
Fun
tors for Proofs and ProgramsJean-Christophe Filliâtre and Pierre LetouzeyLRI � CNRS UMR 8623Université Paris-Sud, Fran
e{filliatr,letouzey}�lri.frSeptember 2003Abstra
tThis paper presents the formal veri�
ation with the Coq proof assistant of severalappli
ative data stru
tures implementing �nite sets. These implementations are pa-rameterized by an ordered type for the elements, using fun
tors from the ML modulesystem. The veri�
ation follows
losely this s
heme, using the newly Coq module sys-tem. One of the veri�ed implementation is the a
tual
ode for sets and maps fromthe Obje
tive Caml standard library. The pro
ess of veri�
ation exhibited two smallerrors in the balan
ing s
heme, whi
h have been �xed and then veri�ed. Beyond theseveri�
ation results, this arti
le illustrates the use and bene�ts of modules and fun
torsin a logi
al framework.1 Introdu
tionBalan
ed trees are notoriously hard to implement without any mistake. Exa
t invariantsare di�
ult to �gure out, even for appli
ative implementations. Sin
e most programminglanguages provide data stru
tures for �nite sets and di
tionaries based on balan
ed trees,this is a real
hallenge for formal veri�
ation to a
tually verify one of these.We
hoose to verify the Set module from the Obje
tive Caml (O
aml) standard li-brary [2℄. This appli
ative implementation of �nite sets uses AVL trees [4℄ and provides allexpe
ted operations, in
luding union, di�eren
e and interse
tion. Above all, this is a verye�
ient and heavily used implementation, whi
h motivates a
orre
tness proof. This arti
lealso presents the veri�
ation of two other implementations, using respe
tively sorted listsand red-bla
k trees [8℄, both written in O
aml and using the same interfa
e as Set.Building balan
ed trees over values of a given type requires this type to be equipped witha total ordering fun
tion. Several te
hniques are available to build a parametri
 library: inML, polymorphism gives generi
ity over the type and �rst-
lass fun
tions give the generi
ityover the ordering fun
tion (e.g. it is passed when initially
reating the tree); in obje
t orientedlanguages, obje
ts to be stored in the trees are given a suitable
omparison fun
tion; et
.1

The most elegant te
hnique is probably the one provided by the ML module system, asimplemented in SML [9℄ and O
aml [11℄. A module is a
olle
tion of de�nitions of types,values and submodules. Its type is
alled a signature and
ontains de
larations of (some ofthe) types, values and submodules. Modules
an be parameterized by some signatures andlater applied to a
tual modules. Su
h fun
tions from modules to modules are
alled fun
tors.The Set library is a ni
e illustration of O
aml module system. It is naturally written as afun
tor taking the signature of an ordered type as argument and returning the signature for�nite sets as a result.The use of modules and fun
tors introdu
es an extra
hallenge for the formal proof. There
ent introdu
tion of an ML-like module system into the Coq proof assistant [1, 5℄ makesit a perfe
t
andidate for this veri�
ation. As a side e�e
t, this arti
le exampli�es the use ofmodules and fun
tors in a logi
al framework, whi
h goes well beyond its use in programminglanguages.Currently, Coq is not able to reason dire
tly about O
aml
ode. To
ertify an O
amlappli
ative implementation, we �rst translate it into Coq own programming language, Gal-lina. Then the logi
 of Coq
an be used to express properties of the Gallina fun
tions.Sin
e the translation from O
aml to Gallina is done manually and is thus error-prone,Coq provides an automated me
hanism for the
onverse translation
alled extra
tion. Theextra
tion takes a Coq fun
tion or proof, removes all its logi
al statements and translatesthe remaining algorithmi

ontent to O
aml. We �nally end up with three versions of the
ode: the O
aml original handwritten one, its Gallina translation
erti�ed in Coq, andthe O
aml extra
ted version. Theoreti
al results about the extra
tion [12, 13℄ ensure thatthe extra
ted
ode veri�es the same properties as the Gallina version. In pra
ti
e, theextra
ted
ode behaves reasonably well (see e.g. the �nal ben
hmarks) and often presentsonly synta
ti
al di�eren
es with the original O
aml
ode.Outline. This paper is organized as follows. Se
tion 2 is devoted to the presentation ofO
aml and Coq module systems. Se
tion 3 introdu
es the signatures for ordered typesand �nite sets, and various utility fun
tors over these signatures. Se
tion 4 presents theveri�
ation of three �nite sets implementations, using respe
tively sorted lists, AVL treesfrom the O
aml standard library and red-bla
k trees. Se
tion 5
on
ludes with a ben
hmark
omparing performan
es of handwritten and extra
ted
ode.Sour
e
ode. This arti
le only details the most important parts of the formal development.The whole sour
e
ode would take too mu
h spa
e, even in appendix: the sole spe
i�
ationis 2338 lines long and the proof s
ripts amount to 5704 lines, not mentioning the originalsour
e
ode for red-bla
k and AVL trees. All these �les are available at http://www.lri.fr/~filliatr/fsets/ for downloading and browsing. The Coq �les need the developmentversion of Coq to
ompile and a rather powerful ma
hine: 10 minutes are indeed ne
essaryto
ompile the whole development on a 1 Gigahertz Intel CPU.The pie
es of Coq and O
aml
ode given in this arti
le are displayed in verbatim font,apart from the embellishment of a few symbols: ! for ->,$ for <->, _ for \/, ^ for /\ and: for ~. 2

2 Modules and fun
torsThis se
tion introdu
es the O
aml and Coq module systems.2.1 The O
aml module systemThe O
aml module system [11℄ is derived from the original one for SML [9℄. The latter alsoevolved in return, both systems being now quite
lose and known as the Harper-Lillibridge-Leroy module system. This se
tion brie�y illustrates the O
aml module system with theSet library from its standard library, whi
h signature is used throughout this paper andwhi
h
ode is veri�ed in Se
tion 4.2.The Set library �rst de�nes a signature S for �nite sets, given Figure 1. It
ontains thetype elt of elements, the type t of sets, the value empty for the empty set, and 22 operationsover sets. Most of them have an obvious meaning and the expe
ted semanti
s. Other likefold, elements or
hoose have part of their spe
i�
ation left unspe
i�ed (this is detailedlater in this paper).The set implementation is parameterized by the type of its elements, whi
h must beequipped with a total ordered fun
tion. The following signature OrderedType is introdu
edfor this purpose:module type OrderedType = sigtype tval
ompare : t ! t ! intendThe
ompare fun
tion is returning an integer, su
h that (
ompare x y) is zero if x and yare equal, negative if x is smaller than y and positive if x is greater than y. For instan
e, amodule Int realizing this signature for the type int of integers and the prede�ned
omparisonfun
tion Pervasives.
ompare1 would be:module Int : Set.OrderedType = stru
ttype t = intlet
ompare = Pervasives.
ompareendThe implementation of the data stru
ture for sets is provided as a fun
tor Make taking amodule Ord of signature OrderedType as argument and returning a module of signature S:module Make (Ord : OrderedType) : S with type elt = Ord.tThe signature for the returned module needs to be more pre
ise than S: we must identifythe type elt in the returned signature with the type Ord.t given as argument. This is madeexpli
it using the with type
onstru
t.We would get sets of integers by applying this fun
tor to the module Int above:1The subtra
tion
an not be used as
omparison fun
tion for integers be
ause of over�ows;
onsider forinstan
e min int� max int = 1. 3

module type S = sigtype elttype tval empty : tval is empty : t ! boolval mem : elt ! t ! boolval add : elt ! t ! tval singleton : elt ! tval remove : elt ! t ! tval union : t ! t ! tval inter : t ! t ! tval diff : t ! t ! tval
ompare : t ! t ! intval equal : t ! t ! boolval subset : t ! t ! boolval iter : (elt ! unit) ! t ! unitval fold : (elt ! 'a ! 'a) ! t ! 'a ! 'aval for all : (elt ! bool) ! t ! boolval exists : (elt ! bool) ! t ! boolval filter : (elt ! bool) ! t ! tval partition : (elt ! bool) ! t ! t * tval
ardinal : t ! intval elements : t ! elt listval min elt : t ! eltval max elt : t ! eltval
hoose : t ! eltend Figure 1: O
aml signature Set.S for �nite setsmodule IntSet = Set.Make(Int)It is important to noti
e that signature S
ontains a type t and a
omparison fun
tion
ompare (with the expe
ted behavior), allowing to build sets of sets by applying Make againon the resulting module. For instan
e, sets of sets of integers would be obtained with:module IntSetSet = Set.Make(IntSet)The reader may refer to the O
aml manual [2℄ for further details on its module system.2.2 The Coq module systemA module system for the Coq proof assistant has been advo
ated for a long time, mainlyin Courant's PhD thesis [7℄. Clearly more ambitious than O
aml's, his module systemappeared too
omplex to be implemented in the existing
ode of Coq. Instead, a module4

system à la Caml was re
ently implemented by Chrzasz
z [5℄ following Leroy's modularmodule system [11℄.The main di�eren
e with O
aml is that Coq modules are intera
tive. While in O
amla module is introdu
ed with a single de
laration, Coq allows to build it pie
e by pie
e. Thefollowing statement starts the de
laration of a module M:Module M.Then any subsequent Coq de
laration (type, fun
tion, lemma, theorem, . . .) is pla
ed inthat module, until the
losing of M withEnd M.This intera
tive pro
ess is plainly justi�ed by the intera
tive building of (most) Coq proofs.Che
king a whole module with all its proofs one at a time would be intra
table. Similarly,a signature S is intera
tively de
lared withModule Type S....End S.and a fun
tor F withModule F [X : S℄....End F.The
ontents of these modules, signatures and fun
tors are regular Coq de
larations (in-du
tive types, de�nitions, . . .). In parti
ular, modules and fun
tors may
ontain logi
alproperties and their proofs. This is of
ourse a novelty when
ompared with O
aml.A signature may
ontain de
larations like Parameter x : T,
laiming the existen
e of avalue x of type T in any module implementing this signature. Depending on T, it
orrespondseither to an O
aml abstra
t type or to an O
aml value.2.3 Extra
tionThe Coq extra
tion me
hanism [12, 13℄ handles naturally the module system: Coq modulesare extra
ted to O
aml modules, Coq signatures to O
aml signatures and Coq fun
torsto O
aml fun
tors.The �rst task of the extra
tion is to introdu
e a distin
tion between terms and types,sin
e Coq has a uni�ed notion of terms. For instan
e, a Parameter de
laration may eitherbe extra
ted to a type de
laration or to a value de
laration, depending on its type.Then the extra
tion removes all the logi
al parts that �de
orate� the
omputationallyrelevant terms: logi
al justi�
ation, pre-
onditions, post-
onditions, . . . These logi
al partsare not needed for the a
tual
omputation. The dete
tion of these logi
al parts is donea

ordingly to the Coq sorts. A fundamental prin
iple of Coq is that any Coq termbelongs either to the logi
al sort Prop, or to the informative sorts Set and Type. Theextra
tion follows this duality to de
ide whi
h (sub-)terms must be erased.5

3 Spe
ifying a �nite sets libraryThis se
tion introdu
es the various signatures and fun
tors related to the Coq spe
i�
ationof the �nite sets library.3.1 Ordered typesSimilarly to O
aml
ode, our implementations are parameterized by the type of elementsand its total ordering fun
tion. The O
aml ordering fun
tions return integers for e�
ien
yreasons. The Coq ordering fun
tions
ould simply return into a three values enumerationtype, su
h asIndu
tive Compare : Set := Lt : Compare | Eq : Compare | Gt : Compare.However, it is more idiomati
 to introdu
e two predi
ates lt and eq�lt for the stri
t orderrelation and eq for the equality�and to have
onstru
tors for the indu
tive type Compare
arrying proofs of the
orresponding relations. Sin
e this type is going to be reused at severalpla
es, we make it polymorphi
 with respe
t to the type X of elements and to the relationslt and eq:Indu
tive Compare [X:Set; lt,eq:X!X!Prop; x,y:X℄ : Set :=| Lt : (lt x y) ! (Compare lt eq x y)| Eq : (eq x y) ! (Compare lt eq x y)| Gt : (lt y x) ! (Compare lt eq x y).Note that this type is in sort Set while lt and eq are in sort Prop. Thus the informative
ontents of Compare is a three
onstant values type, with the same meaning as integers inO
aml
omparison fun
tions.Then we introdu
e a signature OrderedType for ordered types. First, it
ontains a typet for the elements, whi
h is
learly informative and thus in sort Set. Then it equips the typet with a an equality eq and a stri
t order relation lt, together with a de
idability fun
tion
ompare su
h that (
ompare x y) has type (Compare lt eq x y)2.Finally, it
ontains a minimal set of logi
al properties (eq refl,. . . ,lt not eq) express-ing that eq is an equivalen
e relation and that lt is a stri
t order relation
ompatible witheq. Note that
ompare is providing the totality of this order relation. The �nal signatureOrderedType is given Figure 2.Many additional properties
an be derived from this set of axioms, su
h as the antisym-metry of lt:(x,y:t)(lt x y) ! :(lt y x)Su
h properties are
learly useful for the forth
oming proof developments. Instead of pol-luting the OrderedType signature with all of them, we build a fun
tor that derives theseproperties from OrderedType:2Most type arguments, su
h as X in this term, are automati
ally inferred by Coq and thus omitted.6

Module Type OrderedType.Parameter t : Set.Parameter eq : t ! t ! Prop.Parameter lt : t ! t ! Prop.Parameter eq refl : (x:t) (eq x x).Parameter eq sym : (x,y:t) (eq x y) ! (eq y x).Parameter eq trans : (x,y,z:t) (eq x y) ! (eq y z) ! (eq x z).Parameter lt trans : (x,y,z:t) (lt x y) ! (lt y z) ! (lt x z).Parameter lt not eq : (x,y:t) (lt x y) ! :(eq x y).Parameter
ompare : (x,y:t)(Compare lt eq x y).End OrderedType. Figure 2: Coq signature for ordered typesModule OrderedTypeFa
ts [O:OrderedType℄.Lemma lt not gt : (x,y:O.t)(O.lt x y) ! :(O.lt y x).Proof.Intros; Intro; Absurd (O.eq x x); EAuto.Qed.(* 22 other lemmas, 3 notations, 3 ta
ti
 definitions *)(* and a few hints for the Auto ta
ti
 *)End OrderedTypeFa
ts.This way, the user only has to implement a minimal signature and all the remaining isautomati
ally derived.3.2 Finite setsReprodu
ing the O
aml Set.S signature in Coq is not immediate. First of all, four fun
-tions are not appli
ative. One is iter, whi
h iterates a side-e�e
ts-only fun
tion over allelements of a set; we simply dis
ard this fun
tion. The others are min elt, max elt and
hoose, whi
h respe
tively return the minimum, the maximum and an arbitrary element ofa given set, and raise an ex
eption when the set is empty; we slightly
hange their type sothat they now return into a sum type.Then we fa
e the problem of spe
i�
ations: they are given as
omments in the O
aml�les, and are more or less pre
ise. Sometimes the behavior is even left partly unspe
i�ed,as for fold. The remaining of this se
tion explains how these informal spe
i�
ations aretranslated into Coq.Finally, we fa
e a question of style. There are indeed several ways of de�ning, spe
ifyingand proving
orre
t a fun
tion in Coq. Basi
ally, this
an be done in two steps�we �rstde�ne a purely informative fun
tion and then we prove it
orre
t�or in a single one�we usedependent types to have the fun
tion returning its result together with the proof that it is
orre
t. Our formalization a
tually provides both styles, with bridge fun
tors to go from oneto the other, allowing the user to
hoose what he or she
onsiders as the most
onvenient.7

3.2.1 Non-dependent signatureWe �rst introdu
e a signature S
ontaining purely informative fun
tions together with ax-ioms. It is very
lose to theO
aml signature. It introdu
es an ordered type for the elements:Module Type S.De
lare Module E : OrderedType.Definition elt := E.t.Then it introdu
es an abstra
t type t for sets:Parameter t : Set.All operations have exa
tly the same types as in O
aml (see Figure 1):Parameter empty : t.Parameter mem : elt ! t ! bool.Parameter add : elt ! t ! t....apart from min elt, max elt and
hoose:Parameter min elt : t ! (option elt).Parameter max elt : t ! (option elt).Parameter
hoose : t ! (option elt).and
ompare whi
h uses the Compare type introdu
ed in Se
tion 3.1 and refers to two pred-i
ates eq and lt also de
lared in the interfa
e:Parameter eq : t ! t ! Prop.Parameter lt : t ! t ! Prop.Parameter
ompare : (s,s':t)(Compare lt eq s s').The �ve properties of eq and lt are de
lared, making this interfa
e a subtype of OrderedTypeand thus allowing a bootstrap to get sets of sets3:Parameter eq refl : (eq s s).Parameter eq sym : (eq s s') ! (eq s' s).Parameter eq trans : (eq s s') ! (eq s' s'') ! (eq s s'').Parameter lt trans : (lt s s') ! (lt s' s'') ! (lt s s'').Parameter lt not eq : (lt s s') ! :(eq s s').To spe
ify all the operations, a membership predi
ate is introdu
ed:Parameter In : elt ! t ! Prop.3In the remaining of this signature, free variables su
h as x, y, s, et
. are universally quanti�ed.
8

We
ould have used the mem operation for this purpose, using (mem x s)=true instead of (Inx s), but it is more idiomati
 in Coq to use propositions rather than boolean fun
tions4.Moreover, it gives the implementor the opportunity to de�ne a membership predi
ate withoutreferring to mem, whi
h may ease the
orre
tness proof. An obvious property of In withrespe
t to the equality E.eq is de
lared:Parameter eq In : (E.eq x y) ! (In x s) ! (In y s).Operations are then axiomatized using the membership predi
ate. The value empty and theoperations mem, is empty, add, remove, singleton, union, inter, diff, equal, subset,elements, min elt, max elt and
hoose have obvious spe
i�
ations. Here are for instan
ethe spe
i�
ation of the empty set empty:Parameter empty 1 : (a:elt):(In a empty).and of the insertion add:Parameter add 1 : (E.eq y x) ! (In y (add x s)).Parameter add 2 : (In y s) ! (In y (add x s)).Parameter add 3 : :(E.eq x y) ! (In y (add x s)) ! (In y s).The remaining six operations, namely filter,
ardinal, fold, for all, exists and partition,are not so simple to spe
ify and deserve a bit of explanation.Filtering and test fun
tions. In the O
aml standard library, the filter operation isspe
i�ed as follows:val filter : (elt ! bool) ! t ! t(** filter p s returns the set of all elements in s that satisfypredi
ate p. *)This is slightly in
orre
t, as the predi
ate p
ould return di�erent values for elements iden-ti�ed by the equality E.eq over type elt. The predi
ate p has to be
ompatible with E.eqin the following way:Definition
ompat bool [p:elt!bool℄ := (x,y:elt)(E.eq x y) ! (p x)=(p y).Then filter
an be formally spe
i�ed with the following three axioms:Parameter filter 1 : (
ompat bool p) ! (In x (filter p s)) ! (In x s).Parameter filter 2 : (
ompat bool p) ! (In x (filter p s)) ! (p x)=true.Parameter filter 3 :(
ompat bool p) ! (In x s) ! (p x)=true ! (In x (filter p s)).Note that it leaves the behavior of filter unspe
i�ed whenever p is not
ompatible withE.eq. Operations for all, exists and partition are spe
i�ed in a similar way.4Contrary to other systems like PVS, Coq does not identify propositions and booleans.9

Folding and
ardinal. Spe
ifying the fold operation poses another
hallenge. TheO
aml spe
i�
ation reads:val fold : (elt ! 'a ! 'a) ! t ! 'a ! 'a(** fold f s a
omputes (f xN ... (f x2 (f x1 a))...), where x1... xNare the elements of s. The order in whi
h elements of s arepresented to f is unspe
ified. *)To resemble the O
aml spe
i�
ation as mu
h as possible, we de
lare the existen
e of a listof elements without dupli
ate�the list x1,. . . , xN above�and we reuse the existing foldingoperation fold right over lists:Parameter fold 1 :(A:Set)(i:A)(f:elt!A!A)(EX l:(list elt) |(Unique E.eq l) ^((x:elt)(In x s) $ (InList E.eq x l)) ^(fold f s i) = (fold right f i l)).Unique is a predi
ate expressing the uniqueness of elements within a list with respe
t to agiven equality, here E.eq. The
ardinal operation is spe
i�ed in a similar way, using theoperation length over lists:Parameter
ardinal 1 :(EX l:(list elt) |(Unique E.eq l) ^((x:elt)(In x s) $ (InList E.eq x l)) ^(
ardinal s) = (length l)).Note that
ardinal
ould be de�ned with fold; this will be dis
ussed later in Se
tion 3.3.3.2.2 Dependent signatureWe introdu
e a se
ond signature for �nite sets, Sdep. It makes use of dependent types tomix
omputational and logi
al
ontents, in a Coq idiomati
 way of doing. The part of thesignature related to the type t and the relations eq, lt and In is exa
tly the same as forsignature S. Then ea
h operation is introdu
ed and spe
i�ed with a single de
laration. Forinstan
e, the empty set is de
lared as follows:Parameter empty : { s:t | (a:elt):(In a s) }.whi
h must read �there exists a set s su
h that . . . �. Similarly, the operation add is de
laredas:Parameter add : (x:elt) (s:t){ s':t | (y:elt)(In y s') $ ((E.eq y x) _ (In y s)) }.10

and so on for all other operations. Only the four operations involving a predi
ate overelements�namely filter, for all, exists and partition�have a slightly di�erent spe
-i�
ation. Indeed, to be
onsistent with the use of dependent types, they do not take aboolean predi
ate as argument but require instead a predi
ate in sort Prop together with aproof that it is de
idable. Here is for instan
e the spe
i�
ation of filter:Parameter filter : (P:elt!Prop)(Pde
:(x:elt){P x}+{:(P x)})(s:t){ s':t | (
ompat P E.eq P) ! (x:elt)(In x s') $ ((In x s)^(P x)) }.whi
h must read �for any predi
ate P, any de
ision pro
edure Pde
 for P and any set s, thereexists a set s' su
h that . . . �.
ompat P expresses the
ompatibility of P with respe
t toequality E.eq, in a way similar to
ompat bool in signature S.3.2.3 Bridge fun
torsSignatures S and Sdep
an be proved equivalent in a
onstru
tive way. Indeed, we
animplement two bridge fun
tors between the two signatures. The �rst one is implementingthe signature Sdep given a module implementing the signature S:Module DepOfNodep [M:S℄ <: Sdep with Module E := M.E....End DepOfNodep.and the se
ond one is implementing the signature S given a module implementing the signa-ture Sdep:Module NodepOfDep [M:Sdep℄ <: S with Module E := M.E....End NodepOfDep.The pra
ti
al interest is obvious: the user may prefer one style of programming/provingwith Coq while a parti
ular implementation of �nite sets is provided with the other style.Applying the appropriate fun
tor is providing the desired interfa
e.3.3 Additional propertiesSignatures S and Sdep intend to be minimal. Many additional properties
an be derived.They may involve the set operations separetely or together, as in the following fa
t:
ardinal (union a b) +
ardinal (inter a b) =
ardinal a+
ardinal bSimilarly to what we did for OrderedType in Se
tion 3.1, we gather all su
h properties in afun
tor taking a module of signature S as argument:Module Properties [M:S℄.Lemma union inter
ardinal :(a,b:t)(
ardinal (union a b)) + (
ardinal (inter a b))= (
ardinal a) + (
ardinal b).Proof....End Properties. 11

4 Verifying �nite sets implementationsImplementing and verifying a set library with all operations introdu
ed so far is not ne
-essarily di�
ult: indeed, all operations
an be
oded using the four primitive operationsempty, add, remove and fold. However, most operations
an be
oded more e�
iently in adire
t way, at the extra
ost of a more di�
ult formal proof.In this se
tion, we present the formal veri�
ation of three di�erent implementations usingrespe
tively sorted lists, AVL trees and red-bla
k trees. These three implementations arefun
tors taking an ordered type X as argument.4.1 Sorted listsSets implemented as sorted lists o�er poor performan
es but there are at least two reasonsto start with su
h an implementation. First, this is a qui
k way to debug our signature Sand, when done, to show its logi
al
onsisten
y5. Se
ond, some of the operations over listsare reused later in the
ode or veri�
ation of the other two implementations based on binarytrees.The veri�
ation is (almost) straightforward.4.2 AVL treesThe next implementation to be veri�ed is the Set module from O
aml standard library [2℄.This is a heavily used library, in
luding in O
aml's own
ode. It implements sets usingAVL trees [4℄, that are binary sear
h trees where the di�eren
e between the heights of anytwo sibling trees
an not ex
eed a given value �. Although � = 1 is an admissible
hoi
e [4℄,the O
aml implementation relaxes it to � = 2, making a
ompromise between the overallbalan
ing and the
ost of rebalan
ing when inserting or deleting.The Coq formalization implements signature Sdep, following O
aml
ode as
lose aspossible. First a type for trees is introdu
ed, where the height is stored for greater e�
ien
y:Indu
tive tree : Set :=| Leaf : tree| Node : tree ! elt ! tree ! Z ! tree.The property of being a binary sear
h tree, bst, is then de�ned as an indu
tive predi
ate:Indu
tive bst : tree ! Prop :=| BSLeaf :(bst Leaf)| BSNode : (x:elt)(l,r:tree)(h:Z)(bst l) ! (bst r) !(lt tree x l) ! (gt tree x r) !(bst (Node l x r h)).5We indeed rephrased several spe
i�
ations while doing this �rst veri�
ation.12

where lt tree x l (resp. gt tree x l) states that any element in l is smaller (resp.greater) than x. Similarly, the balan
ing property is introdu
ed as another indu
tive predi-
ate:Indu
tive avl : tree ! Prop :=| RBLeaf :(avl Leaf)| RBNode : (x:elt)(l,r:tree)(h:Z)(avl l) ! (avl r) !`-2 <= (height l) - (height r) <= 2` !`h = (max (height l) (height r)) + 1` !(avl (Node l x r h)).Finally, the type t for sets is a re
ord
ontaining a tree and proofs that it is a well-balan
edbinary sear
h tree:Re
ord t : Set := t intro {the tree :> tree;is bst : (bst the tree);is avl : (avl the tree)}.Properties bst and avl
ould have been de�ned simultaneously but separating them easesthe proofs sin
e most of the time one of the two is not relevant for the property to be proved.Veri�
ation. Verifying the operations is mostly a matter of �nding the pre
ise spe
i�
a-tions, where the O
aml
ode is only providing a few la
oni

omments. For instan
e, oneof the internal fun
tion (bal l x r) is informally spe
i�ed as�Same as
reate, but performs one step of rebalan
ing if ne
essary. Assumes land r balan
ed.�but its pre
ise spe
i�
ation is (among other things):�Assumes j(height l) � (height r)j � 3. The size of the returned tree is ei-ther max(height l; height r) or max(height l; height r) + 1, and is alwaysthe latter when j(height l)� (height r)j � 2.Looking for these spe
i�
ations, we a
tually dis
overed balan
ing bugs in O
aml
ode: twointernal fun
tions were building in
orre
tly balan
ed trees while they were supposed to. (Thesets whi
h were built were
orre
t, though, i.e. were
ontaining the right elements.) Pat
heshave been qui
kly provided by the O
aml team and we
ould verify the new
ode withouttrouble.
13

A termination
hallenge. Only one operation poses a real veri�
ation
hallenge: the
ompare fun
tion providing a total ordering over sets. The idea is quite simple. Comparingtwo sets is just a matter of
omparing the sorted lists of their elements in a lexi
ographi
way. But the algorithm used is tri
ky. Instead of �rst building the two lists, the
ode isbuilding them lazily, as soon as elements are needed for the
omparison, using a te
hnique ofdeforestation [15℄. The problem is generalized to the
omparison of two lists of trees, doneas follows:let re

ompare aux l1 l2 = mat
h (l1, l2) with| ([℄, [℄) ! 0| ([℄,) ! -1| (, [℄) ! 1| (Empty :: t1, Empty :: t2) !
ompare aux t1 t2| (Node(Empty, v1, r1,) :: t1, Node(Empty, v2, r2,) :: t2) !let
 = Ord.
ompare v1 v2 inif
 <> 0 then
 else
ompare aux (r1::t1) (r2::t2)| (Node(l1, v1, r1,) :: t1, t2) !
ompare aux (l1 :: Node(Empty, v1, r1, 0) :: t1) t2| (t1, Node(l2, v2, r2,) :: t2) !
ompare aux t1 (l2 :: Node(Empty, v2, r2, 0) :: t2)Proving the termination of this fun
tion is hard. Indeed, the last two
ases may re
ursively
all
ompare aux with �bigger� arguments when l1 (resp. l2) is Empty. The reason why itterminates involves a global argument: the �rst elements of the lists will eventually be
omeboth Empty and will then fall into the fourth
ase of the pattern mat
hing. Fortunately, the
ode
an be slightly
hanged to re
over a simpler termination argument, at the extra
ostof two additional
ases but without any loss of e�
ien
y. This modi�ed version is proved
orre
t.4.3 Red-bla
k treesRed-bla
k trees [8℄ are another kind of balan
ed binary sear
h trees. Nodes are
olored eitherred or bla
k and any red-bla
k tree must satisfy the following two invariants:� A red node has no red
hild;� Every path from the root to a leaf
ontains the same number of bla
k nodes.Okasaki ni
ely introdu
es red-bla
k trees in a fun
tional setting [14℄ but only the membershipand insertion operations are given. Xi spe
i�es this
ode in Dependent ML [16℄ but it isalso restri
ted to the insertion operation. Even Adams general approa
h balan
ed binarysear
h trees [3℄ does not apply ni
ely to red-bla
k trees. Generally speaking, we
ould not�nd a
omprehensive implementation of �nite sets using red-bla
k trees and we wrote ourown. This
ode is available from the web site of the formalization.As for AVL trees, the Coq formalization implements signature Sdep following O
aml
ode as
lose as possible. First,
olored trees are de�ned:14

Indu
tive
olor : Set := red :
olor | bla
k :
olor.Indu
tive tree : Set :=| Leaf : tree| Node :
olor ! tree ! elt ! tree ! tree.The binary sear
h tree property bst is similar to the one for AVL trees. Then the red-bla
ktrees invariant is introdu
ed as an indu
tive predi
ate rbtree parameterized by the heightof bla
k nodes:Indu
tive rbtree : nat ! tree ! Prop :=| RBLeaf :(rbtree O Leaf)| RBRed : (x:elt)(l,r:tree)(n:nat)(rbtree n l) ! (rbtree n r) !(is not red l) ! (is not red r) !(rbtree n (Node red l x r))| RBBla
k : (x:elt)(l,r:tree)(n:nat)(rbtree n l) ! (rbtree n r) !(rbtree (S n) (Node bla
k l x r)).where is not red has an obvious meaning. Finally, everything is
olle
ted together in are
ord type:Re
ord t : Set := t intro {the tree :> tree;is bst : (bst the tree);is rbtree : (EX n:nat | (rbtree n the tree))}.Again, the formalization is roughly a matter of �nding the right spe
i�
ation for ea
hfun
tion, followed by a quite long pro
ess of Coq ta
ti
s s
ripting (�gures are given inthe
on
lusion). Some proofs from the AVL trees formalization
ould be reused with slightmodi�
ations (e.g. the
ompare operation).5 Con
lusionIn this arti
le, we presented the full formalization in Coq of three appli
ative implementa-tions of �nite sets libraries, in
luding AVL and red-bla
k trees. To our knowledge, this is the�rst formal proof of a full set of operations over these two kinds of balan
ed binary sear
htrees.This arti
le also demonstrates the bene�ts of modules and fun
tors in a logi
al framework,and their relevan
e for program proving. More pre
isely, the adequa
y between O
amland Coq module systems allows the formalization of signi�
ant pie
es of
ode. Corre
t-by-
onstru
tion fun
torized
ode
an be obtained using Coq extra
tion, whi
h is a realimprovement. 15

OrderedType
SFSetList.Make SdepFSetRBT.MakeDepOfNodepNodepOfDep

FSetAVL.MakeOrderedTypeFa
ts
PropertiesFigure 3: The �ve signatures and the seven fun
torsOverall pi
ture. Figure 3 summarizes the dependen
ies between the �ve signatures andthe seven fun
tors used in this formalization. The following table details the size of the for-malization, in terms of the size of
ode proved
orre
t (not meaningful for sorted lists, whi
hwere implemented dire
tly in Coq) and size of the Coq development. The formalizationroughly amounts to 2 men-month. spe
s lists AVL RBT totallines of
ode 114 231 314 545lines of Coq spe
s 1160 375 532 405 2472lines of Coq proofs 1900 537 1800 1280 5517Extra
tion and ben
hmark. On
e the formalization done, O
aml
ode
an be auto-mati
ally extra
ted from the proofs [12, 13℄. Thus it
an be
ompared to the original
ode.We run a little ben
hmark
omparing O
aml's Set module (AVL), the extra
tion of itsformalization ("-AVL), a manual implementation of red-bla
k trees (RBT) and the extra
-tion of its formalization ("-RBT). The ben
hmark
onsists in testing operations on randomlygenerated sets of various sizes6. Results are shown Figure 4.The timings are very
lose, apart from "-AVL when trees are built, that is for all opera-tions ex
ept mem. The reason is that arithmeti
al
omputations over heights are done usingCoq arbitrary pre
ision arithmeti
 extra
ted to O
aml, whi
h
an not
ompete with thehardware arithmeti
 used in O
aml Set. We
ould parameterize the whole formalizationof AVL trees with respe
t to the arithmeti
 used for
omputing heights, using yet anotherfun
tor. But we would loose the bene�ts of the Omega ta
ti
 (the de
ision pro
edure for Pres-burger arithmeti
) whi
h is of heavy use in this development. A more realisti
 workaroundwould be an automati
 substitution of hardware arithmeti
 for Coq arithmeti
 at extra
tiontime, but this is not yet a Coq feature.A
knowledgements. We are grateful to Xavier Leroy for suggesting the veri�
ation ofO
aml's AVL trees and for having provided pat
hes almost immediately. We also thank6The ben
hmark sour
es
an be obtained from the authors.16

AVL "-AVL RBT "-RBTadd-1 3.01 13.80 3.38 4.02add-2 15.50 53.20 13.40 16.70add-3 5.40 22.30 4.57 6.55mem-1 9.52 10.20 11.40 12.10mem-2 11.10 11.70 13.00 13.60mem-3 8.31 8.83 9.01 9.47mem-4 9.93 10.40 10.60 11.00remove-1 4.67 18.70 5.92 6.85remove-2 4.20 17.70 4.81 5.58union 11.40 46.50 12.10 17.30inter 4 .76 17.70 4.76 6.19di� 4.68 17.70 4.71 5.76subset 11.50 46.30 11.20 14.00
ompare 11.50 45.70 11.70 13.90Figure 4: Ben
hmark results (in se
onds)Benjamin Monate for the very ni
e user-interfa
e CoqIDE and Diego Olivier Fernandez Ponsfor
omments on implementing red-bla
k trees.Referen
es[1℄ The Coq Proof Assistant. http://
oq.inria.fr/.[2℄ The Obje
tive Caml language. http://
aml.inria.fr/.[3℄ Stephen Adams. Fun
tional pearls: E�
ient sets � a balan
ing a
t. Journal of Fun
-tional Programming, 3(4):553�561, O
tober 1993. Expanded version available as Te
h-ni
al Report CSTR 92-10, University of Southampton.[4℄ G. M. Adel'son-Vel'ski�� and E. M. Landis. An algorithm for the organization of infor-mation. Soviet Mathemati
s�Doklady, 3(5):1259�1263, September 1962.[5℄ Ja
ek Chrz¡sz
z. Implementing modules in the system Coq. In 16th International Con-feren
e on Theorem Proving in Higher Order Logi
s, University of Rome III, September2003.[6℄ Ja
ek Chrz¡sz
z. Modules in Type Theory with generative de�nitions. PhD thesis,Warsaw University and Université Paris-Sud, 2003. To be defended.[7℄ Judi
aël Courant. A Module Cal
ulus for Pure Type Systems. In Typed Lambda Cal
uliand Appli
ations 97, Le
ture Notes in Computer S
ien
e, pages 112 � 128. Springer-Verlag, 1997. 17

[8℄ Leo J. Guibas and Robert Sedgewi
k. A di
hromati
 framework for balan
ed trees. In19th Annual Symposium on Foundations of Computer S
ien
e, pages 8�21, Ann Arbor,Mi
higan, 16-18 O
tober 1978. IEEE.[9℄ Robert Harper and Mark Lillibridge. A type-theoreti
 approa
h to higher-order mod-ules with sharing. In Conferen
e re
ord of POPL '94: 21st ACM SIGPLAN-SIGACTSymposium on Prin
iples of Programming Languages, pages 123�137, Portland, OR,January 1994.[10℄ Ralf Hinze. Constru
ting red-bla
k trees. In editor Chris Okasaki, editor, Pro
eed-ings of the Workshop on Algorithmi
 Aspe
ts of Advan
ed Programming Languages,WAAAPL'99, pages 89�99, Paris, Fran
e, September 1999. Also te
hni
al report ofColumbia University, CUCS-023-99.[11℄ Xavier Leroy. A modular module system. Journal of Fun
tional Programming,10(3):269�303, 2000.[12℄ Pierre Letouzey. A New Extra
tion for Coq. In Herman Geuvers and Freek Wiedijk,editors, Types for Proofs and Programs, Se
ond International Workshop, TYPES 2002,Berg en Dal, The Netherlands, April 24-28, 2002, volume 2646 of Le
ture Notes inComputer S
ien
e. Springer-Verlag, 2003.[13℄ Pierre Letouzey. Programmation fon
tionnelle
erti�ée en Coq. PhD thesis, UniversitéParis Sud, 2003.[14℄ Chris Okasaki. Purely Fun
tional Data Stru
tures. Cambridge University Press, 1998.[15℄ Philip Wadler. Deforestation: transforming programs to eliminate trees. Theoreti
alComputer S
ien
e, 73:231�248, 1990.[16℄ Hongwei Xi. Dependently Typed Data Stru
tures. In Pro
eedings of Workshop ofAlgorithmi
 Aspe
ts of Advan
ed Programming Languages (WAAAPL '99), pages 17�32, Paris, September 1999.

18

