
JFP 13 (5): 945{956, September 2003.

 2003 Cambridge University PressDOI: 10.1017/S0956796803004763 Printed in the United Kingdom 945FUNCTIONAL PEARLProdu
ing All Ideals of a Forest, Fun
tionallyJEAN-CHRISTOPHE FILLIÂTRE�Laboratoire de Re
her
he en Informatique,Universit�e Paris Sud,91405 Orsay Cedex, Fran
eFRANC�OIS POTTIERyINRIA Ro
quen
ourtB.P. 10578153 Le Chesnay Cedex, Fran
eAbstra
tWe present fun
tional implementations of Koda and Ruskey's algorithm for generatingall ideals of a forest poset as a Gray
ode. Using a
ontinuation-based approa
h, we givean extremely
on
ise formulation of the algorithm's
ore. Then, in a number of steps, wederive a �rst-order version whose eÆ
ien
y is
omparable to that of a C implementationgiven by Knuth. 1 Introdu
tionIt is sometimes said that fun
tional programming languages are inherently lesseÆ
ient than their imperative
ounterparts. Today, su
h an opinion has be
ome astereotype without substan
e. Yet, we still
onfront it regularly, and must provide
onvin
ing \pra
ti
al" eviden
e. In this paper, we show how a
omplex algorithm,heretofore presented only in an imperative form,
an be expressed in a programminglanguage equipped with �rst-
lass fun
tions. We obtain
ode that is more
on
ise,signi�
antly easier to prove
orre
t, yet equally eÆ
ient as the original. Then, wederive a �rst-order version of our
ode, whi
h
an be easily implemented in C, ifdesired.The algorithm we are interested in is due to Y. Koda and F. Ruskey (Koda &Ruskey, 1993). It enumerates the ideals of
ertain �nite partially ordered sets|namely, those whose Hasse diagram is a forest|as a Gray
ode. In general, a Gray
ode is a sequen
e of words su
h that two
onse
utive words di�er by only oneletter. A widely studied parti
ular
ase
onsists in enumerating all binary integers,from 00 � � �0 to 11 � � � 1, as a Gray
ode. Gray
odes �nd appli
ation in mathe-mati
s, ele
tri
al engineering, opti
s, s
heduling, network reliability, et
. In fa
t, a� (e-mail: Jean-Christophe.Filliatre�lri.fr)y (e-mail: Fran
ois.Pottier�inria.fr)

946 J.-C. Filliâtre and F. Pottier
Fig. 1. Koda and Ruskey's algorithm applied to the forest (1).whole se
tion is devoted to them in the fourth volume of Knuth's Art of ComputerProgramming. A preliminary version of this se
tion is
urrently available ele
troni-
ally (Knuth, 2001b). While writing it, Knuth took interest in Koda and Ruskey'salgorithm, and published two implementations of it (Knuth, 2001a). Our interestarose from these readings.Koda and Ruskey's algorithm
an be des
ribed in a simple way. The task is toenumerate all
olorings of a given, arbitrary forest. A
oloring
onsists in markingevery node as either bla
k or white, with the sole
onstraint that all des
endantsof a white node be white as well. For instan
e, the following forest: (1)admits exa
tly 15 distin
t
olorings, all of whi
h are given in Figure 1. By de�nition,a sequen
e of
olorings forms a Gray
ode if and only if every
oloring of the forestappears exa
tly on
e in it and two
onse
utive
olorings di�er by the
olor of exa
tlyone node.Let us illustrate the algorithm's fun
tioning on the forest (1). The main idea isto interleave the sequen
es of
olorings whi
h
orrespond to ea
h of the trees thatform the forest. Here, one must interla
e the sequen
e of the three
olorings of theleft-hand tree, namely: (2)with the sequen
e of the �ve
olorings of the right-hand tree, given below: (3)Thus, the �rst line of Figure 1 exhibits the �rst
oloring of the left-hand tree,
ombined su

essively with all
olorings of the right-hand tree. The se
ond lineshows the se
ond
oloring of the left-hand tree, again
ombined with all
oloringsof the right-hand tree, but this time in reverse order|indeed, it is
lear that themirror image of a Gray
ode remains a Gray
ode. Lastly, the third line exhibitsthe third
oloring of the left-hand tree and all
olorings of the right-hand tree, thistime again in their initial order.

Fun
tional pearl 947There remains to explain how to enumerate all
olorings of a tree. Let the �rst
oloring be uniformly white. Then, to obtain the remainder of the sequen
e,
olorthe root node bla
k and enumerate all
olorings of the forest formed by its
hildren.The sequen
e thus obtained is indeed a Gray
ode, be
ause (i) the �rst and se
ond
olorings di�er only by the
olor of the root node and (ii) from then on, the rootnode remains una�e
ted, and the sequen
e of the
olorings of the
hildren forms aGray
ode by
onstru
tion. This pro
ess is illustrated by (2) and (3) above. Notethat the
oloring where every node is bla
k does not ne
essarily appear last in asequen
e.Koda and Ruskey's paper (Koda & Ruskey, 1993) des
ribes two versions of thisalgorithm, written as imperative pseudo-
ode and as Pas
al
ode. One has
om-plexity O(nN), where n is the number of nodes in the forest and N is the numberof its
olorings, that is, the length of the Gray
ode to be produ
ed. The other isa re�nement with optimal
omplexity, namely O(N). More re
ently, two C imple-mentations were given by Knuth (Knuth, 2001a). All of these implementations are
omplex: they are typi
ally 50 to 80 lines long and involve imperative modi�
ationsof subtle data stru
tures.The present paper des
ribes an alternative approa
h to implementing Koda andRuskey's algorithm. We begin with a simple algorithm (Se
tion 2), whi
h we �rstimplement in a purely fun
tional manner and then translate into a slightly more im-perative style. Indeed, our programming language is Obje
tive Caml (Leroy et al.,2002), so it is natural to exploit|to some degree|its imperative features. However,it would be possible to use any language that supports �rst-
lass fun
tions and mu-table arrays, su
h as other ML diale
ts, Haskell, Lisp, S
heme, et
. In Se
tion 3,we slightly modify the algorithm so as to a
hieve optimal
omplexity O(N). Then,Se
tions 4 and 5 present re�ned implementations of the se
ond algorithm, elimi-nating �rst-
lass fun
tions in favor of lower-level representations, while preservingmost of the simpli
ity a�orded by our approa
h. Lastly, Se
tion 6
ompares ourimplementations with those proposed by Knuth, performan
e-wise.2 A
ontinuation-based algorithmWe represent a forest as a value of OCaml type forest, de�ned as follows:type tree = Node of int � forestand forest = tree list� list is OCaml's prede�ned type for lists of elements of type �. The list
ontainingx1; x2; : : : ; xn in this order is written [x1; x2; ...; xn℄. The empty list is written[℄. The addition of an element x at the beginning of a list l is written x :: l. The nnodes of the forest are labeled by the integers 0; 1; : : : ; n�1 in an arbitrary manner.The algorithm needs to maintain a
urrent
oloring. It also needs to display every
oloring after it is
omputed. Thus, our purely fun
tional implementation uses a
ombined I/O and state monad, whose OCaml signature is given in the top halfof Figure 2. A state
ontains both the
oloring, represented as an array of integerswhere 0 stands for white and 1 stands for bla
k, and the output displayed so far,

948 J.-C. Filliâtre and F. Pottiertype state = int array � stringtype
omputation = state ! stateval
reate : int ! stateval update : int ! int !
omputationval get : int ! state ! intval print :
omputationlet re
 enum_forest k f s = mat
h f with| [℄ ! k s| t :: f ! enum_tree (enum_forest k f) t sand enum_tree k (Node (i,f)) s =if get i s == 0 then(k ++ update i 1 ++ enum_forest k f) selse(enum_forest k f ++ update i 0 ++ k) sFig. 2. A
ontinuation-based version of Koda and Ruskey's algorithm (C0).represented as a string. A
omputation is a state transformer, that is, a fun
tionfrom states to states. The state
reate n is the algorithm's initial state, where everynode is
olored white. The
omputation update i

olors node i with
olor
. Theoperation get i returns the
olor of node i. Lastly, the
omputation print appendsthe des
ription of the
urrent
oloring to the output string. Implementing thismonad in OCaml is straightforward; we omit the
ode. To sequen
e
omputations,it is
onvenient to introdu
e the following in�x operation, whi
h is nothing butfun
tion
omposition:val (++) :
omputation !
omputation !
omputationLet us now des
ribe the
ore of the algorithm. Be
ause trees and forests arede�ned in a mutually indu
tive way, we naturally de�ne two mutually re
ursivefun
tions enum tree and enum forest, whi
h enumerate the
olorings of a tree andof a forest, respe
tively. The key idea is to give these fun
tions an extra argumentk, of type
omputation, whi
h will be
alled after every
oloring of the tree (resp.forest) is
omplete. The fun
tion k may be viewed as a
ontinuation, and we
allit so in the following. The idea is, if the fun
tion k enumerates the
olorings of a
ertain forest f0, then the
omputation enum forest k f enumerates the
oloringsof the forest f � f0 and enum tree k t those of the forest t :: f0, where � denotesforest
on
atenation.The
ode is given in Figure 2; we refer to it as C0. Throughout, the variable sdenotes the
urrent state. Let us begin with enum forest. If the forest is empty,we simply
all the
ontinuation. If, on the other hand, the forest
ontains at leastone tree t next to a sub-forest f, then we enumerate the
olorings of t, by applyingenum tree to t, with a new
ontinuation that enumerates the
olorings of f with
ontinuation k. Let us now turn to enum tree. Its task is slightly more
omplex,be
ause it must enumerate the
olorings either in one dire
tion, or in the other,depending upon the
urrent state. To determine whi
h, enum tree looks up the

Fun
tional pearl 949type
omputation = unit ! unitlet re
 enum_forest k = fun
tion| [℄ ! k ()| t :: f ! enum_tree (fun () ! enum_forest k f) tand enum_tree k (Node (i,f)) =if bits.(i) = 0 then begink (); bits.(i) 1; enum_forest k fend else beginenum_forest k f; bits.(i) 0; k ()end Fig. 3. A slightly more imperative implementation (C1).
olor of the tree's root, that is, get i s. If it is
urrently white, then the whole treemust be white. We have a
omplete
oloring, so we signal the
ontinuation k; then,we
olor the root bla
k and enumerate its
hildren's
olorings using enum forest.If, on the other hand, the root is
urrently bla
k, we do the
onverse. That is, we�rst use enum forest to enumerate the
hildren's
olorings in reverse order, whi
hleaves all of the
hildren entirely white; then, we
olor the root white, and signalthe
ontinuation k.To run C0 on a forest f, one
alls enum forest with a
ontinuation that displaysthe
urrent
oloring every time it is invoked, that is, print:enum_forest print fThis
omputation is then applied to a suitable initial state, namely
reate n, wheren is the size of the forest f.A slightly more imperative implementation. From here on, we use a native imple-mentation of the monad des
ribed above, so as to obtain more idiomati
 OCaml
ode. That is, the
urrent
oloring is now stored in a global array bits, while
ol-orings are displayed by
alling OCaml's standard library fun
tions. As a result,
omputations operate only by side e�e
t. The
ode is given in Figure 3; we refer toit as C1. The di�eren
es with respe
t to C0 are minor. The state parameter s disap-pears or is repla
ed with the ()
onstant. The
omposition operator ++ is repla
edwith OCaml's native sequen
ing
onstru
t ;. The
urrent
oloring is looked up andmodi�ed by reading and writing the global array bits. To run C1 on a forest f,one
alls enum forest with a
ontinuation that displays the
urrent
ontents of thearray bits at every invo
ation:enum_forest (fun () ! (* display
urrent
onfiguration *)) fComplexity. To assess C1's
omplexity, let us �rst introdu
e the two quantities interms of whi
h it is expressed, namely the forest's size and number of
olorings. Inthe following, we use OCaml's list syntax for forests. We write Node f for a treewhose
hildren form a forest f (and whose index is irrelevant). The size of a forest f

950 J.-C. Filliâtre and F. Pottier(resp. of a tree t), written n(f) (resp. n(t)), is the number of its nodes. It is de�nedindu
tively on the stru
ture of trees and forests:n([℄) = 0n(t :: f) = n(t) + n(f)n(Node f) = 1 + n(f)The number of
olorings of a forest f (resp. of a tree t), written N(f) (resp. N(t)),is de�ned similarly: N([℄) = 1N(t :: f) = N(t)�N(f)N(Node f) = 1 +N(f)Unless it is ambiguous, we write n and N for these two quantities. For the forest (1),we have n = 5 and N = 15.We must make some assumptions about the
ost of every operation. We ignorethe
ost of fun
tion
alls: this slightly simpli�es our
omputations, while a�e
tingthe �nal result only up to a
onstant fa
tor. Two operations remain to be takeninto a

ount: modi�
ation of the bits array and
losure
onstru
tion. The formerhas
onstant
ost; as for the latter, it is reasonable to assume a
onstant amortized
ost. We
onsider both as unitary.We write F (k; f) for the total
ost of applying enum forest to a forest f with a
ontinuation of
ost k. Similarly, we write T (k; t) for the
ost of applying enum treeto a tree t with a
ontinuation of
ost k. From the
ode C1, we derive the equationsthat govern these quantities:F (k; [℄) = k (4)F (k; t :: f) = 1 + T (F (k; f); t) (5)T (k; Node f) = 1 + k + F (k; f) (6)In equation (5), the unitary
ost
orresponds to
losure
onstru
tion. The
losureitself is, by hypothesis, a
ontinuation of
ost F (k; f), hen
e the se
ond term. Inequation (6), the unitary
ost
orresponds to updating the array. From these equa-tions, it is easy to establish the following upper bounds:F (k; f) � N(f)� (k + n(f))T (k; t) � N(t)� (k + n(t))� 1When one applies enum forest to a forest f with a
ostless initial
ontinuation,the upper bound simpli�es to N(f) � n(f). Thus, we
on
lude that C1 has time
omplexity O(nN). One may show, in a similar way, that the number of
losuresbuilt during evaluation is bounded by N(f)� 1 and thus C1 has spa
e
omplexityO(N).

Fun
tional pearl 951let re
 enum_forest k = fun
tion| [℄ ! k| t :: f ! enum_tree (enum_forest k f) tand enum_tree k (Node (i,f)) =let lf = enum_forest k f infun () !if bits.(i) = 0 then begink (); bits.(i) 1; lf ()end else beginlf (); bits.(i) 0; k ()end Fig. 4. First re�nement (C2).3 First re�nement: pre-planning
ontrolThis time bound is not optimal; in fa
t, it is easy to see that C1 a
tually repeatssome
omputations many times. Indeed, every time a given forest is traversed, thesame
ontinuation is built. In example (1), enum tree is applied three times to these
ond tree; every time, it is passed a fresh
ontinuation, whose e�e
t is in fa
t thesame (namely to
all the initial
ontinuation).It is possible, with a slight modi�
ation to the algorithm, to fa
tor out theserepeated allo
ations. The idea is that enum tree and enum forest, instead of enu-merating the
olorings immediately, should now return a
ontinuation (that is, afun
tion of type unit ! unit) that performs the enumeration when invoked. Themodi�ed
ode, whi
h we refer to as C2, is given in Figure 4. It di�ers from C1 inthree ways. First, when enum forest is applied to an empty forest, it merely returnsits
ontinuation k, instead of exe
uting it immediately. Se
ond, when it is appliedto a non-empty forest, it immediately invokes enum forest k f, whi
h returns a
ontinuation; the need for an expli
it delay (that is, a �-abstra
tion) has been re-moved. Lastly, and most importantly, enum tree
alls enum forest only on
e andreturns a
ontinuation. This
all to enum forest is performed as soon as enum treere
eives two arguments, whi
h is pre
isely the way it is used within enum forest.To run C2 on a forest f, one still applies enum forest to f with a display
on-tinuation. The result is now itself a
ontinuation, that must be invoked in order toperform the a
tual enumeration, as follows:enum_forest (fun () ! (* display
urrent
onfiguration *)) f ()C2 makes more intensive use of higher-order fun
tions than C1: we now employfun
tions that return fun
tions. The prin
iple remains the same, though: if thefun
tion k enumerates the
olorings of the forest f0, then the fun
tion enum forestk f (resp. enum tree k t) enumerates those of the forest f � f0 (resp. t ::f0). Onemay noti
e that enum forest and enum tree are now instan
es of the generi
 \fold"fun
tions asso
iated to the data types tree and forest. Still, for the sake of
larity,we prefer to de�ne them dire
tly.

952 J.-C. Filliâtre and F. PottierComplexity. The fun
tions enum forest and enum tree now have three arguments.Applying them to one argument does not trigger any
omputation, but the se
ondand third appli
ations have distin
t
osts, whi
h must be measured separately.The
ost of an appli
ation to two arguments is easily determined. Indeed, everynode in the forest at hand is
learly traversed exa
tly on
e; furthermore, traversingevery node indu
es a unit
ost, due to the
losure that is built within enum tree.Hen
e, the total
ost is the number of nodes, n. Moreover, be
ause only this pre-liminary phase allo
ates memory, we may immediately
on
lude that C2's spa
e
omplexity is O(n).The
ost of a third appli
ation is measured as in the previous se
tion. We nowwrite F (k; f) (resp. T (k; t)) for the
ost of exe
uting the fun
tion obtained byinvoking enum forest (resp. enum tree) with a
ontinuation of
ost k. From the
ode C2, we derive the following equations:F (k; [℄) = k (7)F (k; t :: f) = T (F (k; f); t) (8)T (k; Node f) = 1 + k + F (k; f) (9)Only the se
ond equation di�ers from those that des
ribe C1. Given these equations,it is straightforward to verify the following identities:F (k; f) = N(f)� (k + 1)� 1T (k; t) = N(t)� (k + 1)� 1Applying enum forest to a forest f with a
ostless initial
ontinuation has a
ost ofn(f). Then, invoking the
ontinuation thus obtained entails a
ost ofN(f)�1. Sin
en(f) � N(f) holds, we may
on
lude that C2 has time
omplexity O(N), whi
h isobviously optimal. The �rst phase above
an be viewed as a \pre-planning" phase,whi
h produ
es a network of
ontinuations. Then, the se
ond phase performs thea
tual enumeration, without allo
ating any new
losures.4 Se
ond re�nement: defun
tionalizingThe algorithm given in the previous se
tion has optimal
ost. Yet, it is still possibleto reap a small
onstant fa
tor. Indeed, we noti
e that every
ontinuation built bythe
ode in Figure 4
ontains
alls to unknown fun
tions, namely k and lf. TheOCaml
ompiler represents these fun
tions as
losures
ontaining a
ode pointer anda data environment. This may in
ur a speed penalty on modern pro
essors, be
ausejumps to unknown addresses often defeat the bran
h predi
tion unit,
ausing apipeline stall. One way to address this problem is to repla
e the bran
h to anunknown address with a test, followed with a bran
h to a
onstant address. In otherwords, we will now abandon the use of higher-order fun
tions. To repla
e them,we will introdu
e a data stru
ture, together with a (�rst-order) fun
tion run whi
hinterprets its values as fun
tions. This te
hnique, known as defun
tionalization, wasintrodu
ed by Reynolds three de
ades ago (Reynolds, 1998a; Reynolds, 1998b). Ithas re
ently re
eived some new interest as a program transformation (Danvy &

Fun
tional pearl 953let re
 enum_forest k = fun
tion| [℄ ! k| t :: f ! enum_tree (enum_forest k f) tand enum_tree k (Node (i,f)) =Continue (i, k, enum_forest k f)let re
 run = fun
tion| Display !(* display
urrent
onfiguration *)| Continue (i, k, lf) !if bits.(i) = 0 then beginrun k; bits.(i) 1; run lfend else beginrun lf; bits.(i) 0; run kend Fig. 5. Se
ond re�nement (C3).Nielsen, 2001) or
ompilation (Cejtin et al., 2000) te
hnique. Indeed, the programtransformation whi
h we are about to des
ribe
ould be performed automati
allyby a
ompiler su
h as MLton (Cejtin et al., 2002).It is easy to observe that every
ontinuation manipulated by C2 is either theinitial
ontinuation (whi
h displays the
urrent
on�guration), or a
ontinuationbuilt by enum_tree, whose
ode then
onsists of the last six lines of Figure 4. Theinitial
ontinuation only needs a

ess to the global array bits, so we will assumethat it has no free variables. Continuations of the latter kind, on the other hand,have three free variables, namely i, k and lf. This analysis leads us to the followingdata type de�nition:type
ontinuation =| Display| Continue of int �
ontinuation �
ontinuationA value of type
ontinuation
ontains a tag|either Display or Continue|whi
he�e
tively plays the role of a
ode pointer. When the tag is Continue, it is a

om-panied with values for i, k and lf, whi
h suÆ
e to
apture the
ontinuation'smeaning.The defun
tionalized version of enum_tree, given in Figure 5, now returns a datastru
ture of type
ontinuation, instead of an a
tual
ontinuation. To use su
h adata stru
ture, we must interpret it as a fun
tion, that is, des
ribe how it is \run".This is the role of the new fun
tion run. The fun
tion pro
eeds by
ases, a

ordingto the
ontinuation's tag. If it is Display, the
urrent
on�guration is displayed(
ode omitted). If it is Continue, then suitable values for i, k and lf are read fromthe data stru
ture, and the
ontinuation's
ode is exe
uted. It is taken from thelast �ve lines of Figure 4, with
alls to k and lf repla
ed with re
ursive
alls torun. To run C3 on a forest f, one writes run (enum_forest Display f).A

ording to measurements performed on a number of random forests, this re-�nement yields a performan
e in
rease that is
onsistently
omprised between 20

954 J.-C. Filliâtre and F. Pottierlet re
 enum_forest k = fun
tion| [℄ ! k| t :: f ! enum_tree (enum_forest k f) tand enum_tree k (Node (i,f)) =ka.(i) k;lfa.(i) enum_forest k f;ilet re
 run = fun
tion| (-1) !(* display
urrent
onfiguration *)| i !if bits.(i) = 0 then beginrun ka.(i); bits.(i) 1; run lfa.(i)end else beginrun lfa.(i); bits.(i) 0; run ka.(i)end Fig. 6. Last re�nement (C4).and 30 per
ent. Although this may be deemed a rather small improvement, wefound it interesting, in parti
ular be
ause this formulation helped us dis
over thenext re�nement.5 Last re�nement: using integer
ontinuationsFrom the de�nition of enum_tree in Figure 5, it is now
lear that enum_forest k fallo
ates exa
tly one
ontinuation obje
t for every node in the forest f. (One mayalso noti
e that these obje
ts form a dire
ted a
yli
 graph.) So, the initial
ontin-uation set aside,
ontinuations are in one-to-one
orresponden
e with nodes. Thisprompts us to identify the two notions, and|
onsidering nodes are numbered|torepresent
ontinuations as integers. By
onvention, the integer �1 will be used torepresent the initial
ontinuation.What be
omes of the information stored in Continue obje
ts? The integer ibe
omes redundant, sin
e it now is the
ontinuation. The
ontinuation k (resp. lf)will now be stored at index i in a global array ka (resp. lfa) of size n. Be
ause
ontinuations are now integers, ka and lfa are arrays of integers.The new version of enum_tree, given in Figure 6, now initializes the arrays kaand lfa instead of allo
ating
ontinuations, and returns i itself instead of a freshContinue obje
t. The algorithm's asymptoti
 spa
e
omplexity remains un
hanged,but a
onstant fa
tor is saved, whose exa
t amount depends on the runtime system.In run, the initial
ontinuation is now distinguished by the spe
ial value �1. Inthe general
ase, i stands for a node number, and the two
ontinuation nodes kand lf are obtained by looking up the arrays ka and lfa at index i. To run C4 ona forest f, one writes run (enum_forest (-1) f).A

ording to measurements performed on a number of random forests, this re-�nement yields a performan
e in
rease that is
onsistently
omprised between 0

Fun
tional pearl 955and 10 per
ent. This is a minor improvement, but we believe this formulation isnevertheless interesting, for two reasons. First, it is amenable to a very simple im-plementation in a low-level language su
h as C. All storage is allo
ated in threeglobal arrays, requiring no dynami
 allo
ation. Se
ond, it sheds some light on thealgorithm's stru
ture. Sin
e a
ontinuation is now either a node or �1, the arrayska and lfa
an be viewed as partial mappings from nodes to nodes. One may
he
kthat they are initialized by enum_forest and enum_tree as follows:� If i is the root of the left-most tree in the forest, then ka.(i) is �1;� if i has a left sibling j in the forest, then ka.(i) is j;� otherwise, i must have a parent j in the forest, and ka.(i) is ka.(j).� If i has a
hild in the forest, then lfa.(i) is its right-most
hild;� otherwise, lfa.(i) is ka.(i).This version of the algorithm bears a rather strong resemblan
e with Knuth's
oroutine-based algorithm (Knuth, 2001a). Indeed, Knuth's algorithm de�nes ex-a
tly one
oroutine per node, and relies on tables whi
h map every node to itsleft sibling and to its right-most
hild, if de�ned. However, Knuth's approa
h hasan inherent de�
ien
y:
oroutines signal
ompletion by returning, whi
h may
ausethe whole
all sta
k to be unwound, whereas they do so, in our
ase, by invoking a
ontinuation. Thus, as re
ognized by Knuth, his algorithm may have asymptoti
allyworse behavior in some
ases. It is noteworthy that our approa
h naturally leadsto an algorithm that is super�
ially similar to Knuth's, but easier to understand,and more eÆ
ient.Knuth's \loopless" algorithm, whi
h appears similar to Koda and Ruskey's origi-nal des
ription (Koda & Ruskey, 1993), addresses this de�
ien
y by using a mutabledata stru
ture that is signi�
antly more
omplex. The next se
tion
ompares it withours. 6 Performan
e assessmentWe now
ompare C4, performan
e-wise, with Knuth's \loopless" implementationL. Both were
ompiled to x86 ma
hine
ode, using the native OCaml
ompiler witharray bounds
he
king turned o�, and g

 -O2, respe
tively. (We have also hand-translated C4 to C
ode, with no noti
eable time di�eren
e with respe
t to theOCaml
ode.) L implements Koda and Ruskey's more eÆ
ient algorithm, whi
h isloopless, that is, performs a
onstant amount of
omputation between two
onse
-utive
olorings. Our implementation is not loopless, but has the same overall time
omplexity, namely O(N).In pra
ti
e, the two implementations seem to have very similar performan
e, assuggested by the following graph. Every data point shows the ratio of their runningtimes (that is, C4's divided by L's) for a random forest (with 30 � n < 45). Thegraph has three hundred data points. We have veri�ed that this ratio does notappear to be
orrelated with n or N .

956 J.-C. Filliâtre and F. Pottier
0.7 0.8 0.9 1 1.1 1.2 1.3 1.4These measurements re
e
t the time ne
essary to produ
e the Gray
ode only|nothing was displayed. In a realisti
 appli
ation, every
oloring would be exploitedfor some purpose before produ
ing the next
oloring, so the performan
e di�eren
ebetween the two implementations would be even less noti
eable. In light of thisremark, we believe it is safe to
laim that the two implementations are equallyeÆ
ient.Our
ode is available ele
troni
ally (Filliâtre & Pottier, 2002); it is fun
tionallyequivalent to Knuth's (Knuth, 2001a).7 Con
lusionWe have proposed a fun
tional, higher-order implementation of Koda and Ruskey'salgorithm. From it, we have derived a �rst-order version whose eÆ
ien
y is
ompa-rable to Knuth's C implementation.One key advantage of our
ontinuation-based formulation (C2) is to be amenableto formal proof. It is possible to give reasonably simple spe
i�
ations for enum treeand enum forest. Be
ause these fun
tions must enumerate
olorings in either di-re
tion, this requires
hara
terizing the �nal
oloring of the Gray
ode sequen
easso
iated with a given forest. This
an be done indu
tively over trees and forests.As a result, the formalization is rather straightforward to
ondu
t within a proof as-sistant su
h as Coq (Barras et al., 2002). We are
urrently in the pro
ess of
arryingout su
h a task. Referen
esBarras, Bruno, Herbelin, Hugo, et al. . (2002). The Coq Proof Assistant. URL: http://
oq.inria.fr/.Cejtin, Henry, Jagannathan, Suresh, & Weeks, Stephen. (2000). Flow-dire
ted
losure
onversion for typed languages. Pages 56{71 of: Smolka, Gert (ed), Pro
eedings of the2000 European Symposium on Programming (ESOP'00). Le
ture Notes in ComputerS
ien
e, vol. 1782. Springer Verlag. URL: http://www.sour
elight.
om/MLton/papers/00-esop.ps.gz.Cejtin, Henry, Fluet, Matthew, Jagannathan, Suresh, & Weeks, Stephen. (2002). TheMLton Standard ML Compiler. URL: http://www.mlton.org/.Danvy, Olivier, & Nielsen, Lasse R. 2001 (Sept.). Defun
tionalization at work. Third In-ternational Conferen
e on Prin
iples and Pra
ti
e of De
larative Programming (PPDP2001). Also available as BRICS Resear
h Report RS-01-23. URL: http://www.bri
s.dk/RS/01/23/BRICS-RS-01-23.ps.gz.Filliâtre, Jean-Christophe, & Pottier, Fran�
ois. 2002 (Feb.). Fun
tional implementationsof Koda and Ruskey's algorithm. URL: http://www.lri.fr/~filliatr/software.en.html.Knuth, Donald E. 2001a (June). An implementation of Koda and Ruskey's algorithm.URL: http://www-
s-staff.stanford.edu/~knuth/programs.html.

Fun
tional pearl 957Knuth, Donald E. (2001b). The Art of Computer Programming. Vol. 4, Pre-Fas
i
le2a: A Draft of Se
tion 7.2.1.1: Generating all n-tuples. Addison-Wesley. Cir
ulatedele
troni
ally. URL: http://www-
s-staff.stanford.edu/~knuth/news.html.Koda, Yasunori, & Ruskey, Frank. (1993). A Gray
ode for the ideals of a forest poset.Journal of algorithms, 15(2), 324{340. URL: http://
sr.
s
.uvi
.
a/home/fruskey/Publi
ations/ForestIdeals.ps.Leroy, Xavier, Doligez, Damien, et al. . (2002). The Obje
tive Caml language. URL:http://
aml.inria.fr/.Reynolds, John C. (1998a). De�nitional interpreters for higher-order programming lan-guages. Higher-order and symboli

omputation, 11(4), 363{397. URL: ftp://ftp.
s.
mu.edu/user/j
r/defint.dvi.gz.Reynolds, John C. (1998b). De�nitional interpreters revisited. Higher-order and symboli

omputation, 11(4), 355{361. URL: ftp://ftp.
s.
mu.edu/user/j
r/defintintro.dvi.gz.

