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710 J.-C. Filliâtre1 Introdu
tionThis paper is a presentation of the author's thesis (Filliâtre, 1999b). It proposes anew approa
h to the 
erti�
ation of imperative programs, whi
h 
ombines old ideasabout software 
orre
tness with re
ent work on logi
al frameworks.A formal method to establish software 
orre
tness 
an involve several steps. The�rst one is the spe
i�
ation. A se
ond one is a method to generate some proofobligations. And a third one is a framework to establish their validity. The se
ondstep, whi
h expresses what must be proved to establish the 
orre
tness, has beenwidely studied. Pioneers were R. W. Floyd (Floyd, 1967), C. A. R. Hoare (Hoare,1969) and E. W. Dijkstra (Dijkstra, 1976), qui
kly followed by many others. Somemethods derive the proof obligations from the programs, following Floyd-Hoarelogi
 (Jones, 1980; Reif, 1995), and others derive them from spe
i�
ations, followingE. W. Dijkstra (Ba
k, 1981; Morgan, 1990; Abrial, 1996). But almost nothing hasbeen done regarding the other two steps, where standard mathemati
s were assumedmost of time. And although the proof of a program 
an be 
ondu
ted on papermathemati
ally, as has been done brilliantly by C. A. R. Hoare in (Hoare, 1971),formal spe
i�
ation languages and formal proof tools were expe
ted and still hadto be de�ned.Formal logi
al frameworks appeared later and, paradoxi
ally, independently ofthe software 
orre
tness 
on
ern. They were rather a rehabilitation of logi
 and�-
al
ulus, depre
ated by traditional mathemati
ians. The �rst implementation ofa logi
 was N. de Bruijn's Automath (de Bruijn, 1980), followed by many others,in
luding Nqthm, PVS, HOL, Nuprl and Coq. Some of them implement highly ex-pressive logi
s, whose 
ounterpart is a relatively poor automation. The system Coqimplements the Cal
ulus of Indu
tive Constru
tions, an extension of J.-Y. Girard'ssystem F (Girard, 1972) developed by G. Huet, T. Coquand and C. Paulin (Co-quand & Huet, 1988; Paulin-Mohring, 1989b), whi
h belongs to the family of typetheories.Type theory identi�es types with propositions and terms with proofs, throughthe widely known Curry-Howard isomorphism. There is no real di�eren
e betweenthe usual �rst-order obje
ts of the mathemati
al dis
ourse | su
h as naturals,sets and so forth | and the proof obje
ts. The natural 2 is a �rst-order obje
t oftype nat, and a proof that 2 is even is a �rst-order obje
t of type even(2). One
an de�ne a fun
tion f taking as arguments a natural n and a proof that n iseven, and its type would be something like 8n : nat: even(n)! � . Su
h a fun
tionrepresents a partial fun
tion on naturals, where the proof of even(n) may be seenas a pre
ondition. Similarly, one 
an de�ne a fun
tion returning a proof term. Forinstan
e, the fun
tion f 
ould return a natural p and a proof that n = 2�p. Finally,the type of f will look like 8n : nat: even(n)! 9p : nat: n = 2� p, where the proofof n = 2� p may be seen as a post
ondition. More generally, a type of the form8x : nat: P (x)! 9y : nat: Q(x; y) (1)is the type of a fun
tion with a pre
ondition P and a post
ondition Q. Building aterm of this type is exa
tly like building a fun
tion together with a proof of its 
or-
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ation of Non-Fun
tional Programs 711re
tness, and 
onsequently type theory appears as naturally suited for the proof ofpurely fun
tional programs. Moreover, there is a systemati
 way to extra
t the un-derlying program from su
h a proof, as has been demonstrated by C. Paulin (Paulin-Mohring, 1989a; Paulin-Mohring, 1989b). Conversely, C. Parent showed that thereis a way to partly re
onstru
t a proof of (1) from a given fun
tional program ofthe right type, whi
h leads to the expe
ted proof obligations (Parent, 1993; Parent,1995).Our obje
tive is to 
ope with imperative programs in this 
ontext. We proposean interpretation of the Hoare triple fPg e fQg as a proof of the above proposition(1), and then de�ne a systemati
 
onstru
tion of this proof from a given annotatedprogram, where the la
king proof terms are the so-
alled proof obligations. We stillhave to give the pre
ise meaning of x and y in this interpretation. Obviously, theyare the input and output of the program, but there are many ways to representthem. The tradition in denotational semanti
s is to see them as memory states,often 
alled stores. Although it is suitable from a semanti
al point of view, it is farfrom being natural, and is not pra
ti
al, when we try to elaborate the 
orre
tnessproof of a program. Indeed, when doing the proof on a sheet of paper, we do not usea store, but mathemati
al variables to represent the values of the program variables,in the same way as when translating a pie
e of 
ode from an imperative style toa purely fun
tional one. Thus, we 
hoose to represent the input and output of theprogram by tuples of values representing the values of the variables involved in the
omputation.Outline. The main steps of our method are the following. First, Se
tion 2 intro-du
es a programming language with logi
al annotations, whi
h mixes fun
tionaland imperative features. A notion of typing with e�e
ts is given for this language,following the work of J.-P. Talpin and P. Jouvelot (Talpin & Jouvelot, 1994). Thepurpose of e�e
ts inferen
e is two fold: it determines the variables impli
ated inthe 
omputation and that should appear therefore in the interpretation; and it ex-
ludes programs 
ontaining aliases, be
ause su
h programs do not have any naturalfun
tional interpretation. This stati
 analysis is done re
ursively over the stru
tureof the program, giving a type and an e�e
t to ea
h of its subexpressions.Then, Se
tion 3 exploits the types and e�e
ts informations to build an interpre-tation in the Cal
ulus of Indu
tive Constru
tions of an annotated program e, as apartial proof term be of a proposition expressing the spe
i�
ation of the program in afun
tional way. The missing parts in the proof term be are the obligations, left to theuser. This interpretation is inspired by the 
all-by-value translations introdu
ed byE. Moggi (Moggi, 1991) and P. Wadler (Wadler, 1993). Some examples are givento illustrate the generation of proof obligations in three important situations |assignment, fun
tion 
all with side e�e
ts and while loop.Se
tion 4 establishes the 
orre
tness of the method, namely that if all proof obli-gations in be are ful�lled by the user, then the program e satis�es its spe
i�
ation.We pro
eed in three steps: �rst, we de�ne an operational semanti
s for our lan-guage, borrowed from A. K. Wright and M. Felleisen's proof of type soundness forML with referen
es (Wright & Felleisen, 1994). Then, we show that the fun
tional



712 J.-C. Filliâtreprogram underlying our interpretation, obtained by erasing the logi
al parts in befollowing C. Paulin's extra
tion (Paulin-Mohring, 1989b; Paulin-Mohring, 1989a),is semanti
ally equivalent to the initial program e. Finally, we de�ne the notionof 
orre
tness for the annotated programs and we relate this notion to the oneof realizability asso
iated to extra
tion; it leads to the 
orre
tness result of ourmethod.Last, Se
tion 5 gives some details about the implementation of this method in theCoq proof assistant, dis
usses some 
ompleteness issues and des
ribes the 
ase stud-ies developed by the author. Se
tion 6 dis
usses possible extensions and 
omparesour work with other approa
hes.This paper is intended to be a stand-alone presentation, and does not assume anyknowledge of the author's thesis (Filliâtre, 1999b). However, the interested readerwill �nd in (Filliâtre, 1999b) detailed proofs of the results given here, some slightgeneralizations, and a 
omprehensive presentation of some 
ase studies.2 A programming language with annotationsIn introdu
ing a programming language with annotations, we �rst de�ne a notionof annotated type. Then the 
onstru
ts of annotated programs are introdu
ed anddis
ussed. Finally, a typing system for programs is given, whi
h in
ludes an e�e
tinferen
e. 2.1 Types, e�e
ts and spe
i�
ationsTypes in programs are a �rst level of spe
i�
ation. Knowing that a fun
tion f hastype int ! int prevents us from applying it to a boolean. Types express simpleproperties of the programs that 
an be 
he
ked by the 
ompiler, and even inferredin some programming languages. An important point is that a good typing systemallows separate 
ompilation: the type of a fun
tion f is the only information neededin 
ompiling a program that uses f .Obviously, simple types are not enough to guarantee the 
orre
t use of a fun
tion.If f a

epts only even numbers, for instan
e, then it must be spe
i�ed and 
he
kedfor any use of this fun
tion. In the general 
ase, this is no longer 
he
kable bythe 
ompiler. But we 
an keep the idea of separate 
ompilation and ask whatinformation is required to use a fun
tion. The spe
i�
ation is 
learly part of it. Inthe example above, it would be a pre
ondition expressing that the argument of fmust be even. It 
ould also be a post
ondition expressing a property of the resultof the fun
tion 
all.Side e�e
ts must 
learly be part of the spe
i�
ation as well. Indeed, the two
omputations f(0)+f(0) and 2�f(0) are not equivalent as soon as f has some sidee�e
t, su
h as the modi�
ation of a global referen
e. A possibility is to make expli
itside e�e
ts as a proposition in the post
ondition of f , su
h as y = �y + 1 ^ 8z:z 6�y ) z = �z , where  �x denotes the value of the referen
e x before the fun
tion 
all.But we expe
t a more impli
it handling of side e�e
ts. We would like to de
lare



Veri�
ation of Non-Fun
tional Programs 713that f modi�es the 
ontents of the referen
e y, and nothing else, the invarian
e ofthe other referen
es being an impli
it 
onsequen
e. We also expe
t the side e�e
tsof a fun
tion to be inferred from its de�nition, or at least 
he
ked.Finally, the notions of pre- and post
onditions must be made pre
ise. Our spe
i�-
ation language will be the Cal
ulus of Indu
tive Constru
tions (Ci
 for short) (Co-quand & Huet, 1988; Paulin-Mohring, 1989b), whi
h is a typed �-
al
ulus extend-ing the system F with higher order, dependent types and indu
tive de�nitions. Theterms of Ci
 and its typing rules are given in the appendix. The typing judgmentis written � `Ci
 u : t, where � is a typing environment and u; t are terms. Termsof type Prop are 
alled logi
al propositions in the following. We assume the basetypes of our language to be de�nable in Ci
.In 
onsequen
e, our notion of annotated type is made of a type, an e�e
t and aspe
i�
ation.First, we need to de�ne the pre
ise notion of e�e
t. Extensive work has been doneon the stati
 analysis of programs, among whi
h The Type and E�e
t Dis
iplineof J.-P. Talpin and P. Jouvelot (Talpin & Jouvelot, 1994) is probably the mostwell known. We took some inspiration from their work, but our notion of e�e
t ismu
h simpler, for two reasons. First, we do not 
onsider aliases in programs, andtherefore we do not need the notion of regions. Se
ond, we do not 
onsider e�e
tpolymorphism | the possibility to abstra
t the type of a fun
tion with respe
tto an e�e
t | and hen
e we do not need e�e
t variables. We will justify thoserestri
tions in Se
tion 2.3.In our 
ase, an e�e
t is a pair of two sets of variables, the �rst one representingthe referen
es possibly a

essed by the program, and the se
ond one the referen
espossibly modi�ed by the program.De�nition 1 (e�e
ts)An e�e
t is a pair � = (�; !) where � and ! are two �nite sets of variables su
h that! � �. We will write ? for the empty e�e
t, that is, (;; ;).The most 
ommonly used operation on e�e
ts is their union. It appears naturallywhen two program expressions follow in a sequen
e. This binary operation, writtent, is de�ned by (�1; !1) t (�2; !2) def= (�1 [ �2; !1 [ !2)We will also need the operation removing a variable x from an e�e
t �, written �nx,de�ned by �nx def= (�nfxg; !nfxg)Then we 
an introdu
e the notions of pre- and post
ondition. A pre
ondition is alogi
al proposition whi
h may refer to the 
urrent values of the referen
es 
ontainedin the environment. The 
urrent value of the referen
e x will be referred to dire
tlyas x. A post
ondition is a proposition whi
h may also refer to the 
urrent values ofthe referen
es, still with the same notation, but also to the values of the referen
esbefore the evaluation of the program. This value of the referen
e x will be written �x .



714 J.-C. FilliâtreFinally, we 
an introdu
e the notion of annotated types. As has been sket
hed inthe introdu
tion of this se
tion, the information 
hara
terizing a 
omputation is thetype of the returned value, an e�e
t and a spe
i�
ation. A type may be a base type,like int or bool. It may also be the type of a referen
e 
ontaining a value of type� , whi
h will be written � ref. The last possibility is the type of a fun
tion takinga value of some given type and returning a 
omputation. It leads naturally to thede�nitions of types for values and types for 
omputations, in a mutually re
ursiveway.De�nition 2 (annotated types)The type expressions for values and 
omputations are mutually re
ursively de�nedby the following grammar:( values � ::= � j (x : �)! � j � ref
omputations � ::= (r : �; �; P;Q)where � is a fun
tional base type, P a pre
ondition and Q a post
ondition. Inthe value type (x : �) ! � the variable x is bound in �, and in the 
omputationtype (r : �; �; P;Q) the variable r is bound in Q. If a type � does not 
ontain the
onstru
t ref, it is said to be pure, whi
h we will write \� pure".Environments are lists of bindings of types to variables, as usual. If � is an envi-ronment, we will write x : � 2 � to express that there exist some environments �1and �2 su
h that � = �1; x : �;�2, where x is not bound in �2. In the following, wewill often need to refer to the sets of referen
es of an environment, whi
h is de�nedby Refs(�) def= f x j 9�: x : � ref 2 � gFor 
onvenien
e, we also introdu
e a notation for the set of all referen
es appearingin a pre
ondition P and a post
ondition Q, given an environment �:AllV (�; P;Q) def= �FV (P ) [ FV (Q) [ fx j  �x 2 FV (Q) g� \Refs(�)To type 
he
k the pre- and post
onditions, we have to de�ne the logi
al envi-ronments in whi
h they are going to be typed. It means that we must de�ne what
an be mentioned in a pre- or a post
ondition. First, all predi
ates, like equality,and all purely fun
tional operations, like addition, will be available for building theannotations. Se
ond, we need to express properties of (i) the values 
ontained inthe referen
es, and (ii) the values returned by the programs. The main diÆ
ultyo

urs when the annotations need to use the fun
tions present in the environmentor 
ontained in referen
es. Indeed, if f is a fun
tion whi
h modi�es its argument inpla
e, what is the meaning of a proposition like f(x) = x+ 1 in the spe
i�
ation?Does x on the right side mention the value of x before the fun
tion 
all, or after?Although it is possible to 
ope with this problem by 
onsidering a logi
al interpre-tation of fun
tions in the annotations, see (Filliâtre, 1999b), we will 
onsider herea simpler 
ase where the annotations 
an only mention values of base types. Noti
ethis eliminates the possibility of mentioning fun
tions in the annotations and obvi-ously not the possibility of using them in the programs. Then, if � is an environment
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tional Programs 715whose referen
es 
ontaining values of base types are x1 : �1 ref; : : : ; xn : �n ref, wede�ne the environments of pre- and post
ondition byPre(�) def= x1 : �1; : : : ; xn : �nandPost(�; r : �) def= Pre(�); �x1 : �1; : : : ; �xn : �n; r : � if � = � or � = � refPost(�; r : �) def= Pre(�); �x1 : �1; : : : ; �xn : �n otherwiseThese environments being de�ned, we are in a position to type 
he
k the pre- andpost
onditions, and so to 
he
k that an annotated type is well formed.De�nition 3 (well formed annotated types)The judgments � `a � wf and � `a � wf are indu
tively de�ned over the stru
tureof � and � by the following set of rules:� `a � wf � `a �1 wf �; x : �1 `a �2 wf� `a (x : �1)! �2 wf � `a � wf � pure� `a � ref wf� `a � wf ! � � � Refs(�) AllV (�; P;Q) � �Pre(�) `Ci
 P : Prop Post(�; r : �) `Ci
 Q : Prop� `a (r : �; (�; !); P;Q) wfWell formedness of an environment � is indu
tively de�ned by; wf � wf � `a � wf�; x : � wfTo summarize, our notion of annotated type in
ludes the usual notion of type,an e�e
t and a spe
i�
ation as a pre- and a post
ondition. For instan
e, assumingthat we have also a type � array for arrays of values of type � , one predi
atesorted : � array! Prop expressing that an array is sorted and one predi
ate permut :� array! � array! Prop expressing that two arrays are permutations of ea
h other,the annotated type of an in pla
e sorting algorithm would be the following:� = (t : � array)! (unit; (ftg; ftg);True; sorted(t) ^ permut(t; �t ))This is the type of a fun
tion taking an array t as argument and returning novalue (i.e., the value () of type unit), modifying the 
ontents of t (t appears in theinput as well as in the output), with no pre
ondition (i.e., the proposition True)and a post
ondition expressing that the �nal value of t is a sorted array, whi
h isa permutation of the initial value of t.Annotated types are de�ned; we 
an introdu
e now the annotated programs.2.2 Annotated programsWe 
onsider a programming language with both imperative and fun
tional features.The 
onstru
ts 
ommon to both worlds in
lude the 
onstants, the 
onditional, the



716 J.-C. Filliâtree ::= fPg s fr j Qgs ::= 
 j x j (e e) j fun (x : �)! e j re
 f (~x : ~�) : � fvariant �g = ej if e then e else e j e ; e j while e do finvariant P variant �g e donej let x = e in e j ref e j !x j x := eFig. 1. Abstra
t syntax of annotated programsfun
tion de�nition and the fun
tion 
all. As an imperative language, it 
ontainsreferen
es, sequen
es and loops. As a fun
tional language, it also 
ontains fun
tionsas �rst-order values (passed as arguments and returned by other fun
tions), partialappli
ation and a let in 
onstru
t. This last 
onstru
t allows binding of a newreferen
e in an expression, and thus provides lo
al variables. This language has a
all-by-value semanti
s, where the argument of a fun
tion is evaluated before thefun
tion itself and multiple arguments are evaluated from right to left. A formalsemanti
s of the language is given in Se
tion 4.1.Termination. Sin
e we are interested only in total 
orre
tness, we must be in aposition to justify the termination of programs, that is, of loops and re
ursivefun
tions. Su
h a justi�
ation usually involves a quantity, the variant, whi
h stri
tlyde
reases for some well founded relation. Instead of limiting the variant to a nonnegative integer, or an ordinal, as is usually done, we will let the user spe
ify avariant as a pair � = (�;R) where � is the quantity itself and R the relation, thathe or she will have to prove to be well founded.De�nition 4 (variant)� being a well formed environment, a variant in � is a pair � = (�;R), well typedin Pre(�), whose type has the formVariant(A) def= A� (A! A! Prop)where A is any type.Then, loops and re
ursive fun
tions will be expli
itly annotated by su
h a variant.In the 
ase of a re
ursive fun
tion, the variant is usually de�ned in terms of thefun
tion's arguments | otherwise, we would have written a loop | and the syntaxof re
ursive fun
tions introdu
es the variant after the arguments.We are now in position to introdu
e the syntax of annotated programs.De�nition 5 (annotated programs)The abstra
t syntax of annotated programs is given in Figure 1, where P is apre
ondition, Q a post
ondition and � a variant.One 
an noti
e that referen
es are handled only as variables, in the 
onstru
ts !x andx := e, while the tradition in fun
tional programming languages with referen
esis to allow any expression of type � ref to be dereferen
ed or assigned. This will bejusti�ed in the next se
tion.
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ation of Non-Fun
tional Programs 717A program, and any of its subexpressions, is annotated with a pre- and post
on-dition, in the tradition of Floyd-Hoare logi
. The syntax is the following:fPg s fr j Qgwhere r binds the result of s in Q. In the 
ase of a fun
tion fun (x : �)! e, however,the annotation will usually not 
onstrain the fun
tion itself but the body e dire
tly,with the syntax fun (x : �)! fPg s fr j QgLoop invariants. Among program annotations, a parti
ular emphasis is usuallymade on loop invariants. Indeed, due to the stru
ture of the loop, whi
h does notreturn a value but modi�es some data in pla
e, there is usually a property whi
hpersists at ea
h iteration of the loop, 
alled the loop invariant. We 
ould use thenotations already introdu
ed to annotate a loop body e2 in the following way:while e1 do fvariant �g fPg s2 fQg donebut, sin
e usually P and Q are of the form I ^ T1 and I , where T1 is a propositionexpressing that the test e1 is satis�ed, we will introdu
e a parti
ular notation ofthe kind while e1 do finvariant I variant �g e2 doneHere is an example of su
h an invariant on a loop 
omputing in the referen
e s thesum of the integers from 0 up to the value initially 
ontained in the referen
e n:s := 0;while !n > 0 dof invariant s =Pi= �ni=n+1 i variant (n;<) gs := !s + !n;n := !n � 1donef s =Pi= �ni=0 i gAnother example is given later (Example 3 on page 727).Contrary to a loop, a re
ursive fun
tion usually has distin
t pre- and post
ondi-tions, and its annotation will look likere
 f (~x : ~� ) : � fvariant �g = fPg s fr j Qgsimilarly to a nonre
ursive fun
tion. For instan
e, a re
ursive fun
tion 
omputingthe fa
torial will be annotated as follows:re
 fa
t (x : nat) : � fvariant (x;<)g =fg if x = 0 then 1 else x� (fa
t (x� 1)) fr j r = x!gwhere � = (r : nat;?;True; r = x!) is the result type of fa
t (The absen
e ofpre
ondition is understood as the tautologi
al proposition True).



718 J.-C. Filliâtre2.3 TypingIn this se
tion, we introdu
e the typing rules for annotated programs, from whi
hwe will get a type 
he
king and e�e
t inferen
e algorithm. Beside the 
omputationof e�e
ts, whi
h is not new, the main feature of our typing system is to ex
lude pro-grams 
ontaining possible aliases. Indeed, we are looking for a dire
t interpretationof programs where input variables represent the values of the a

essed referen
esand output variables the values of the modi�ed referen
es. Aliases would break thisinterpretation. Consider, for instan
e, the following fun
tion f whi
h in
reases itstwo arguments: f � fun x y ! x := !x+ 1; y := !y + 1Then its interpretation should be a fun
tion taking the values of x and y, let ussay vx and vy, and returning their new values, namely, vx +1 and vy +1. But, if xand y are aliases for the same referen
e | if f has been applied twi
e to the samereferen
e, for instan
e | then the interpretation of f should be now a fun
tiontaking a single value v and returning v+2. As a 
onsequen
e, even the type of theinterpretation of a fun
tion depends on the presen
e of aliasing.To avoid any alias introdu
tion, we restri
t the program's expressions via typing.An alias is 
reated ea
h time a variable is bound to an existing referen
e, and su
ha binding may be realized using the let 
onstru
t or a fun
tion 
all. We �rst restri
tthe use of a variable x designating a referen
e: it is only allowed in the 
onstru
ts!x, x := e and as the argument of a 
all-by-referen
e fun
tion. In parti
ular,a referen
e bound to a variable 
annot be bound to another variable using the let
onstru
t. In the 
ase of a fun
tion 
all, we avoid aliasing by 
he
king that a fun
tionis never applied to a referen
e whi
h appears already in its e�e
t. Consequently, aglobal referen
e modi�ed by a fun
tion 
annot be passed as an argument to thisfun
tion and, for the same reason, the same referen
e 
annot be passed twi
e asarguments of a fun
tion.The typing rules for annotated programs are given below.De�nition 6 (typing of annotated programs)The judgment � `a e : � is de�ned by the following rule:� `a s : (�; �) let �0 def= (AllV (�; P;Q); ;)Pre(�) `Ci
 P : Prop Post(�; r : �) `Ci
 Q : Prop� `a fPg s fr j Qg : (r : �; � t �0; P;Q)where the judgment � `a s : (�; �) is de�ned by the inferen
e rules given in Figure 2.In those rules, the judgment � `a e : � appears in a weakened form � `a e : (�; �)in order to save spa
e, sin
e only types and e�e
ts of the subexpressions are neededfor the 
on
lusion.The rules dealing with 
onstants, abstra
tions, 
onditionals, sequen
es and loopsare immediate. The three rules dealing dire
tly with referen
es | 
reation, a

essand assignment | are also self-explanatory. The key rules, whi
h ex
lude aliasing,are the rule for variables, the two rules for fun
tion 
alls and the two rules for the
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ation of Non-Fun
tional Programs 719Type(
) = �� `a 
 : (�;?) (CONSTa) x : � 2 � � pure� `a x : (�;?) (VARa)�; x : � `a e : � � `a � wf� `a fun (x : �)! e : ((x : �)! �;?)(FUNa)� `a e1 : (�2 ! (�1; �); �1) � `a e2 : (�2; �2) �2 pure� `a (e1 e2) : (�1; �1 t �2 t �) (APPa)� `a e : ((x : �1 ref)! (�; �); �2) r : �1 ref 2 � r =2 (�; �)� `a (e r) : (� [x r℄; �2 t �[x r℄) (APPREFa)� `a ~� wf �; ~x : ~� `a � wf�; f : (~x : ~�)! �; ~x : ~� `a e : � Pre(�; ~x : ~�) `Ci
 � : Variant(A)� `a re
 f (~x : ~�) : � fvariant �g = e : ((~x : ~�)! �;?) (RECa)� `a e1 : (bool; �1) � `a e2 : (�; �2) � `a e3 : (�; �3)� `a if e1 then e2 else e3 : (�; �1 t �2 t �3) (CONDa)� `a e1 : (�1; �1) �1 pure �; x : �1 `a e2 : (�; �)� `a let x = e1 in e2 : (�; �1 t �) (LETa)� `a e1 : (�1 ref; �1) �; x : �1 ref `a e2 : (�2; �2) x =2 �2� `a let x = e1 in e2 : (�2; �1 t �2nx) (LETREFa)� `a e1 : (unit; �1) � `a e2 : (�; �2)� `a e1 ; e2 : (�; �1 t �2) (SEQa)� `a e1 : (bool; �1) � `a e2 : (unit; �2)Pre(�) `Ci
 P : Prop Pre(�) `Ci
 � : Variant(A)� `a while e1 do finvariant P variant �g e2 done : (unit; �1 t �2) (LOOPa)� `a e : (�; �) � pure� `a ref e : (� ref; �) (REFa) x : � ref 2 �� `a !x : (�; (fxg; ;)) (DEREFa)x : � ref 2 � � `a e : (�; (�; !))� `a x := e : (unit; (fxg [ �; fxg [ !)) (AFFa)Fig. 2. Typing of annotated programslet 
onstru
t. The �rst one, (VARa), does not allow use of a variable as soon asit is a referen
e | but, of 
ourse, it is still possible to use it with the dereferen
eoperation, with the assignment or in a fun
tion 
all. The two rules for fun
tion 
alls,(APPa) and (APPREFa), distinguish between the 
ase of a fun
tional argumentand the 
ase of a 
all-by-referen
e. In the latter, a side 
ondition expresses thatthe referen
e passed to the fun
tion must not be already present in the resultinge�e
ts of the fun
tion 
all. Similarly, the two rules for the let bindings, (LETa)and (LETREFa), distinguish the 
ase of a purely fun
tional expression and the 
aseof a referen
e binding. In the latter, a side 
ondition expresses that the referen
eshould not appear in the type of the result: it prevents the binding of a lo
alreferen
e in an abstra
tion, where the name of this referen
e in the e�e
ts would



720 J.-C. Filliâtrenot represent a valid referen
e anymore. In the rules (RECa) and (LOOPa), thepremise � : Variant(A) only 
he
ks that � is a well formed variant and does not
he
k that the fun
tion or the loop is terminating; it will be done together with
orre
tness in the next se
tion.A typing algorithm, asso
iated to the above typing rules, realizes type 
he
kingand e�e
t inferen
e. Its existen
e 
an be formalized as follows:Proposition 1 (typing algorithm)There exists an algorithm whi
h, given a well formed environment � and an an-notated program e, terminates and either indi
ates that e is not typeable in �, orreturns a (unique) type of 
omputation � su
h that � `a e : �.ProofThe algorithm pro
eeds by indu
tion over the stru
ture of e. For any 
onstru
t,there is only one rule that mat
hes e. If one of the premises is not satis�ed, thenthe algorithm fails and e is not typeable in �. Otherwise, the type � is built in aunique way from the rule and the types returned by the re
ursive 
alls, whi
h areunique by indu
tion hypothesis. The termination of the algorithm is justi�ed bythe fa
t that the program's size stri
tly de
reases for ea
h re
ursive 
all.The above typing algorithm needs some 
omments:� E�e
ts are inferred in all 
ases, ex
ept for the bodies of re
ursive fun
tions;indeed, the type � in rule (RECa) 
ontains an e�e
t, whi
h is thus expli
-itly given. In pra
ti
e, it is possible to adopt a simpler syntax for re
ursivefun
tions where only the type of the body is given and where the e�e
t is in-ferred. However, this is not immediate: the e�e
t of a re
ursive fun
tion mustbe 
omputed as a least �x-point, and the number of steps may be arbitrarilylarge. See (Filliâtre, 1999b) for details.� We made the pre- and post
onditions mandatory for ea
h subexpression,mostly to simplify the theoreti
al presentation. In pra
ti
e, it would be aburden to introdu
e so many annotations, most of them being redundant. Inthe next se
tion, we still assume annotations everywhere, for the simpli
ity ofthe de�nitions, but the examples at the end of the se
tion will be given witha minimum number of annotations. Se
tion 5.3 on 
ase studies will also givean idea of the respe
tive proportions of 
ode and annotations in pra
ti
e.3 A logi
al interpretationIn this se
tion, we de�ne the interpretations of types and programs in the Cal
ulusof Indu
tive Constru
tions. The main idea is that an annotated type � = (r :�; (�; !); P;Q) will be translated into a proposition of the form8x: P (x)! 9(y; r): Q(x; y; r)and a program of type � will be translated into a partial proof term of this propo-sition. Here x and y will be states 
ontaining respe
tively the values of referen
es
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tional Programs 721from � and !; then P (x) (resp. Q(x; y; r)) stands for the pre
ondition P now ref-eren
ing the values in x (resp. the post
ondition Q referen
ing the values in x andy).Formally, the terms of the Ci
 (Coquand & Huet, 1988; Paulin-Mohring, 1993)that we need to 
onsider in this paper obey the following grammar:t ::= Set j Prop j Type(i) j 
 j x j 8x : t: t j �x : t: t j (t t)The produ
t 8x : t1: t2 is written t1 ! t2 whenever x does not o

ur free in t2.The typing judgment is written � `Ci
 u : t and the typing rules are given inthe appendix, page 745. We do not need to present indu
tive types; therefore, theexistential quanti�er is 
onsidered here as a primitive 
onstru
t, although it 
anbe de�ned as an indu
tive type (Paulin-Mohring, 1993). Its type, 
onstru
tor andelimination are introdu
ed by the following 
onstru
ts:t ::= : : : j 9x : t: t j (t; t) j let (x; x) = t in tSimilarly to the produ
t, 9x : t1: t2 is written t1�t2 whenever x does not o

ur freein t2. The pair (u1; u2) builds a proof of 9x : t1: t2, where u1 is the witness of typet1 and u2 is of type t2[x u1℄, and a pair of type t1�t2 in the non-dependent 
ase.The let in 
onstru
t is the 
orresponding destru
tor. The typing rules for existentialquanti�
ation are given in the appendix.As we already assumed, the pure fun
tional base types of our languages (written� in the previous pages) are among the 
onstants 
. And so are the predi
ates usedto spe
ify the programs | like equality, order relations, et
. | and all the purelyappli
ative fun
tions used in the programs | like arithmeti
al operations, testfun
tions, et
. We also assume the de�nition of a well founded indu
tion prin
iple1WF of typeWF : 8A : Set: 8R : A! A! Prop: (well founded A R)!8P : A! Set:(8x : A: (8y : A: (R y x)! (P y))! (P x))!8a : A: (P a)Last, for 
larity of the presentation, we assume that Ci
 
ontains a primitivenotion of re
ords2. Re
ord types are written fx1 : t1; : : : ;xn : tng and their elementsare written fx1 = t1; : : : ;xn = tng. If v is su
h a re
ord, then v:x stands for thevalue of its �eld x. We assume that it is possible to abstra
t a term with respe
t toa �eld variable, and to apply a term to a �eld variable, the 
orresponding redu
tionstill being the �-redu
tion3. In the following, we need an operation to \update"re
ords with respe
t to another one. This operation, written �, is formally de�nedas follows: if x and y are two re
ords, then x� y is a re
ord 
ontaining all the �elds1 See for instan
e the Coq standard library (Coq, 2001).2 Although this is not the usual 
ase in implementations, we do show (Filliâtre, 1999b) how to
ope with this problem using anonymous tuples.3 This assumption allows a ni
e interpretation of fun
tions taking referen
es as argument. Sin
eour implementation uses anonymous tuples instead of re
ords, this abstra
tion does not appearexpli
itly anymore. See (Filliâtre, 1999b) for details.



722 J.-C. Filliâtreof x and y and where the value of the �eld a is y:a, if a is a �eld of y, and x:aotherwise. 3.1 Interpretation of typesLet us de�ne �rst the interpretation of types in Ci
. A

ording to the informal ideasgiven in the introdu
tion, we expe
t the interpretation of a spe
i�
ation|that is, atype of 
omputation �|to be a formula of the kind 8x: P (x) ! 9(y; v): Q(x; y; v)where x and y are re
ords of values, and v is a value. Sin
e values and 
omputationsare mutually re
ursive, their interpretations depend on ea
h other. The pre
isede�nition is given below.De�nition 7 (interpretation of types)The interpretations of types of values and 
omputations in Ci
, respe
tively writtenb� and b�, are mutually re
ursively de�ned in a typing environment � byvalues b� = �\(x : � ref)! � = 8x:b� where x is a �eld\(x : �)! � = 8x : b� : b� otherwised� ref = b�
omputations \(r : �; (�; !); P;Q) = 8x : b�: P (x)! 9(y; r) : b! � b� : Q(x; y; r)e�e
ts \fx1; : : : ; xng = fx1 : b�1; : : : ;xn : b�ng where xi : �i ref 2 �where the propositions P (x) and Q(x; y; r) are formally de�ned as follows:P (x) def= P [v  x:v℄for v 2 FV (P ) \ Refs(�), andQ(x; y; r) def= Q[ �v  x:v℄[w  x:w℄[z  y:z℄for v 2 fx j  �x 2 FV (Q) ^ x 2 Refs(�)g, w 2 (FV (Q) \ Refs(�))n! and z 2(FV (Q) \Refs(�)) \ !.Interpretation of typing environments is then de�ned as follows:\x : �; � = x : b� ; b� when � 6= � 0 ref\x : �; � = b� otherwiseIn the above de�nition, P (x) is de�ned as the predi
ate P where all referen
esare repla
ed by their values in the re
ord x, as expe
ted. For the post
ondition Q,the interpretation is a bit more subtle. Indeed, the post
ondition may mention the
urrent value of some referen
es whi
h are not modi�ed by the program, that is,whi
h do not appear in !. Therefore, they must be substituted by their values inthe input re
ord x instead of the output re
ord y. This is the reason for the threesubstitutions in the de�nition of Q(x; y; r). E.g. if Refs(�) = fu; vg, ! = fug andQ � u > �u ^ u = v then Q(x; y; r) � y:u > x:u ^ y:u = x:v.



Veri�
ation of Non-Fun
tional Programs 723Finally, noti
e that referen
es do not appear anymore in the interpretations ofenvironments: indeed, the interpreted programs do not refer to referen
es anymorebut are now fun
tions manipulating their values.3.2 Interpretation of programsWe de�ne now the interpretation of programs. If e is an annotated program of type�, then its interpretation be will be a partial term in Ci
 of type b�. In this term,all the 
omputational part will be given, and the logi
al part will appear as proofobligations, written ? : P , where P is a proposition and `?' a term of type P (i.e.,a proof of P ) to be given by the user. To build the 
omputational part of be meansto 
onstru
t a fun
tional interpretation of the imperative program e. Due to thestrong restri
tions we put on the language 
onstru
ts and on the typing rules toavoid aliasing, su
h an interpretation is not diÆ
ult, and we de�ne it dire
tly. Itfollows the main ideas of monadi
 
all-by-value translations, where monadi
 lets areused to express the sequentiality of 
omputations.In the following, we make a slight abuse of notation: if a fun
tion f takes a re
ordas argument with �elds l1; : : : ; ln, then we write (f x) even for a re
ord x 
ontaining�elds additional to the li's, with the impli
it 
onvention that they are forgotten.Similarly, when de�ning a fun
tion returning a re
ord, we allow the return of are
ord with more �elds than the expe
ted ones, the additional ones being impli
itlyforgotten. Noti
e that su
h assumptions would not be ne
essary in the presen
e ofsubtyping.Finally, we will sometimes omit the domain type in a �-expression, when ob-vious from the 
ontext, and we will write let (x; v; q) = e1 in e2 for let (y; q) =e1 in let (x; v) = y in e2.De�nition 8 (interpretation of programs)Let � be a well formed environment and e a program su
h that � `a e : �,with � = (r : �; (�; !); P;Q). Then the interpretation of e in Ci
, written be, is anin
omplete term of type b� in the 
ontext b�, re
ursively de�ned on the stru
ture ofe in the following way:e � fPg s fQg with s = 
 j x : Thenbe = �x0:�p : P (x0):(fg; s; ?1)with b�; x0 : b�; p : P (x0) `Ci
 ?1 : Q(x0; fg; s). In the following, we will omit the
ontexts of obligations for 
larity. (The 
ontext of an obligation is made of b� andof all the variables bound up to its pla
eholder.)e � fPg (e2 e1) fQg : We know that � `a e2 : ((x : �1)! (�; �; P 0; Q0); �2; P2; Q2).We distinguish two 
ases a

ording to the type of e1:� If � `a e1 : (�1; �1; P1; Q1), with �1 6= ref, thenbe = �x0:�p : P (x0): let (x1; a; q1) = ( be1 x0 ?1) inlet (x2; f; q2) = ( be2 (x0 � x1) ?2) inlet (x3; v; q) = (f a (x0 � x1 � x2) ?3) in(x1 � x2 � x3; v; ?4)



724 J.-C. Filliâtrewith ?1 : P1(x0), ?2 : P2(x0 � x1), ?3 : P 0(x0 � x1 � x2) and ?4 : Q(x0; x1 �x2 � x3; v).� If e1 = r : � 01 ref thenbe = �x0:�p : P (x0): let (x1; f; q2) = ( be2 x0 ?1) inlet (x2; v; q) = (f r (x0 � x1) ?2) in(x1 � x2; v; ?3)with ?1 : P2(x0), ?2 : P 0(x0 � x1) and ?3 : Q(x0; x1 � x2; v).e � fPg fun (x : �1)! e1 fQg : We distinguish two 
ases:� If � = � 01 ref then be = �x0:�p : P (x0):(fg; �x: be1; ?1)with ?1 : Q(x0; fg; �x: be1).� else be = �x0:�p : P (x0):(fg; �x : b� : be1; ?1)with ?1 : Q(x0; fg; �x : b� : be1).e � fPg re
 f (~x : ~� ) : � fvariant �g = e1 fQg : We have � = (�;R) : Variant(A)and �; f : (~x : ~� ) ! �; ~x : ~� `a e1 : (�1; �1; P1; Q1). We build the interpretationof e using the well founded indu
tion prin
ipleWF. Sin
e the variant may dependon the 
urrent state, we apply WF on the generalized propositionK(') def= 8~x:8x0: ' = �(~x; x0)! P1(x0)! 9(x1; r): Q1(x0; x1; r)The re
ursive fun
tion is interpreted by the termbf : \(~x : ~� )! � = �~x:�x0:(WF A R ?1 �':K(')�':�f:�~x:�x0:�h : ' = �(~x; x0): ( be1 x0)�(~x; x0) ~x x0 ?)with ?1 : (well founded A R). The unnumbered obligation 
orresponds to a proofof �(~x; x0) = �(~x; x0), whi
h 
an be automati
ally inserted. In the interpreta-tion be1, ea
h o

urren
e of f applied to the arguments ~a and to the state xi isinterpreted by (f �(~a; xi) ?2 ~a xi ? ?3)with ?2 : (R �(~a; xi) ') and ?3 : P1[~x  ~a℄(xi). The unnumbered obligation
orresponds to a proof of �(~a; xi) = �(~a; xi), whi
h 
an be automati
ally inserted.Then the interpretation of e itself is de�ned bybe = �x0:�p : P (x0):(fg; bf; ?4)with ?4 : Q(x0; fg; bf).Noti
e that, for the last two 
onstru
ts fun and re
, we usually have neitherthe pre
ondition P nor the post
ondition Q, whi
h simpli�es the interpretation.Indeed, in pra
ti
e we are not interested in the fun
tion as a value, but we ratherspe
ify its body, as a 
omputation, the annotations being then the ones of e1.
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ation of Non-Fun
tional Programs 725e � fPg if e1 then e2 else e3 fQg :We have � `a e1 : (bool; �1; P1; Q1), � `a e2 : (�; �2; P2; Q2) and � `a e3 :(�; �3; P3; Q3). Thenbe = �x0:�p : P (x0): let (x1; b; q1) = ( be1 x0 ?1) inif b thenlet (x2; v; q2) = ( be2 (x0 � x1) ?2) in (x0 � x1 � x2; v; ?3)elselet (x2; v; q3) = ( be3 (x0 � x1) ?4) in (x0 � x1 � x2; v; ?3)with ?1 : P1(x0), ?2 : P2(x0 � x1), ?3 : Q(x0; x1 � x2; v) and ?4 : P3(x0 � x1).e � fPg let x = e1 in e2 fQg : We have � `a e1 : (�1; �1; P1; Q1) and �; x : �1 `ae2 : (�; �2; P2; Q2). We distinguish two 
ases a

ording to the type of e1:� If �1 6= ref thenbe = �x0:�p : P (x0): let (x1; x; q1) = ( be1 x0 ?1) inlet (x2; v; q2) = ( be2 (x0 � x1) ?2) in(x1 � x2; v; ?3)with ?1 : P1(x0), ?2 : P2(x0 � x1) and ?3 : Q(x0; x1 � x2; v).� If �1 = ref thenbe = �x0:�p : P (x0): let (x1; v0; q1) = ( be1 x0 ?1) inlet (x2; v; q2) = ( be2 (x0 � x1 � fx = v0g) ?2) in(x1 � x2nx; v; ?3)with ?1 : P1(x0), ?2 : P2(x0 � x1 � fx = v0g) and ?3 : Q(x0; x1 � x2nx; v).e � fPg e1 ; e2 fQg : The interpretation is similar to the one of a 
onstru
t let,using the equivalen
e e � let = e1 in e2.e � fPg while e1 do finvariant I variant �g e2 done fQg :We have � `a e1 : (r1 : bool; �1; P1; Q1) and � `a e2 : (unit; �2; P2; Q2). Wealso have � = (�;R) : Variant(A). We de�ne be in a way similar to the 
ase of are
ursive fun
tion, applying WF to the following propositionK(') def= 8x0: ' = �(x0)! I(x0)! 9(x1; r): Q(x0; x1; r)It leads to the following de�nitionbe = �x0:�p : P (x0):(WF A R ?1 �':K(')�':�w:�x0 :�h0 : ' = �(x0):�h1 : I(x0):let (x1; b; q1) = ( be1 x0 ?2) inif b thenlet (x2; ; q2) = ( be2 (x0 � x1) ?3) in(w �(x0 � x1 � x2) ?4 (x0 � x1 � x2) ? ?5)else(x0 � x1; (); ?6)�(x0) x0 ? ?7)with ?1 : (well founded A R), ?2 : P1(x0), ?3 : P2(x0 � x1), ?4 : (R �(x0 � x1 �



726 J.-C. Filliâtrex2) '), ?5 : I(x0�x1�x2), ?6 : Q(x0; x0�x1; ()) and ?7 : I(x0). The unnumberedobligations 
orresponds to proofs of �(s) = �(s) for some state s, whi
h 
an beautomati
ally inserted.e � fPg ref e1 fQg : We have � `a e1 : (�1; �1; P1; Q1). Thenbe = �x0:�p : P (x0):let (x1; v; q1) = ( be1 x0 ?1) in (x1; v; ?2)with ?1 : P1(x0) and ?2 : Q(x0; x1; v).e � fPg !x fQg : be = �x0:�p : P (x0):(fg; x0:x; ?1)with ?1 : Q(x0; fg; x0:x).e � fPg x := e1 fQg : We have � `a e1 : (�1; �1; P1; Q1). Thenbe = �x0:�p : P (x0):let (x1; v; q1) = ( be1 x0 ?1) in (x1 � fx = vg; (); ?2)with ?1 : P1(x0) and ?2 : Q(x0; x1 � fx = vg; ()).Some examples should help the reader in understanding how the proof obligationslook like.Example 1. Let us �rst 
onsider the very simple assignmente � fx � 0g x := !x+ 1 fx > �x � 0gin a 
ontext � 
ontaining at least a referen
e x of type int ref. We have� `a e : (unit; (fxg; fxg); x � 0; x > �x � 0) (2)and therefore the interpretation of e has typebe : 8x0 : fx : intg: x0:x � 0! 9(x1; r) : fx : intg � unit: x1:x > x0:x � 0 (3)Following De�nition 8, the interpretation of e is the proof termbe = �x0: �p : x0:x � 0: let v = x0:x+ 1 in (x0 � fx = vg; (); ? : v > x0:x � 0)After the redu
tion of this last let in redex, the only proof obligation is the expe
tedone: 8x: x � 0! x+ 1 > x � 0where x stands here for a new variable generalizing x0:x. Thanks to redu
tions in theproof term be, we have found exa
tly the same proof obligation as the one obtainedin Floyd-Hoare logi
 by 
ombining the rules of 
onsequen
e and assignment.Example 2. In the same environment �, let us 
onsider now a more 
omplex situ-ation where x is assigned the result of a fun
tion 
all with possible side e�e
ts:e � fx � 1g x := (f 1) fx < �x gLet us assume that f has the following annotated type:f : (y : A)! (r : int; (fxg; fxg); x � y; x = �x � y ^ r = x)
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ation of Non-Fun
tional Programs 727We assume that the fun
tion 
all (f 1) is annotated in the following way:e � fx � 1g x := fx � 1g (f 1) fr j x = �x � 1 ^ r = xg fx < �x gwhi
h 
an be done automati
ally. (A
tually, it is done automati
ally in the im-plementation as soon as the fun
tion argument is purely fun
tional.) Then theinterpretation of e is the proof termbe = �x0:�p : x0:x � 1: let (x1; v; qf ) =let (x1; r; qf ) = (f 1 x0 ?1) in (x1; r; ?2)in (x1 � fx = vg; void; ?3)where ?1 : x0:x � 1, ?2 : x1:x = x0:x � 1 ^ r = x1:x and ?3 : v < x0:x. Theobligation `?1' is trivially dis
harged by p, sin
e the pre
onditions of the programand the fun
tion f are the same. Similarly the se
ond obligation `?2' is dire
tlyestablished by qf (its proof is qf ), sin
e the fun
tion 
all was pre
isely annotatedwith the post
ondition of f . Then only obligation `?3' remains. It states that the�nal post
ondition has to hold after the assignment; generalizing x0:x and x1:x, it
an be written as8x: x � 1! 8x0; v: x0 = x� 1 ^ v = x0 ! v < xContrary to Example 1, the value assigned to x is no more substituted but abstra
tedas a variable v; and so is the e�e
t of the fun
tion 
all, abstra
ted in the variablex0. Then the fun
tion post
ondition (that is x0 = x � 1 ^ v = x0) 
an be used toestablish the �nal post
ondition (that is v < x).Example 3. As a last example, let us 
onsider a very simple while loop whi
h storesin the referen
e x the least power of 2 greater or equal than a given integer k:e � x := 1;while !x < k dof invariant 9i � 0: x = 2i variant (2k � x;<n) gx := 2 � !xdonef x � k ^ 9i � 0: x = 2i gwhere <n is de�ned by x <n y � 0 � x < y. Let I(x) � 9i � 0: x = 2i be theinvariant and Q(x) � x � k ^ 9i � 0: x = 2i be the post
ondition. We have� `a e : (unit; (fxg; fxg); ; Q(x)) and thereforebe : 8x0 : fx : intg: 9(x1; r) : fx : intg � unit: Q(x1:x)Regarding annotations, we assume that the post
ondition Q of e is also the post-
ondition of the while loop and that the test !x < k is given the post
ondition!x < k f b j if b then x < k else x � k g
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an be done automati
ally, at least when the test is fun
tional, and is a
tuallydone in the implementation. Then, following De�nition 8, we havebe = �x0: let (x1; v1) = (x0 � fx = 1g; ()) inlet (x2; v2; q) = ( bw (x0 � x1)) in(x1 � x2; v2; ?)where bw is the interpretation of the loop. The only obligation above is immediatelydis
harged by q sin
e the post
ondition of the loop is also the post
ondition of e.The interpretation of the loop itself isbw = (WF int <n ?1 �':K(')�':�w:�x0 :�h0 : ' = (2k � x0:x):�h1 : I(x0:x):let (fg; b; q1) = (\!x < k x0) inif b thenlet (x2; ) = (x0 � fx = 2� x0:xg; ()) in(w (2k � x2:x) ?2 (x0 � x2) ? ?3)else(x0; (); ?4)�(x1) x1 ? ?5)There are �ve non-trivial proof obligations, whi
h are the following:� The order relation is well founded: ?1 : (well founded int <n)� The variant de
reases: ?2 : ' <n (2k � x2:x).� The invariant is preserved: ?3 : I((x0 � x2):x).� The post
ondition is established when the loop terminates: ?4 : Q(x0:x)� The invariant is initially true: ?5 : I(x1:x).After rewriting ' using h0, redu
ing some let in redexes and generalizing over therelevant hypotheses, the four proof obligations above look like?2 : 8x: (9i � 0: x = 2i)! x < k ! 0 � 2k � 2x < 2k � x?3 : 8x: (9i � 0: x = 2i)! x < k ! 9i � 0: 2x = 2i?4 : 8x: (9i � 0: x = 2i)! x � k ! x � k ^ 9i � 0: x = 2i?5 : 9i � 0: 1 = 2iThey are the expe
ted obligations and are all easy to establish.A pra
ti
al 
on
ern illustrated by these examples may be the size of the proofobligations. As one 
an dedu
e from the interpretation, the 
ontext of an obligationis proportional to the number of annotations and 
onstru
ts pre
eding the obliga-tion point. Thus obligations are never too big for programs of reasonable size. InSe
tion 5.3, we give more detailed �gures about several 
ase studies.Monads and e�e
ts. In the above interpretation, there is a generi
ity whi
h is re-lated to the monadi
 
all-by-value translation. Monads were indeed introdu
ed in
omputer s
ien
e by E. Moggi (Moggi, 1991) and P. Wadler (Wadler, 1993) to ex-press the semanti
s of programming languages within purely fun
tional frameworks.
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ation of Non-Fun
tional Programs 729In (Filliâtre, 1999b), we proposed a generalization of the notion of monad, parame-terized by an abstra
t notion of e�e
t. This allows generi
 interpretations of several
onstru
ts, independently of the nature of the e�e
t. If, for instan
e, ex
eptionswere added to our programming language, the interpretation of many 
onstru
tswould stay un
hanged if they were de�ned using the monadi
 operator. Indeed,the notion of e�e
t would be extended with sets of possibly raised ex
eptions |following J. Guzm�an and A. Su�arez (Guzm�an & Su�arez, 1994) or X. Leroy andF. Pessaux (Leroy & Pessaux, 2000), for instan
e | and only the monadi
 opera-tors would have to be rede�ned. The formal de�nition of monads parameterized bye�e
ts and their properties are given in (Filliâtre, 1999b; Filliâtre, 1999a) and arebeyond the s
ope of this paper. 4 Corre
tnessWe establish the 
orre
tness of our method, namely, that if all proof obligationsappearing in the interpretation be are 
ompleted, then the program e satis�es itsspe
i�
ation. We begin by de�ning a formal semanti
s for our programs. Then wede�ne the 
omputational 
ontents of the interpretation be and we show that it pre-serves the semanti
s of e. Finally, we introdu
e the notion of imperative realizability,whi
h expresses the 
orre
tness of the imperative programs. By relating this notionto the usual notion of fun
tional realizability, we establish the 
orre
tness of ourmethod. 4.1 Formal semanti
sOur interpretation in Ci
 is a
tually already a denotational semanti
s of imperativeprograms. However, an operational semanti
s will make the de�nition of 
orre
tnessmore intuitive and will allow us to state the absen
e of aliasing in an expli
it way.We 
hose to adopt the operational semanti
s used by A. K. Wright and M. Felleisento establish the type soundness of ML with referen
es (Wright & Felleisen, 1994),be
ause it is an intuitive semanti
s, 
lose to a handmade evaluation of programs.This is a small-step semanti
s driven by the syntax. Indeed, it 
onsists in a synta
ti
notion of redu
tion over programs, whi
h use a synta
ti
 distin
tion between valuesand expressions, whi
h is the following:expressions e ::= v j (e e) j let x = e in e j �:e j if e then e else evalues v ::= 
 j x j Y j �x:e j ref j ! j := j (:= v)states � ::= f(x; v); : : : ; (x; v)g (4)where � stands for the usual �-abstra
tion and Y for a �xed-point operator. Paren-theses are put around appli
ations and only there. The 
onstru
ts ref, ! and := arenot 
onsidered as primitive, but dire
tly as fun
tional values, then redu
ing thenumber of 
ases to study in many situations.A 
onstru
t �:e has been introdu
ed. It represents the program expression e in thestate �, a state being a �nite mapping from variables|representing referen
es|to
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 v) �! Æ(
; v) if Æ(
; v) is de�ned (Æ)(�x:e v) �! e[x v℄ (�)let x = v in e �! e[x v℄ (let)(Y v) �! (v �x:((Y v) x)) (Y )if true then e1 else e2 �! e1 (if-true)if false then e1 else e2 �! e2 (if-false)(ref v) �! f(x; v)g:x x fresh4 (ref )�:R[!x℄ �! �:R[v℄ (x; v) 2 � (deref )�:R[x := v℄ �! � ℄ f(x; v)g:R[()℄ x 2 dom(�) (assign)�1:�2:e �! �1 ℄ �2:e (�merge)R[�:e℄ �! �:R[e℄ if R 6= [℄ (�lift )Fig. 3. Notion of redu
tionvalues. This mapping is represented as a �nite set of pairs (x; v) where x is a variableand v a value. We write dom(�) the set of variables mapped in �. We assume thatea
h variable of dom(�) appears exa
tly on
e as a �rst 
omponent of an elementof �. Then we write �(x) when x 2 dom(�) to designate the unique element v su
hthat (x; v) 2 �. Finally, we de�ne the operation ℄ on states in the following way:�1 ℄ �2 def= f(x; v) j (x; v) 2 �2 _ ((x; v) 2 �1 ^ x 62 dom(�2))gBefore introdu
ing the operational semanti
s, we 
an translate our program ex-pressions into the above syntax. First, we get rid of types, whi
h are not involvedin the de�nition of the semanti
s. Se
ond, some program expressions, su
h as se-quen
es or loops, 
an have simpler 
onstru
ts. So we assume having applied to ourprograms the following set of translation rules, re
ursively:fun x : � ! e  �x:ere
 f (~x : ~� ) : � = e  (Y �f:�~x:e)e1 ; e2  let = e1 in e2while e1 do e2 done  ((Y �w:�u:if e1 then let = e2 in (w ())else ()) ())Then Wright and Felleisen de�ne the notion of redu
tion. There are six redu
tionsfor the fun
tional fragment and �ve for the imperative fragment. The latter need anotion of 
ontext R in whi
h the state 
an be a

essed or modi�ed. These 
ontextsare de�ned by the following grammar:R ::= [℄ j (R v) j (e R) j let x = R in e j if R then e else eThe notion of redu
tion is given in Figure 3. With respe
t to (Wright & Felleisen,1994), we added two rules for the 
onditional and we modi�ed the rule for as-signment sin
e it does not return any value in our 
ase. The redu
tion of 
onstantsassumes an interpretation Æ of the 
onstants, as a partial fun
tion taking a 
onstantand a value as arguments and returning a value.4 x has to be di�erent from all the variables already appearing in this evaluation.
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ation of Non-Fun
tional Programs 731Then, Wright and Felleisen introdu
e the evaluation 
ontexts, de�ned byE ::= [℄ j (E v) j (e E) j let x = E in e j if E then e else e j �:EThese 
ontexts set the evaluation order for the di�erent 
onstru
ts of the language.Finally, the evaluation is the transitive 
losure of the small-step redu
tion 7�!de�ned by E[e℄ 7�! E[e0℄ if and only if e �! e0A key result in (Wright & Felleisen, 1994) is type preservation and we assumethis property in the following. The reader should refer to (Wright & Felleisen, 1994)for a type system and a proof of type preservation. Noti
e although that we arehere in a simpler situation sin
e we do not have the deli
ate issue of polymorphi
referen
es. 4.2 Computational 
ontentsThe main reason for the 
orre
tness of the method is that the 
omputational part ofbe, whi
h 
omputes the output from the input, respe
ts the semanti
s of e. To expressand to establish this property, we give a formal de�nition to the \
omputational
ontents" of a proof term. We follow the work of C. Paulin on extra
tion andrealizability in the Cal
ulus of Indu
tive Constru
tions (Paulin-Mohring, 1989a;Paulin-Mohring, 1989b). The set of propositions 
an be split between informativepropositions, whi
h are types t su
h that � `Ci
 t : Set, and logi
al propositions,whi
h are types t su
h that � `Ci
 t : Prop. Similarly, terms are split betweeninformative and logi
al ones, depending on whether their types are informative orlogi
al. Then the 
omputational 
ontent of informative types and informative termsis introdu
ed by mean of an extra
tion operator, written E , whose de�nition is givenin Figure 4 (see (Paulin-Mohring, 1989b) page 77 for the general de�nition). Thisis nothing else than erasure of logi
al parts.Then we 
an formally de�ne the 
omputational 
ontents of the interpretation beas the extra
tion of this proof term.De�nition 9 (
omputational 
ontents)Let � be a well formed environment and e an annotated program of type � in �.Then we write e for the extra
tion of be, that is, a term of type E(b�):e def= E(be)The following two theorems express the 
orre
tness of the fun
tional interpre-tation e. The �rst one mainly says that if a program e evaluates to v then thefun
tional interpretation applied to the interpretation of the input state will givethe interpretation of the output state and the interpretation of the result. (There isa spe
ial 
ase when the returned value is a referen
e, sin
e a referen
es is dire
tlyinterpreted as its value in the fun
tional world; this is possible sin
e it is ne
essarilya new referen
e, a

ording to the typing rules.)In the following, if � is a state and � (resp. !) a set of referen
es fx1; : : : ; xng,then �(�) (resp. �(!)) denotes the re
ord fx1 = �(x1); : : : ;xn = �(xn)g.



732 J.-C. FilliâtreE(8x : t1: t2) def= 8x : E(t1): E(t2) if t1 informative; E(t2) otherwiseE(�x : t1: t2) def= �x : E(t1): E(t2) if t1 informative; E(t2) otherwiseE((t1 t2)) def= (E(t1) E(t2)) if t2 informative; E(t1) otherwiseE(9x : t1: t2) def= 9x : E(t1): E(t2) if t2 informative; E(t1) otherwiseE((u1; u2)) def= (E(u1); E(u2)) if u2 informative; E(u1) otherwiseE(let (x; y) = u1 in u2) def= 8<: let (x; y) = E(u1) in E(u2) if u1 : 9x : t1: t2;with t2 informative;let x = E(u1) in E(u2) otherwiseE(fxi : tig) def= fxi : E(ti)gE(fxi = uig) def= fxi = E(ui)gE(t) def= t, otherwiseFig. 4. De�nition of the extra
tion operatorTheorem 1 (
orre
tness of the fun
tional interpretation)Let � be a well formed environment whose referen
es are x1 : �1 ref; : : : ; xn : �n refand e a program su
h that � `a e : (�; (�; !); ; ). Let vi be values of types �i and� the state mapping the xi to the vi. Then58�0; v: �:e 7�!? �0:v =) (e �(�)) = ( (�0(!); �0(v)) if � = � 0 ref(�0(!); v) otherwisewhere equality stands here and in the following for the 
onversion 
i
= in the Ci
 (de-�ned in appendix).ProofThe proof is by indu
tion over the length of the derivation 7�!? and by 
ase analysison e. Let us detail the proof for the 
ase e = ref e1. If E stands for the evaluation
ontext ref [℄, the evaluation of e is�:E[e1℄ 7�!? �1:E[v1℄ with �:e1 7�!? �1:v17�! �1:f(x; v1)g:x (ref )7�! �1 ℄ f(x; v1)g| {z }=�0 : x|{z}=v (�merge)Sin
e �:e1 7�!? �1:v1, and sin
e the e�e
t of e1 is (�; !) by rule (REFa), we have byindu
tion hypothesis (e1 �(�)) = (�1(!); v1)5 In the expression �:e, e is to be understood as its interpretation in the formal semanti
s language,as given in page 730.
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ation of Non-Fun
tional Programs 733Then, by de�nition of e, we have(e �(�)) = (e1 �(�))= (�1(!); v1)= (�0(!); �0(v))The proofs of the other 
onstru
ts require several lemmas. The �rst one expressesthat the set ! is really what it pretends to be, that is, that it 
ontains at least allthe variables modi�ed by e. This lemma is the following:Lemma 1Under the hypotheses of Theorem 1, we have8�0; v: �:e 7�!? �0:v =) 8x 2 dom(�)n!: �0(x) = �(x)Another lemma establishes the absen
e of aliasing in the programs. This propertyis stated as follows:Lemma 2Under the hypotheses of Theorem 1, and when � is the type of a referen
e, i.e.� = �1 ref, then v is ne
essarily a variable and we havev 62 dom(�)These two lemmas are proved by indu
tion over the length of 7�!? and by 
aseon e. At last, the proofs for the let in 
onstru
t and for the fun
tion 
all require thefollowing substitution lemma:Lemma 3 (substitution lemma)Let � be a well formed environment and e a program well typed in �. If z : � 2 �with � 6= ref and if v is a value of type � , thene[z  v℄ = e[z  v℄The proof is by indu
tion over the stru
ture of e.The detailed proof of this theorem, and of the lemmas above, are given in (Filliâtre,1999b), pages 32{35 and 157{162.The se
ond theorem expresses that, 
onversely, if the fun
tional interpretatione evaluates on some input store to some output store and some value, then theimperative program e should also evaluate (i.e., should also terminate).Theorem 2 (
onverse of Theorem 1)Let � be a well formed environment whose referen
es are x1 : �1 ref; : : : ; xn : �n refand e a program su
h that � `a e : (�; (�; !); ; ). Then for any state � mappingthe xi to values, we have8y; v0: (e �(�)) = (y; v0) =) 9�0; v: �:e 7�!? �0:v



734 J.-C. FilliâtreProofTo establish this result, we show that the redu
tion of e requires at least as manysteps as the evaluation of e. More pre
isely, if the redu
tion of �:e by 7�! requires Nsteps, then the evaluation of (e �(�)) requires at least N elementary redu
tions (�-redu
tion or �eld a

ess in a re
ord). The proof is by indu
tion over N and by 
aseanalysis on the stru
ture of e. The redu
tions handling the state, namely (�merge)and (�lift), are not taken into a

ount (but it is 
lear that an in�nite evaluation ofe involves an in�nite number of redu
tions out of those two). The detailed proof isgiven in (Filliâtre, 1999b), pages 162{165.The meaning of extra
tion is 
ontained in the property of realizability whi
hexpresses that the extra
tion of a proof of t is a program satisfying the spe
i�
ationt. We restri
t the notion of realizability to the 
ase of propositions b�; in parti
ular,the informative obje
ts appearing in logi
al propositions always live in base types(whi
h 
orresponds to the assumption we made on annotations). Then the notionof realizability 
an be formally de�ned as follows:De�nition 10 (fun
tional realizability, C. Paulin (Paulin-Mohring, 1989b))The proposition x rf t is de�ned re
ursively over the informative proposition t inthe following way:x rf 8y : t1: t2 def= 8y : E(t1): y rf t1 ) (x y) rf t2x rf t1 ! t2 def= t1 ) x rf t2x rf 9y : t1: t2 def= x rf t1 ^ t2[y  x℄x rf fxi : tig def= 8i: x:xi rf tix rf t def= True; otherwise.This de�nition 
omes with the following realizability theorem (see (Paulin-Mohring,1989b), page 85).Theorem 3 (realizability theorem, C. Paulin (Paulin-Mohring, 1989b))Let � be a proof environment in the Cal
ulus of Indu
tive Constru
tions. Then� `Ci
 u : t =) E(u) rf t4.3 Corre
tness resultFinally, we have to de�ne the notion of program 
orre
tness with respe
t to spe
i�-
ations. The usual de�nition of total 
orre
tness for a given Hoare triplet fPg e fQgis a formalization of the senten
e \In any state satisfying P , the exe
ution of e ter-minates and the resulting state satis�es Q". In our 
ase, the result also has to betaken into a

ount, and sin
e it may be a fun
tion, we have to express that it sat-is�es its own spe
i�
ation. Similarly, fun
tions may be present in the environment,and in parti
ular inside referen
es, and we have to express that the 
orrespondingvalues satisfy the de
lared spe
i�
ations.Inspired by the notion of fun
tional realizability, we de�ne the notion of 
orre
t-ness 
orresponding to our programs as \imperative realizability".



Veri�
ation of Non-Fun
tional Programs 735De�nition 11 (imperative realizability)Let � be a well formed environment and � and � some types of values and 
om-putations su
h that � `a � wf and � `a � wf. Then for any value v of type � andany program e of type � the propositions e ri � and v ri � are mutually re
ursivelyde�ned as follows:e ri (r : �; (�; !); P;Q) def= 8�: � ri �) P (�(�))) 9�0; v: �:e 7�!? �0:v^ �0 ri ! ^ v ri � ^Q(�(�); �0(!); v)e ri (r : � ref; (�; !); P;Q) def= 8�: � ri �) P (�(�))) 9�0; x: �:e 7�!? �0:x^ �0 ri ! ^ �0(x) ri � ^Q(�(�); �0(!); �0(x))v ri � def= Truev ri (x : � ref)! � def= 8r : � ref: (v r) ri �[x r℄v ri (x : �)! � def= 8x : �: x ri � ) (v x) ri �with � ri fx1; : : : ; xng def= 8i 2 f1; : : : ; ng: xi : �i ref 2 � ^ �(xi) ri �iThe 
orre
tness of a program e expresses that in any state � whi
h values haveexpe
ted types (� ri �) and satisfy the pre
ondition P , the program e evaluates toa state �0 and a value v su
h that the values in �0 have expe
ted types (�0 ri !), vsatis�es its spe
i�
ation (v ri �) and the post
ondition Q is satis�ed. The de�nitionis similar when the result is a referen
e. Regarding values, the de�nition resemblesthe one for fun
tional realizability. With respe
t to the traditional ways of express-ing the 
orre
tness of imperative programs, there is here the additional diÆ
ulty ofhaving fun
tions as �rst-
lass values, thus possibly in referen
es and as results of
omputations.We are now in position to prove the 
orre
tness of our method, that is, that a
omplete proof of be implies e ri �, for any program e of type �. This is related tothe fa
t that e respe
ts the semanti
s of e. The key lemma is the following, whi
hrelates the imperative and fun
tional notions of realizability.Lemma 4Let � be a well formed environment, � a well formed type in � and e a program oftype � in �. Then e rf b� () e ri �ProofWe show by mutual indu
tion over the stru
ture of types that for any type of value� and any value v of type � we havev rf b� () v ri �and that for any type of 
omputation e and any program e of type � we havee rf b� () e ri �The 
ases of values (base types, type of a referen
e and fun
tion type) are almostimmediate (using the substitution lemma above for the 
ase of a fun
tion taking areferen
e as argument). The key point is the 
ase of a 
omputation.



736 J.-C. FilliâtreLet � = (r : �; (�; !); P;Q), with � 6= ref. We assume e rf b�, that is,8x : �: x rf b�) P (x)) let (y; r) = (e x) in y rf b! ^ r rf b� ^Q(x; y; r) (5)and we want to show that e ri �, that is,8�: � ri �) P (�(�))) 9�0; v:�:e 7�!? �0:v ^ �0 ri ! ^ v ri � ^Q(�(�); �0(!); v) (6)Let � be a state su
h that � ri � and P (�(�)). Let x = �(�), that is, E(d�(�)). Wehave � ri � and thus by indu
tion hypothesis applied to ea
h �eld of x we havex rf b�. We also have P (x), sin
e P only mentions obje
ts of x of base types, whi
hare therefore equal to their 
omputational 
ontents. So the hypotheses of (5) aresatis�ed. Then let (y; r) = (e x). By Theorems 1 and 2, we have�:e 7�!? �0:v with y = �0(!) and r = vWe have r rf b� and thus v ri � by indu
tion hypothesis. Similarly, we have y rf b!and thus �0 ri !, applying the indu
tion hypothesis on ea
h member. Last, we haveQ(x; y; r) and thus Q(�(�); �0(!); v) (remember that, as P does, Q only mentionsobje
ts of base types; in parti
ular, Q may mention r only if r lives in a base typeand in this 
ase we have r = v = v). So (6) is established, that is, e ri �.Conversely, let us assume (6) and let us prove (5). Let x be a re
ord of type �su
h that x rf b� and P (x). Let � be a state su
h that �(�) = x. We have x rf b� andthus � ri � by indu
tion hypothesis applied on ea
h �eld of x. We have P (�(�)), forthe same reason as in the 
onverse part. Then from (6) there exists �0 and v su
hthat �:e 7�!? �0:v. By Theorem 1, we have (e x) = (�0(!); v). Let us write (y; r)this tuple. By (6), we have �0 ri ! and thus y rf b! by indu
tion hypothesis appliedon ea
h �eld of y. Similarly, we have v ri � from (6) and thus r rf b� by indu
tionhypothesis. At last, we have Q(�(�); �0(!); v) from (6) and thus Q(x; y; r) for thesame reason as in the 
onverse part. So we have established (5), that is, e rf b�.Then we 
an state and prove the main result.Theorem 4 (
orre
tness)Let � be a well formed environment and e a program su
h that � `a e : �. If allthe obligations in be 
an be repla
ed by proof terms, in su
h a way that be be
omesa proof of b�, then the proposition e ri � holds.ProofIf be is a proof of b� then its informative 
ontents realizes, in the fun
tional meaning,the proposition b�. Sin
e the informative 
ontents of be is exa
tly e, by de�nition, wehave e rf b� by the realizability theorem. Then by Lemma 4, we have e ri �.5 Implementation and 
ase studiesThis work has been implemented in the Coq proof assistant (Coq, 2001) and isalready released with the system. It is fully do
umented in the Coq referen
e man-ual. In this se
tion, we will give an overview of the implementation, dis
uss some
ompleteness issues and des
ribe some 
ase studies.
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tional Programs 7375.1 Implementation in the system CoqThe implementation 
onsists of 6000 lines of Obje
tive Caml 
ode. It appears as ata
ti
 
alled Corre
tness taking an annotated program as argument and generatinga set of goals, whi
h are logi
al propositions to be proved by the user. Given anannotated program e, the ta
ti
 Corre
tness applies the following steps:1. It determines the type of 
omputation � of e by the typing algorithm.2. The proposition b� is 
omputed and de
lared as a goal.3. The partial proof term be is 
omputed following De�nition 8 and is given tothe proof engine, using the Re�ne ta
ti
 developed on purpose, and ea
h holein be leads to a subgoal.4. On
e the proofs are 
ompleted, the program is added to the environment andmay be used in other programs.It is also possible to only de
lare programs in the environment, so that one 
anassume some pro
edures and use them before implementing them. The extra
tionme
hanism of Coq is extended in order to extra
t the imperative programs as su
hin the target languages of extra
tion whi
h have imperative features.Our implementation leads to several improvements with respe
t to what has beenpresented in this paper. First, the language in
ludes arrays of purely fun
tionalvalues. They 
an be seen as referen
es on purely fun
tional �nite mappings. Thismeans that t[e℄ may be read as let n = e in (a

ess !t n), and t[e1℄ := e2 aslet n = e1 in let v = e2 in t := (store !t n v), where a

ess and store are theoperations of the purely fun
tional �nite mappings. Of 
ourse, arrays are extra
tedas real arrays when the 
ode is produ
ed. Se
ond, some features have been addedto simplify the spe
i�
ation of programs|mainly, the possibility of inserting labelsin the programs and referring in annotations to the value that a referen
e had atthe program points 
orresponding to those labels. This is easy to implement sin
eour interpretation de�nes several variables for the su

essive values of a referen
e.Consequently, the auxiliary variables are no more useful, and the rewriting reasoningthey imply is avoided. In parti
ular, a loop invariant may mention the values of thereferen
es at some point before the loop using su
h a label.5.2 Completeness issuesThe 
ompleteness expresses the 
onverse of Theorem 4, that is, that the proofobligations are provable as soon as the program satis�es the spe
i�
ation. Althoughthe 
orre
tness seems to be a mu
h more important property, the 
ompleteness isfar from being a theoreti
al issue. We 
an illustrate it with a small example. Let us
onsider the following pie
e of 
ode:1. begin2. if x < y then m := x else m := y;3. m := !m� 14. end5. f m < x g



738 J.-C. FilliâtreIt obviously satis�es its spe
i�
ation. Let us look at the proof obligations generatedfor this program. Its interpretation as a partial proof term islet (fm = m1g; ) = let (b; q) =\x < y inif b then (fm = xg; ()) else (fm = yg; ()) inlet (fm = m2g; v) = (fm = m1 � 1g; ()) in(fm = m2g; v; ?)The se
ond let is a redex, and hen
e 
an be eliminated. But the �rst one is not,and 
onsequently we get the following proof obligation:m1 : Zm1 � 1 < xwhi
h 
annot be proved, sin
e we do not have enough information about the variablem1. This variable stands for the value of m after the �rst assignment. The only wayto obtain a provable obligation is to get m1 together with a property about it.This 
an be a
hieved by annotating the 
onditional with a post
ondition, in thefollowing way: 1. begin2. (if x < y then m := x else m := y) f m � x g;3. m := !m� 14. end5. f m < x gThen we will get, in addition to the two obligations establishing this new annotation,the following provable obligation:m1 : Zq1 : m1 � xm1 � 1 < xThe inserted annotation m � x may seem quite ad ho
. A
tually, there was ageneral solution, whi
h 
onsisted in inserting the weakest pre
ondition 
omputedfrom the post
ondition m < x and the assignment m := !m� 1, that is m� 1 < x.More generally, we have shown in (Filliâtre, 1999b) that, for a fragment of ourlanguage, there exists a 
anoni
al way to annotate a program using weakest pre-
onditions that leads to provable obligations as soon as the program satis�es itsspe
i�
ation. This has been integrated in the implementation in order to releasethe user from inserting too many annotations. Noti
e that it does not imply moreproof obligations. Indeed, if the program fragment e1 ; e2 fQg, for instan
e, isgiven an intermediate annotation 
omputed as the weakest pre
ondition of e2 andQ, that is, e1 fwp(e2)(Q)g ; e2 fQgthen the se
ond proof obligation will be automati
ally dis
harged, sin
e it is an im-mediate 
onsequen
e of the proof of wp(e2)(Q) and of the substitutions introdu
edin Q by e2.Therefore, the only annotations that must be inserted into the programs are the
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tional Programs 739loop invariants and the fun
tions' pre- and post
onditions, as it has been 
on�rmedby all the 
ase studies. 5.3 Case studiesSome nontrivial algorithms have been 
erti�ed by the author using the ta
ti
 Cor-re
tness:� Three in pla
e sorting algorithms: insertion sort, qui
ksort and heapsort� Knuth-Morris-Pratt fast string sear
hing algorithm� The programFind whi
h had been proved 
orre
t by C. A. R. Hoare in (Hoare,1971)Those 
ase studies are detailed in (Filliâtre, 1999b) and available on the Coq webpage (Coq, 2001). The proofs of 
orre
tness of the sorting algorithms are presentedin (Filliâtre & Magaud, 1999). Our formal proof of the program Find is presentedin (Filliâtre, 2001); in parti
ular, we show that we obtain exa
tly the same proofobligations as Hoare in his paper. We are not going to des
ribe these 
ase stud-ies here, sin
e the interested reader may 
onsult (Filliâtre, 1999b; Filliâtre, 2001;Filliâtre & Magaud, 1999) for fully detailed des
riptions. However, it is interest-ing to have a look at the 
hara
teristi
 metri
s of these developments, whi
h aresummarized in Table 1.For ea
h development, we give some informations about the relative sizes of the
ode, the spe
i�
ation and the proof, the total development time and the timeneeded to re
he
k the proof. First, we noti
e that the spe
i�
ation of a 
omplexalgorithm is not so diÆ
ult: only a few lines of de�nitions are ne
essary and thenumber of annotations is always between the third and the half of the total numberof 
ode lines. Se
ond, the proof itself is not so big. The number of proof obliga-tions is similar to the number of 
ode lines. The number of proof steps needed todis
harge the proof obligations may seem important to a reader not familiar withCoq's proofs, but the total amount of development time is speaking by itself: threedays to establish the 
orre
tness of an algorithm as 
omplex as inpla
e heapsort is
learly the sign of a sane and eÆ
ient methodology.6 Dis
ussionWe have proposed a method to 
ertify programs 
ombining fun
tional and imper-ative features in the 
ontext of type theory. This method bene�ts from the powerof type theory as a spe
i�
ation language and from the existing proof assistants asproof tools. Our method is based on a logi
al interpretation of annotated programsas partial proof terms of their spe
i�
ations. One of the main interests is a dire
tinterpretation of fun
tional features, usually painfully handled in other frameworks.Our interpretation is based on a stati
 analysis of the programs' e�e
ts and on a
lassi
 monadi
 
all-by-value translation.



740 J.-C. FilliâtreTable 1. Some metri
s about the 
ase studiesFind Qui
ksort KMP HeapsortSpe
i�
ationLines of spe
i�
ation 29 13 17 23Lines of 
ode (# fun
tions) 27 (1) 41 (4) 24 (2) 19 (2)Annotations 9 18 8 7ProofProof obligations 22 26 23 22Lemmas (manually introdu
ed) 39 11 11 28Proof steps 619 468 377 626Total development time | 2 days 1,5 days 3 daysCompilation timea 9 mn 02 s 8 mn 06 s 5 mn 45 s 12 mn 07 sa Compilations were realized on a Pentium 200 Mhz 64 MB RAM running Linux.Future work. We expe
t our interpretation to be easily extended to other program-ming features (ex
eptions, input-output and so forth) by an adequate extensionof the notion of e�e
t and of the 
orresponding interpretation. The treatment ofex
eptions is parti
ularly important if we want to deal with realisti
 ML programs.Ultimately, we would like to unify the work of C. Parent (Parent, 1995) and ourson the fun
tional fragment of our language.To allow the 
erti�
ation of large programs, our method should also provide anappropriate notion of modularity. Although there is still a lot to do here, one 
annoti
e that our method is already modular: indeed, our notion of annotated type,
ontaining the traditional type, an e�e
t and a spe
i�
ation, is exa
tly what is re-quired in using a program. (A
tually, it is already possible to de
lare a programand use it, without giving it any implementation.) For the same reason, it wouldbe possible to pro
ess by re�nements, by allowing holes in programs whose types of
omputation would be given and whi
h would be re�ned later. We plan to imple-ment both modularity and re�nement in the next version of our implementation.Polymorphism. In this paper, we do not 
onsider polymorphism, although it isdire
tly available in the Cal
ulus of Indu
tive Constru
tions, be
ause it would re-quire an e�e
t polymorphism, that is, the possibility to generalize the type of afun
tion with respe
t to an e�e
t. E�e
t inferen
e is still possible in this 
ase,
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tional Programs 741as is done in The Type and E�e
t Dis
ipline (Talpin & Jouvelot, 1994), but wewould not be able to de�ne the interpretations of types and programs anymore:if a fun
tion f has type 8�:8�:� !� �, the type of its interpretation depends on� and is not 
omputable stati
ally. It must be made expli
it as a fun
tion over�. Although it would be possible to internalize the de�nitions of the interpreta-tions b� and b�, there is a pra
ti
al pri
e to pay. Moreover, polymorphi
 fun
tions inprogramming languages with imperative features are really diÆ
ult to spe
ify. Con-sider, for instan
e, the problem of spe
ifying the polymorphi
 fun
tion map su
hthat (map f [v1; v2; : : : ; vn℄) = [(f v1); (f v2); : : : ; (f vn)℄. In a purely fun
tionalframework, one 
an state properties su
h as (map f (v :: l)) = (f v) :: (map f l) or(nth (map f l) i) = (f (nth l i)), where the equality is the mathemati
al one. Butwhen f may have arbitrary side e�e
ts, this is no longer meaningful. In parti
ular,the order in whi
h the (f vi)'s are 
omputed is relevant.In (Filliâtre, 1999b), we 
onsider a simple notion of polymorphism, where types
an be generalized with respe
t to type variables but not to e�e
ts.Related work. The type and e�e
t dis
ipline has been introdu
ed by J.-P. Talpinand P. Jouvelot (Talpin & Jouvelot, 1994), and followed by several other sys-tems (Wright, 1992; Jouvelot & Gi�ord, 1991); in parti
ular, e�e
ts systems forex
eptions were derived from this work (Guzm�an & Su�arez, 1994; Leroy & Pes-saux, 2000), whi
h 
ould be adapted in our framework to add ex
eptions to ourlanguage. Although we do not use typing systems as powerful as the previous ones,our 
ontribution is more in the use of typing to ex
lude aliases, whi
h is the key toa natural fun
tional interpretation.Our interpretation of imperative programs in a fun
tional world is inspired by the
all-by-value translations introdu
ed by E. Moggi (Moggi, 1991) and P.Wadler (Wadler,1993). In (Filliâtre, 1999b), we proposed a notion of monads parameterized withe�e
ts whi
h generalizes what is presented in this paper. Similar 
ombinations ofe�e
ts and monads, in the 
ontext of more powerful e�e
ts systems, have beenstudied by P. Wadler (Wadler, 1998), A. Tolma
h (Tolma
h, 1998), M. Semmelrothand A. Sabry (Semmelroth & Sabry, 1999), and E. Moggi and F. Palumbo (Moggi& Palumbo, 1999).Semanti
s for reasoning about LISP-like programs with side e�e
ts have beenproposed by I. Mason, C. Tal
ott and others (Mason & Tal
ott, 1989; Honsellet al., 1992) but the fo
us is mainly on operational equivalen
e. Our purpose wasrather to advo
ate in favor of Hoare triples where mathemati
al variables standdire
tly for the values 
ontained in referen
es.Comparison with other methods. We 
an 
ompare our method to some other for-mal methods, on the di�erent point of view of the spe
i�
ation, the programs one
an write and the proofs. Among the existing formal methods, we 
an 
ompareour work to VDM (the Vienna Development Method) (Jones, 1980; Jones, 1989),J. R. Abrial's B method (Abrial, 1996) and the system KIV (Karlsruhe Intera
tiveVeri�er) (Reif, 1995), whi
h are three very di�erent approa
hes to formal veri�
a-tion.



742 J.-C. FilliâtreFrom the point of view of spe
i�
ation, the VDM and B methods are based onan axiomatization of �rst-order set theory. Those are heavy formalizations, withnumerous axioms, and whose expressivity is diÆ
ult to �gure out. A set-theoreti
alapproa
h implies additional diÆ
ulties, su
h as the de�nition of new data types orproof obligations of the kind n 2 NAT . In our 
ase, the 
hoi
e of the Cal
ulus ofIndu
tive Constru
tions is a satisfa
tory solution on both theoreti
al and pra
ti
algrounds. Independently of the logi
al framework, our approa
h to spe
i�
ation is
lose to VDM's: programs are spe
i�ed using pre- and post
onditions, and programs'e�e
ts must be expli
itly de
lared as sets of read and written variables. With the Bmethod, on the other hand, the operations of an abstra
t ma
hine are spe
i�ed us-ing generalized substitutions, whi
h 
an be seen as an extension of E. W. Dijkstra'sguarded 
ommands. It is a rather di�erent approa
h to the spe
i�
ation problem,but it has been proved that it is equivalent to the use of pre- and post
onditions(see (Abrial, 1996), pages 292{295). In the system KIV, programs are given alge-brai
 spe
i�
ations, that are 
omposed of signatures and sets of equational axioms.Those spe
i�
ations mention only purely fun
tional obje
ts, whi
h are expli
itly re-lated later to the implementations. In some sense, there is a similarity between thepurely fun
tional interfa
es of the system KIV and our fun
tional interpretations ofprograms.Regarding spe
i�
ations, our programming experien
e leads us to think that pre-and post
onditions are the most natural way to spe
ify programs, whether fun
-tional or imperative. Then the 
hoi
e of the Cal
ulus of Indu
tive Constru
tionsa�ords mathemati
al simpli
ity and expressivity, whi
h is needed for 
omplex pro-grams. For instan
e, when doing the 
orre
tness proof of the heapsort algorithm, weeasily de�ned a heap predi
ate as an indu
tive property and reasoned by indu
tionover this predi
ate in most lemmas. This would have been mu
h more 
ompli
atedwithin a �rst-order set-theoreti
al framework.From the point of view of the programming language, formal methods provideonly a small set of semanti
ally well understood 
onstru
ts. Those are usually lo-
al variables, assignments, sequen
es, 
onditionals, loops, and nothing else. In themethods VDM, B and KIV, pro
edures, fun
tions and re
ursive fun
tions are not�rst-
lass values, but top-level obje
ts. Our ML ba
kground naturally led us to
onsider a larger set of program 
onstru
ts. Referen
es are really �rst-
lass values,whi
h 
an be dynami
ally 
reated and returned as results of fun
tions. Fun
tionsare also �rst-
lass values, whi
h 
an be passed as arguments and returned as results.This was possible be
ause type theory naturally handles fun
tional obje
ts. Finally,our approa
h does not set the data types on
e and for all, but rather assumes themto be de�ned in the underlying type theory. This is an easy solution in pra
ti
e,but this is not adapted to real world programs where, for instan
e, one has to 
opewith over
ows when using ma
hine integers.The last point of 
omparison is the proof tool. A formal method is in
ompletewithout a good proof tool to establish the validity of the proof obligations. Re-garding VDM, the attempts to de�ne a proof tool were not very su

essful, andVDM is therefore a development methodology rather than a 
erti�
ation tool. TheB method, whi
h also relies on a set-theoreti
 framework, is equipped with several
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tional Programs 743good provers, whose automation is impressive (more than 80% of proof obligationsautomati
ally dis
harged for real 
ode). The system KIV also provides impressive�gures regarding automati
 proofs, although there is no des
ription of the proverand its theoreti
al foundations. On the 
ontrary, the Coq proof assistant is notequipped with powerful automati
 ta
ti
s but fo
uses rather on intera
tive proofs.Above all, the Coq system provides a really safe proof assistant, being based on asmall set of logi
al rules. (The 
onsisten
y of the Cal
ulus of Indu
tive Constru
-tions has been formally proved by B. Barras (Barras, 1999).)Nevertheless, our method has not yet rea
hed the maturity of methods like B orKIV. Indeed, su
h methods provide modular development me
hanisms. Moreover,the B method also provides a stepwise re�nement me
hanism, whi
h allows pro-grams and spe
i�
ations to be built step by step, proof obligations being generatedat ea
h step. These features are still only prospe
tives of our work.A
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 j x j 8x : t: t j �x : t: t j (t t)In the following typing rules, the typing judgment `Ci
 is simply written as `. The
onversion 
i
= is the re
exive transitive 
ongruent 
losure of the redu
tion �de�ned below.Basi
 Rules for the Cal
ulus of Constru
tionss 2 fSet;Propg� ` s : Type(i) i < j� ` Type(i) : Type(j)x : t 2 �� ` x : t 
 : t 2 �� ` 
 : t� ` t1 : s1 �; x : t1 ` t2 : s2 s1; s2 2 fSet;Propg� ` 8x : t1: t2 : s2� ` t1 : Type(i) �; x : t1 ` t2 : Type(j) i; j � k� ` 8x : t1: t2 : Type(k)� ` 8x : t1: t2 : s �; x : t1 ` u2 : t2� ` �x : t1: u2 : 8x : t1: t2� ` u2 : 8x : t1: t2 � ` u1 : t1� ` (u2 u1) : t2[x u1℄(�x : t:u1 u2) � u1[x u2℄ � ` t2 : s � ` u : t1 t1 
i
= t2� ` u : t2



746 J.-C. FilliâtreExistential quanti�
ation and re
ords 
an be de�ned in the Cal
ulus of Indu
-tive Constru
tions as indu
tive types|as done for instan
e in the Coq proof assis-tant (Coq, 2001). Though, it is simpler here to 
onsider them as primitive notions,avoiding the 
omplex rules for indu
tive types and their eliminations.Existential Quanti�
ationt ::= : : : j 9x : t: t j (t; t) j let (x; x) = t in t� ` t1 : Set �; x : t1 ` t2 : s s 2 fSet;Propg� ` 9x : t1: t2 : Set� ` 9x : t1: t2 : Set � ` u1 : t1 � ` u2 : t2[x u1℄� ` (u1; u2) : 9x : t1: t2� ` u1 : 9x : t1: t2 �; x : t1; x1 : t2 ` u2 : t3 x; x1 62 FV (t3)� ` let (x; x1) = u1 in u2 : t3let (x1; x2) = (u1; u2) in u3 � u3[x1  u1;x2  u2℄Non-Dependent Re
ordst ::= : : : j fx : t; : : : ;x : tg j fx = t; : : : ;x = tg j t:x� ` ti : Set� ` fxi : tig : Set� ` ti : Set � ` ui : ti� ` fxi = uig : fxi : tig � ` t : fxi : tig� ` t:xi : tifxi = uig:xj � uj


