) is 
omplete. The fun
tion k may be viewed as a 
ontinuation, and we 
allit so in the following. The idea is, if the fun
tion k enumerates the 
olorings of a
ertain forest f0, then the 
omputation enum forest k f enumerates the 
oloringsof the forest f � f0 and enum tree k t those of the forest t :: f0, where � denotesforest 
on
atenation.The 
ode is given in Figure 2; we refer to it as C0. Throughout, the variable sdenotes the 
urrent state. Let us begin with enum forest. If the forest is empty,we simply 
all the 
ontinuation. If, on the other hand, the forest 
ontains at leastone tree t next to a sub-forest f, then we enumerate the 
olorings of t, by applyingenum tree to t, with a new 
ontinuation that enumerates the 
olorings of f with
ontinuation k. Let us now turn to enum tree. Its task is slightly more 
omplex,be
ause it must enumerate the 
olorings either in one dire
tion, or in the other,depending upon the 
urrent state. To determine whi
h, enum tree looks up the
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tional pearl 949type 
omputation = unit ! unitlet re
 enum_forest k = fun
tion| [℄ ! k ()| t :: f ! enum_tree (fun () ! enum_forest k f) tand enum_tree k (Node (i,f)) =if bits.(i) = 0 then begink (); bits.(i)  1; enum_forest k fend else beginenum_forest k f; bits.(i)  0; k ()end Fig. 3. A slightly more imperative implementation (C1).
olor of the tree's root, that is, get i s. If it is 
urrently white, then the whole treemust be white. We have a 
omplete 
oloring, so we signal the 
ontinuation k; then,we 
olor the root bla
k and enumerate its 
hildren's 
olorings using enum forest.If, on the other hand, the root is 
urrently bla
k, we do the 
onverse. That is, we�rst use enum forest to enumerate the 
hildren's 
olorings in reverse order, whi
hleaves all of the 
hildren entirely white; then, we 
olor the root white, and signalthe 
ontinuation k.To run C0 on a forest f, one 
alls enum forest with a 
ontinuation that displaysthe 
urrent 
oloring every time it is invoked, that is, print:enum_forest print fThis 
omputation is then applied to a suitable initial state, namely 
reate n, wheren is the size of the forest f.A slightly more imperative implementation. From here on, we use a native imple-mentation of the monad des
ribed above, so as to obtain more idiomati
 OCaml
ode. That is, the 
urrent 
oloring is now stored in a global array bits, while 
ol-orings are displayed by 
alling OCaml's standard library fun
tions. As a result,
omputations operate only by side e�e
t. The 
ode is given in Figure 3; we refer toit as C1. The di�eren
es with respe
t to C0 are minor. The state parameter s disap-pears or is repla
ed with the () 
onstant. The 
omposition operator ++ is repla
edwith OCaml's native sequen
ing 
onstru
t ;. The 
urrent 
oloring is looked up andmodi�ed by reading and writing the global array bits. To run C1 on a forest f,one 
alls enum forest with a 
ontinuation that displays the 
urrent 
ontents of thearray bits at every invo
ation:enum_forest (fun () ! (* display 
urrent 
onfiguration *)) fComplexity. To assess C1's 
omplexity, let us �rst introdu
e the two quantities interms of whi
h it is expressed, namely the forest's size and number of 
olorings. Inthe following, we use OCaml's list syntax for forests. We write Node f for a treewhose 
hildren form a forest f (and whose index is irrelevant). The size of a forest f



950 J.-C. Filliâtre and F. Pottier(resp. of a tree t), written n(f) (resp. n(t)), is the number of its nodes. It is de�nedindu
tively on the stru
ture of trees and forests:n([℄) = 0n(t :: f) = n(t) + n(f)n(Node f) = 1 + n(f)The number of 
olorings of a forest f (resp. of a tree t), written N(f) (resp. N(t)),is de�ned similarly: N([℄) = 1N(t :: f) = N(t)�N(f)N(Node f) = 1 +N(f)Unless it is ambiguous, we write n and N for these two quantities. For the forest (1),we have n = 5 and N = 15.We must make some assumptions about the 
ost of every operation. We ignorethe 
ost of fun
tion 
alls: this slightly simpli�es our 
omputations, while a�e
tingthe �nal result only up to a 
onstant fa
tor. Two operations remain to be takeninto a

ount: modi�
ation of the bits array and 
losure 
onstru
tion. The formerhas 
onstant 
ost; as for the latter, it is reasonable to assume a 
onstant amortized
ost. We 
onsider both as unitary.We write F (k; f) for the total 
ost of applying enum forest to a forest f with a
ontinuation of 
ost k. Similarly, we write T (k; t) for the 
ost of applying enum treeto a tree t with a 
ontinuation of 
ost k. From the 
ode C1, we derive the equationsthat govern these quantities:F (k; [℄) = k (4)F (k; t :: f) = 1 + T (F (k; f); t) (5)T (k; Node f) = 1 + k + F (k; f) (6)In equation (5), the unitary 
ost 
orresponds to 
losure 
onstru
tion. The 
losureitself is, by hypothesis, a 
ontinuation of 
ost F (k; f), hen
e the se
ond term. Inequation (6), the unitary 
ost 
orresponds to updating the array. From these equa-tions, it is easy to establish the following upper bounds:F (k; f) � N(f)� (k + n(f))T (k; t) � N(t)� (k + n(t))� 1When one applies enum forest to a forest f with a 
ostless initial 
ontinuation,the upper bound simpli�es to N(f) � n(f). Thus, we 
on
lude that C1 has time
omplexity O(nN). One may show, in a similar way, that the number of 
losuresbuilt during evaluation is bounded by N(f)� 1 and thus C1 has spa
e 
omplexityO(N).



Fun
tional pearl 951let re
 enum_forest k = fun
tion| [℄ ! k| t :: f ! enum_tree (enum_forest k f) tand enum_tree k (Node (i,f)) =let lf = enum_forest k f infun () !if bits.(i) = 0 then begink (); bits.(i)  1; lf ()end else beginlf (); bits.(i)  0; k ()end Fig. 4. First re�nement (C2).3 First re�nement: pre-planning 
ontrolThis time bound is not optimal; in fa
t, it is easy to see that C1 a
tually repeatssome 
omputations many times. Indeed, every time a given forest is traversed, thesame 
ontinuation is built. In example (1), enum tree is applied three times to these
ond tree; every time, it is passed a fresh 
ontinuation, whose e�e
t is in fa
t thesame (namely to 
all the initial 
ontinuation).It is possible, with a slight modi�
ation to the algorithm, to fa
tor out theserepeated allo
ations. The idea is that enum tree and enum forest, instead of enu-merating the 
olorings immediately, should now return a 
ontinuation (that is, afun
tion of type unit ! unit) that performs the enumeration when invoked. Themodi�ed 
ode, whi
h we refer to as C2, is given in Figure 4. It di�ers from C1 inthree ways. First, when enum forest is applied to an empty forest, it merely returnsits 
ontinuation k, instead of exe
uting it immediately. Se
ond, when it is appliedto a non-empty forest, it immediately invokes enum forest k f, whi
h returns a
ontinuation; the need for an expli
it delay (that is, a �-abstra
tion) has been re-moved. Lastly, and most importantly, enum tree 
alls enum forest only on
e andreturns a 
ontinuation. This 
all to enum forest is performed as soon as enum treere
eives two arguments, whi
h is pre
isely the way it is used within enum forest.To run C2 on a forest f, one still applies enum forest to f with a display 
on-tinuation. The result is now itself a 
ontinuation, that must be invoked in order toperform the a
tual enumeration, as follows:enum_forest (fun () ! (* display 
urrent 
onfiguration *)) f ()C2 makes more intensive use of higher-order fun
tions than C1: we now employfun
tions that return fun
tions. The prin
iple remains the same, though: if thefun
tion k enumerates the 
olorings of the forest f0, then the fun
tion enum forestk f (resp. enum tree k t) enumerates those of the forest f � f0 (resp. t ::f0). Onemay noti
e that enum forest and enum tree are now instan
es of the generi
 \fold"fun
tions asso
iated to the data types tree and forest. Still, for the sake of 
larity,we prefer to de�ne them dire
tly.
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tions enum forest and enum tree now have three arguments.Applying them to one argument does not trigger any 
omputation, but the se
ondand third appli
ations have distin
t 
osts, whi
h must be measured separately.The 
ost of an appli
ation to two arguments is easily determined. Indeed, everynode in the forest at hand is 
learly traversed exa
tly on
e; furthermore, traversingevery node indu
es a unit 
ost, due to the 
losure that is built within enum tree.Hen
e, the total 
ost is the number of nodes, n. Moreover, be
ause only this pre-liminary phase allo
ates memory, we may immediately 
on
lude that C2's spa
e
omplexity is O(n).The 
ost of a third appli
ation is measured as in the previous se
tion. We nowwrite F (k; f) (resp. T (k; t)) for the 
ost of exe
uting the fun
tion obtained byinvoking enum forest (resp. enum tree) with a 
ontinuation of 
ost k. From the
ode C2, we derive the following equations:F (k; [℄) = k (7)F (k; t :: f) = T (F (k; f); t) (8)T (k; Node f) = 1 + k + F (k; f) (9)Only the se
ond equation di�ers from those that des
ribe C1. Given these equations,it is straightforward to verify the following identities:F (k; f) = N(f)� (k + 1)� 1T (k; t) = N(t)� (k + 1)� 1Applying enum forest to a forest f with a 
ostless initial 
ontinuation has a 
ost ofn(f). Then, invoking the 
ontinuation thus obtained entails a 
ost ofN(f)�1. Sin
en(f) � N(f) holds, we may 
on
lude that C2 has time 
omplexity O(N), whi
h isobviously optimal. The �rst phase above 
an be viewed as a \pre-planning" phase,whi
h produ
es a network of 
ontinuations. Then, the se
ond phase performs thea
tual enumeration, without allo
ating any new 
losures.4 Se
ond re�nement: defun
tionalizingThe algorithm given in the previous se
tion has optimal 
ost. Yet, it is still possibleto reap a small 
onstant fa
tor. Indeed, we noti
e that every 
ontinuation built bythe 
ode in Figure 4 
ontains 
alls to unknown fun
tions, namely k and lf. TheOCaml 
ompiler represents these fun
tions as 
losures 
ontaining a 
ode pointer anda data environment. This may in
ur a speed penalty on modern pro
essors, be
ausejumps to unknown addresses often defeat the bran
h predi
tion unit, 
ausing apipeline stall. One way to address this problem is to repla
e the bran
h to anunknown address with a test, followed with a bran
h to a 
onstant address. In otherwords, we will now abandon the use of higher-order fun
tions. To repla
e them,we will introdu
e a data stru
ture, together with a (�rst-order) fun
tion run whi
hinterprets its values as fun
tions. This te
hnique, known as defun
tionalization, wasintrodu
ed by Reynolds three de
ades ago (Reynolds, 1998a; Reynolds, 1998b). Ithas re
ently re
eived some new interest as a program transformation (Danvy &
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tional pearl 953let re
 enum_forest k = fun
tion| [℄ ! k| t :: f ! enum_tree (enum_forest k f) tand enum_tree k (Node (i,f)) =Continue (i, k, enum_forest k f)let re
 run = fun
tion| Display !(* display 
urrent 
onfiguration *)| Continue (i, k, lf) !if bits.(i) = 0 then beginrun k; bits.(i)  1; run lfend else beginrun lf; bits.(i)  0; run kend Fig. 5. Se
ond re�nement (C3).Nielsen, 2001) or 
ompilation (Cejtin et al., 2000) te
hnique. Indeed, the programtransformation whi
h we are about to des
ribe 
ould be performed automati
allyby a 
ompiler su
h as MLton (Cejtin et al., 2002).It is easy to observe that every 
ontinuation manipulated by C2 is either theinitial 
ontinuation (whi
h displays the 
urrent 
on�guration), or a 
ontinuationbuilt by enum_tree, whose 
ode then 
onsists of the last six lines of Figure 4. Theinitial 
ontinuation only needs a

ess to the global array bits, so we will assumethat it has no free variables. Continuations of the latter kind, on the other hand,have three free variables, namely i, k and lf. This analysis leads us to the followingdata type de�nition:type 
ontinuation =| Display| Continue of int � 
ontinuation � 
ontinuationA value of type 
ontinuation 
ontains a tag|either Display or Continue|whi
he�e
tively plays the role of a 
ode pointer. When the tag is Continue, it is a

om-panied with values for i, k and lf, whi
h suÆ
e to 
apture the 
ontinuation'smeaning.The defun
tionalized version of enum_tree, given in Figure 5, now returns a datastru
ture of type 
ontinuation, instead of an a
tual 
ontinuation. To use su
h adata stru
ture, we must interpret it as a fun
tion, that is, des
ribe how it is \run".This is the role of the new fun
tion run. The fun
tion pro
eeds by 
ases, a

ordingto the 
ontinuation's tag. If it is Display, the 
urrent 
on�guration is displayed(
ode omitted). If it is Continue, then suitable values for i, k and lf are read fromthe data stru
ture, and the 
ontinuation's 
ode is exe
uted. It is taken from thelast �ve lines of Figure 4, with 
alls to k and lf repla
ed with re
ursive 
alls torun. To run C3 on a forest f, one writes run (enum_forest Display f).A

ording to measurements performed on a number of random forests, this re-�nement yields a performan
e in
rease that is 
onsistently 
omprised between 20



954 J.-C. Filliâtre and F. Pottierlet re
 enum_forest k = fun
tion| [℄ ! k| t :: f ! enum_tree (enum_forest k f) tand enum_tree k (Node (i,f)) =ka.(i)  k;lfa.(i)  enum_forest k f;ilet re
 run = fun
tion| (-1) !(* display 
urrent 
onfiguration *)| i !if bits.(i) = 0 then beginrun ka.(i); bits.(i)  1; run lfa.(i)end else beginrun lfa.(i); bits.(i)  0; run ka.(i)end Fig. 6. Last re�nement (C4).and 30 per
ent. Although this may be deemed a rather small improvement, wefound it interesting, in parti
ular be
ause this formulation helped us dis
over thenext re�nement.5 Last re�nement: using integer 
ontinuationsFrom the de�nition of enum_tree in Figure 5, it is now 
lear that enum_forest k fallo
ates exa
tly one 
ontinuation obje
t for every node in the forest f. (One mayalso noti
e that these obje
ts form a dire
ted a
yli
 graph.) So, the initial 
ontin-uation set aside, 
ontinuations are in one-to-one 
orresponden
e with nodes. Thisprompts us to identify the two notions, and|
onsidering nodes are numbered|torepresent 
ontinuations as integers. By 
onvention, the integer �1 will be used torepresent the initial 
ontinuation.What be
omes of the information stored in Continue obje
ts? The integer ibe
omes redundant, sin
e it now is the 
ontinuation. The 
ontinuation k (resp. lf)will now be stored at index i in a global array ka (resp. lfa) of size n. Be
ause
ontinuations are now integers, ka and lfa are arrays of integers.The new version of enum_tree, given in Figure 6, now initializes the arrays kaand lfa instead of allo
ating 
ontinuations, and returns i itself instead of a freshContinue obje
t. The algorithm's asymptoti
 spa
e 
omplexity remains un
hanged,but a 
onstant fa
tor is saved, whose exa
t amount depends on the runtime system.In run, the initial 
ontinuation is now distinguished by the spe
ial value �1. Inthe general 
ase, i stands for a node number, and the two 
ontinuation nodes kand lf are obtained by looking up the arrays ka and lfa at index i. To run C4 ona forest f, one writes run (enum_forest (-1) f).A

ording to measurements performed on a number of random forests, this re-�nement yields a performan
e in
rease that is 
onsistently 
omprised between 0
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tional pearl 955and 10 per
ent. This is a minor improvement, but we believe this formulation isnevertheless interesting, for two reasons. First, it is amenable to a very simple im-plementation in a low-level language su
h as C. All storage is allo
ated in threeglobal arrays, requiring no dynami
 allo
ation. Se
ond, it sheds some light on thealgorithm's stru
ture. Sin
e a 
ontinuation is now either a node or �1, the arrayska and lfa 
an be viewed as partial mappings from nodes to nodes. One may 
he
kthat they are initialized by enum_forest and enum_tree as follows:� If i is the root of the left-most tree in the forest, then ka.(i) is �1;� if i has a left sibling j in the forest, then ka.(i) is j;� otherwise, i must have a parent j in the forest, and ka.(i) is ka.(j).� If i has a 
hild in the forest, then lfa.(i) is its right-most 
hild;� otherwise, lfa.(i) is ka.(i).This version of the algorithm bears a rather strong resemblan
e with Knuth's
oroutine-based algorithm (Knuth, 2001a). Indeed, Knuth's algorithm de�nes ex-a
tly one 
oroutine per node, and relies on tables whi
h map every node to itsleft sibling and to its right-most 
hild, if de�ned. However, Knuth's approa
h hasan inherent de�
ien
y: 
oroutines signal 
ompletion by returning, whi
h may 
ausethe whole 
all sta
k to be unwound, whereas they do so, in our 
ase, by invoking a
ontinuation. Thus, as re
ognized by Knuth, his algorithm may have asymptoti
allyworse behavior in some 
ases. It is noteworthy that our approa
h naturally leadsto an algorithm that is super�
ially similar to Knuth's, but easier to understand,and more eÆ
ient.Knuth's \loopless" algorithm, whi
h appears similar to Koda and Ruskey's origi-nal des
ription (Koda & Ruskey, 1993), addresses this de�
ien
y by using a mutabledata stru
ture that is signi�
antly more 
omplex. The next se
tion 
ompares it withours. 6 Performan
e assessmentWe now 
ompare C4, performan
e-wise, with Knuth's \loopless" implementationL. Both were 
ompiled to x86 ma
hine 
ode, using the native OCaml 
ompiler witharray bounds 
he
king turned o�, and g

 -O2, respe
tively. (We have also hand-translated C4 to C 
ode, with no noti
eable time di�eren
e with respe
t to theOCaml 
ode.) L implements Koda and Ruskey's more eÆ
ient algorithm, whi
h isloopless, that is, performs a 
onstant amount of 
omputation between two 
onse
-utive 
olorings. Our implementation is not loopless, but has the same overall time
omplexity, namely O(N).In pra
ti
e, the two implementations seem to have very similar performan
e, assuggested by the following graph. Every data point shows the ratio of their runningtimes (that is, C4's divided by L's) for a random forest (with 30 � n < 45). Thegraph has three hundred data points. We have veri�ed that this ratio does notappear to be 
orrelated with n or N .
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0.7 0.8 0.9 1 1.1 1.2 1.3 1.4These measurements re
e
t the time ne
essary to produ
e the Gray 
ode only|nothing was displayed. In a realisti
 appli
ation, every 
oloring would be exploitedfor some purpose before produ
ing the next 
oloring, so the performan
e di�eren
ebetween the two implementations would be even less noti
eable. In light of thisremark, we believe it is safe to 
laim that the two implementations are equallyeÆ
ient.Our 
ode is available ele
troni
ally (Filliâtre & Pottier, 2002); it is fun
tionallyequivalent to Knuth's (Knuth, 2001a).7 Con
lusionWe have proposed a fun
tional, higher-order implementation of Koda and Ruskey'salgorithm. From it, we have derived a �rst-order version whose eÆ
ien
y is 
ompa-rable to Knuth's C implementation.One key advantage of our 
ontinuation-based formulation (C2) is to be amenableto formal proof. It is possible to give reasonably simple spe
i�
ations for enum treeand enum forest. Be
ause these fun
tions must enumerate 
olorings in either di-re
tion, this requires 
hara
terizing the �nal 
oloring of the Gray 
ode sequen
easso
iated with a given forest. This 
an be done indu
tively over trees and forests.As a result, the formalization is rather straightforward to 
ondu
t within a proof as-sistant su
h as Coq (Barras et al., 2002). We are 
urrently in the pro
ess of 
arryingout su
h a task. Referen
esBarras, Bruno, Herbelin, Hugo, et al. . (2002). The Coq Proof Assistant. URL: http://
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