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Abstract

This paper presents the formal verification with the Coq proof assistant of several
applicative data structures implementing finite sets. These implementations are pa-
rameterized by an ordered type for the elements, using functors from the ML module
system. The verification follows closely this scheme, using the newly Coq module sys-
tem. One of the verified implementation is the actual code for sets and maps from
the Objective Caml standard library. The process of verification exhibited two small
errors in the balancing scheme, which have been fixed and then verified. Beyond these
verification results, this article illustrates the use and benefits of modules and functors
in a logical framework.

1 Introduction

Balanced trees are notoriously hard to implement without any mistake. Exact invariants
are difficult to figure out, even for applicative implementations. Since most programming
languages provide data structures for finite sets and dictionaries based on balanced trees,
this is a real challenge for formal verification to actually verify one of these.

We choose to verify the Set module from the Objective Caml (OCAML) standard li-
brary [2]. This applicative implementation of finite sets uses AVL trees [4] and provides all
expected operations, including union, difference and intersection. Above all, this is a very
efficient and heavily used implementation, which motivates a correctness proof. This article
also presents the verification of two other implementations, using respectively sorted lists
and red-black trees [8], both written in OCAML and using the same interface as Set.

Building balanced trees over values of a given type requires this type to be equipped with
a total ordering function. Several techniques are available to build a parametric library: in
ML, polymorphism gives genericity over the type and first-class functions give the genericity
over the ordering function (e.g. it is passed when initially creating the tree); in object oriented
languages, objects to be stored in the trees are given a suitable comparison function; etc.



The most elegant technique is probably the one provided by the ML module system, as
implemented in SML [9] and OcCAML [11]. A module is a collection of definitions of types,
values and submodules. Its type is called a signature and contains declarations of (some of
the) types, values and submodules. Modules can be parameterized by some signatures and
later applied to actual modules. Such functions from modules to modules are called functors.
The Set library is a nice illustration of OCAML module system. It is naturally written as a
functor taking the signature of an ordered type as argument and returning the signature for
finite sets as a result.

The use of modules and functors introduces an extra challenge for the formal proof. The
recent introduction of an ML-like module system into the COQ proof assistant [1, 5] makes
it a perfect candidate for this verification. As a side effect, this article examplifies the use of
modules and functors in a logical framework, which goes well beyond its use in programming
languages.

Currently, CoQ is not able to reason directly about OCAML code. To certify an OCAML
applicative implementation, we first translate it into COQ own programming language, GAL-
LINA. Then the logic of COQ can be used to express properties of the GALLINA functions.
Since the translation from OCAML to GALLINA is done manually and is thus error-prone,
CoqQ provides an automated mechanism for the converse translation called extraction. The
extraction takes a CoQ function or proof, removes all its logical statements and translates
the remaining algorithmic content to OcAML. We finally end up with three versions of the
code: the OCAML original handwritten one, its GALLINA translation certified in CoQ, and
the OCAML extracted version. Theoretical results about the extraction [12, 13| ensure that
the extracted code verifies the same properties as the GALLINA version. In practice, the
extracted code behaves reasonably well (see e.g. the final benchmarks) and often presents
only syntactical differences with the original OCAML code.

Outline. This paper is organized as follows. Section 2 is devoted to the presentation of
OcaML and COQ module systems. Section 3 introduces the signatures for ordered types
and finite sets, and various utility functors over these signatures. Section 4 presents the
verification of three finite sets implementations, using respectively sorted lists, AVL trees
from the OCAML standard library and red-black trees. Section 5 concludes with a benchmark
comparing performances of handwritten and extracted code.

Source code. This article only details the most important parts of the formal development.
The whole source code would take too much space, even in appendix: the sole specification
is 2338 lines long and the proof scripts amount to 5704 lines, not mentioning the original
source code for red-black and AVL trees. All these files are available at http://www.1lri.
fr/~filliatr/fsets/ for downloading and browsing. The CoqQ files need the development
version of COQ to compile and a rather powerful machine: 10 minutes are indeed necessary
to compile the whole development on a 1 Gigahertz Intel CPU.

The pieces of COQ and OCAML code given in this article are displayed in verbatim font,
apart from the embellishment of a few symbols: — for ->, <» for <->, V for \/, A for /\ and
- for ~.



2 Modules and functors

This section introduces the OcAML and CoQ module systems.

2.1 The OCAML module system

The OCAML module system [11] is derived from the original one for SML [9]. The latter also
evolved in return, both systems being now quite close and known as the Harper-Lillibridge-
Leroy module system. This section briefly illustrates the OCcAML module system with the
Set library from its standard library, which signature is used throughout this paper and
which code is verified in Section 4.2.

The Set library first defines a signature S for finite sets, given Figure 1. It contains the
type elt of elements, the type t of sets, the value empty for the empty set, and 22 operations
over sets. Most of them have an obvious meaning and the expected semantics. Other like
fold, elements or choose have part of their specification left unspecified (this is detailed
later in this paper).

The set implementation is parameterized by the type of its elements, which must be
equipped with a total ordered function. The following signature OrderedType is introduced
for this purpose:

module type OrderedType = sig

type t
val compare : t — t — int
end

The compare function is returning an integer, such that (compare x y) is zero if x and y
are equal, negative if x is smaller than y and positive if x is greater than y. For instance, a
module Int realizing this signature for the type int of integers and the predefined comparison
function Pervasives.compare' would be:

module Int : Set.OrderedType = struct
type t = int
let compare = Pervasives.compare
end

The implementation of the data structure for sets is provided as a functor Make taking a
module Ord of signature OrderedType as argument and returning a module of signature S:

module Make (Ord : OrderedType) : S with type elt = Ord.t

The signature for the returned module needs to be more precise than S: we must identify
the type elt in the returned signature with the type Ord.t given as argument. This is made
explicit using the with type construct.

We would get sets of integers by applying this functor to the module Int above:

!The subtraction can not be used as comparison function for integers because of overflows; consider for
instance min_int —max_int = 1.



module type S = sig
type elt
type t
val empty : t
val is_empty : t — bool
val mem : elt — t — bool
val add : elt - t — t
val singleton : elt — t
val remove : elt -+ t — t
val union : t - t — t
val inter : t - t — t
val diff : t - t = ¢t
val compare : t — t — int
val equal : t — t — bool
val subset : t -+ t — bool
val iter : (elt — unit) — t — unit
val fold : (elt — ’a — ’a) - t — ’a — ’a
val for_all : (elt — bool) — t — bool
val exists : (elt — bool) — t — bool
val filter : (elt — bool) — t — t
val partition : (elt — bool) — t — t * t
val cardinal : t — int
val elements : t — elt list
val min_elt : t — elt
val max_elt : t — elt
val choose : t — elt
end

Figure 1: OCAML signature Set.S for finite sets

module IntSet = Set.Make(Int)

It is important to notice that signature S contains a type t and a comparison function
compare (with the expected behavior), allowing to build sets of sets by applying Make again
on the resulting module. For instance, sets of sets of integers would be obtained with:

module IntSetSet = Set.Make(IntSet)

The reader may refer to the OCAML manual [2] for further details on its module system.

2.2 The CoQ module system

A module system for the COQ proof assistant has been advocated for a long time, mainly
in Courant’s PhD thesis [7]. Clearly more ambitious than OCAML’s, his module system
appeared too complex to be implemented in the existing code of C0Q. Instead, a module
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system a la Caml was recently implemented by Chrzaszcz [5] following Leroy’s modular
module system [11].

The main difference with OcAML is that CoQ modules are interactive. While in OCAML
a module is introduced with a single declaration, CoQ allows to build it piece by piece. The
following statement starts the declaration of a module M:

Module M.

Then any subsequent COQ declaration (type, function, lemma, theorem, ...) is placed in
that module, until the closing of M with

End M.

This interactive process is plainly justified by the interactive building of (most) CoQ proofs.
Checking a whole module with all its proofs one at a time would be intractable. Similarly,
a signature S is interactively declared with

Module Type S.
End S.
and a functor F with

Module F [X : S].
End F.
The contents of these modules, signatures and functors are regular CoQ declarations (in-
ductive types, definitions, ...). In particular, modules and functors may contain logical
properties and their proofs. This is of course a novelty when compared with OCAML.

A signature may contain declarations like Parameter x : T, claiming the existence of a

value x of type T in any module implementing this signature. Depending on T, it corresponds
either to an OCAML abstract type or to an OCAML value.

2.3 Extraction

The COQ extraction mechanism [12, 13] handles naturally the module system: CoQ modules
are extracted to OCAML modules, COQ signatures to OCAML signatures and COQ functors
to OCAML functors.

The first task of the extraction is to introduce a distinction between terms and types,
since COQ has a unified notion of terms. For instance, a Parameter declaration may either
be extracted to a type declaration or to a value declaration, depending on its type.

Then the extraction removes all the logical parts that “decorate” the computationally
relevant terms: logical justification, pre-conditions, post-conditions, ... These logical parts
are not needed for the actual computation. The detection of these logical parts is done
accordingly to the CoqQ sorts. A fundamental principle of CoqQ is that any COQ term
belongs either to the logical sort Prop, or to the informative sorts Set and Type. The
extraction follows this duality to decide which (sub-)terms must be erased.



3 Specifying a finite sets library

This section introduces the various signatures and functors related to the CoqQ specification
of the finite sets library.

3.1 Ordered types

Similarly to OCAML code, our implementations are parameterized by the type of elements
and its total ordering function. The OCAML ordering functions return integers for efficiency
reasons. The CoQ ordering functions could simply return into a three values enumeration
type, such as

Inductive Compare : Set := Lt : Compare | Eq : Compare | Gt : Compare.

However, it is more idiomatic to introduce two predicates 1t and eq—1t for the strict order
relation and eq for the equality—and to have constructors for the inductive type Compare
carrying proofs of the corresponding relations. Since this type is going to be reused at several
places, we make it polymorphic with respect to the type X of elements and to the relations
1t and eq:

Inductive Compare [X:Set; 1t,eq:X—X—Prop; x,y:X] : Set :=
| Lt : (1t x y) — (Compare 1t eq x y)
| Eq : (eq x y) — (Compare 1t eq x y)
| Gt : (1t y x) — (Compare 1t eq x y).

Note that this type is in sort Set while 1t and eq are in sort Prop. Thus the informative
contents of Compare is a three constant values type, with the same meaning as integers in
OCAML comparison functions.

Then we introduce a signature OrderedType for ordered types. First, it contains a type
t for the elements, which is clearly informative and thus in sort Set. Then it equips the type
t with a an equality eq and a strict order relation 1t, together with a decidability function
compare such that (compare x y) has type (Compare 1t eq x y)2.

Finally, it contains a minimal set of logical properties (eq_refl,...,1t_not_eq) express-
ing that eq is an equivalence relation and that 1t is a strict order relation compatible with
eq. Note that compare is providing the totality of this order relation. The final signature
OrderedType is given Figure 2.

Many additional properties can be derived from this set of axioms, such as the antisym-
metry of 1t:

(x,y:t) (1t x y) — - (1t y %)

Such properties are clearly useful for the forthcoming proof developments. Instead of pol-
luting the OrderedType signature with all of them, we build a functor that derives these
properties from OrderedType:

2Most type arguments, such as X in this term, are automatically inferred by CoQ and thus omitted.



Module Type OrderedType.
Parameter t : Set.
Parameter eq : t —+ t — Prop.
Parameter 1t : t — t — Prop.
Parameter eq-refl : (x:t) (eq x x).
Parameter eq_sym : (x,y:t) (eq x y) — (eq y x).
Parameter eq_trans :@ (x,y,z:t) (eq x y) — (eqy z) — (eq x 2).
Parameter lt_trans :@ (x,y,z:t) (1t xy) — (1t y z) — (1t x z).
Parameter lt_not_eq : (x,y:t) (1t x y) — —(eq x y).
Parameter compare : (x,y:t)(Compare 1t eq x y).
End OrderedType.

Figure 2: CoQ signature for ordered types

Module OrderedTypeFacts [0:0rderedType].
Lemma lt_not_gt : (x,y:0.t)(0.1t x y) — —(0.1t y x).
Proof.
Intros; Intro; Absurd (0.eq x x); EAuto.
Qed.
(* 22 other lemmas, 3 notations, 3 tactic definitions *)
(* and a few hints for the Auto tactic *)
End OrderedTypeFacts.

This way, the user only has to implement a minimal signature and all the remaining is
automatically derived.

3.2 Finite sets

Reproducing the OCAML Set.S signature in COQ is not immediate. First of all, four func-
tions are not applicative. One is iter, which iterates a side-effects-only function over all
elements of a set; we simply discard this function. The others are min_elt, max_elt and
choose, which respectively return the minimum, the maximum and an arbitrary element of
a given set, and raise an exception when the set is empty; we slightly change their type so
that they now return into a sum type.

Then we face the problem of specifications: they are given as comments in the OCAML
files, and are more or less precise. Sometimes the behavior is even left partly unspecified,
as for fold. The remaining of this section explains how these informal specifications are
translated into COQ.

Finally, we face a question of style. There are indeed several ways of defining, specifying
and proving correct a function in CoQ. Basically, this can be done in two steps—we first
define a purely informative function and then we prove it correct—or in a single one—we use
dependent types to have the function returning its result together with the proof that it is
correct. Our formalization actually provides both styles, with bridge functors to go from one
to the other, allowing the user to choose what he or she considers as the most convenient.



3.2.1 Non-dependent signature

We first introduce a signature S containing purely informative functions together with ax-
ioms. It is very close to the OCAML signature. It introduces an ordered type for the elements:

Module Type S.
Declare Module E : OrderedType.
Definition elt := E.t.

Then it introduces an abstract type t for sets:
Parameter t : Set.
All operations have exactly the same types as in OCAML (see Figure 1):

Parameter empty : t.
Parameter mem : elt — t — bool.
Parameter add : elt - t — t.

apart from min_elt, max_elt and choose:

Parameter min_elt : t — (option elt).
Parameter max_elt : t — (option elt).
Parameter choose : t — (option elt).

and compare which uses the Compare type introduced in Section 3.1 and refers to two pred-
icates eq and 1t also declared in the interface:

Parameter eq : t —+ t — Prop.
Parameter 1t : t — t — Prop.
Parameter compare : (s,s’:t)(Compare 1t eq s s’).

The five properties of eq and 1t are declared, making this interface a subtype of OrderedType
and thus allowing a bootstrap to get sets of sets®:

Parameter eq_-refl : (eq s s).

Parameter eq_sym : (eq s s’) — (eq s’ s).

Parameter eq_trans : (eq s s’) — (eq s’ s8’?) — (eq s 8’7).
Parameter lt_trans : (1t s s’) — (1t s’ s’?) — (1t s s’?).
Parameter lt_not_eq : (1t s s’) — —(eq s s’).

To specify all the operations, a membership predicate is introduced:

Parameter In : elt — t — Prop.

3In the remaining of this signature, free variables such as x, y, s, etc. are universally quantified.



We could have used the mem operation for this purpose, using (mem x s)=true instead of (In
x s), but it is more idiomatic in COQ to use propositions rather than boolean functions®.
Moreover, it gives the implementor the opportunity to define a membership predicate without
referring to mem, which may ease the correctness proof. An obvious property of In with
respect to the equality E.eq is declared:

Parameter eq_In : (E.eq x y) — (Inx s) — (Iny s).

Operations are then axiomatized using the membership predicate. The value empty and the
operations mem, is_empty, add, remove, singleton, union, inter, diff, equal, subset,
elements, min_elt, max_elt and choose have obvious specifications. Here are for instance
the specification of the empty set empty:

Parameter empty_1 : (a:elt)—(In a empty).
and of the insertion add:

Parameter add_-1 : (E.eq y x) — (In y (add x s)).
Parameter add-2 : (Iny s) — (Iny (add x s)).
Parameter add-3 : —(E.eq x y) — (Iny (add x s)) — (In y s).

The remaining six operations, namely filter, cardinal, fold, for_all, exists and partition,
are not so simple to specify and deserve a bit of explanation.

Filtering and test functions. In the OCAML standard library, the filter operation is
specified as follows:

val filter : (elt — bool) — t — t
(#x filter p s returns the set of all elements in s that satisfy
predicate p. *)

This is slightly incorrect, as the predicate p could return different values for elements iden-
tified by the equality E.eq over type elt. The predicate p has to be compatible with E.eq
in the following way:

Definition compat_bool [p:elt—bool] := (x,y:elt)(E.eq x y) — (p x)=(p y).
Then filter can be formally specified with the following three axioms:

Parameter filter_1 : (compat_bool p) — (In x (filter p s)) — (In x s8).
Parameter filter_2 : (compat_bool p) — (In x (filter p s)) — (p x)=true.
Parameter filter_3 :

(compat_bool p) — (In x 8) — (p x)=true — (In x (filter p s)).

Note that it leaves the behavior of filter unspecified whenever p is not compatible with
E.eq. Operations for_all, exists and partition are specified in a similar way.

4Contrary to other systems like PVS, CoQ does not identify propositions and booleans.



Folding and cardinal. Specifying the fold operation poses another challenge. The
OcCAML specification reads:

val fold : (elt — ’a — ’a) - t — ’a — ’a

(¥* fold f s a computes (f xN ... (f x2 (f x1 a))...), where x1... xN
are the elements of s. The order in which elements of s are
presented to f is unspecified. *)

To resemble the OCAML specification as much as possible, we declare the existence of a list
of elements without duplicate—the list x1,..., xN above—and we reuse the existing folding
operation fold_right over lists:

Parameter fold_1
(A:Set) (i:A) (f:elt—A—A)
(EX 1:(1list elt) |
(Unique E.eq 1) A
((x:e1t) (In x s) <> (InList E.eq x 1)) A
(fold f s i) = (fold_right f i 1)).

Unique is a predicate expressing the uniqueness of elements within a list with respect to a
given equality, here E.eq. The cardinal operation is specified in a similar way, using the
operation length over lists:

Parameter cardinal_1
(EX 1:(1list elt) |
(Unique E.eq 1) A
((x:elt) (In x s) <> (InList E.eq x 1)) A
(cardinal s) = (length 1)).

Note that cardinal could be defined with fold; this will be discussed later in Section 3.3.

3.2.2 Dependent signature

We introduce a second signature for finite sets, Sdep. It makes use of dependent types to
mix computational and logical contents, in a COQ idiomatic way of doing. The part of the
signature related to the type t and the relations eq, 1t and In is exactly the same as for
signature S. Then each operation is introduced and specified with a single declaration. For
instance, the empty set is declared as follows:

Parameter empty : { s:t | (a:elt)—(In a s) I}.

which must read “there exists a set s such that ...”. Similarly, the operation add is declared
as:

Parameter add : (x:elt) (s:t)
{s:t | (yielt)(In y s’) < ((E.eqy x) V (Iny s)) }.
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and so on for all other operations. Only the four operations involving a predicate over
elements—namely filter, for_all, exists and partition—have a slightly different spec-
ification. Indeed, to be consistent with the use of dependent types, they do not take a
boolean predicate as argument but require instead a predicate in sort Prop together with a
proof that it is decidable. Here is for instance the specification of filter:

Parameter filter : (P:elt—Prop) (Pdec: (x:elt){P x}+{—(P x)})(s:t)
{ s’:t | (compat_P E.eq P) — (x:elt)(In x s’) <> ((In x s)A(P x)) }.

which must read “for any predicate P, any decision procedure Pdec for P and any set s, there

exists a set s’ such that ...”. compat_P expresses the compatibility of P with respect to

equality E.eq, in a way similar to compat_bool in signature S.

3.2.3 Bridge functors

Signatures S and Sdep can be proved equivalent in a constructive way. Indeed, we can
implement two bridge functors between the two signatures. The first one is implementing
the signature Sdep given a module implementing the signature S:

Module DepOfNodep [M:S] <: Sdep with Module E := M.E.

End DepOfNodep.

and the second one is implementing the signature S given a module implementing the signa-
ture Sdep:

Module NodepOfDep [M:Sdep] <: S with Module E := M.E.

End NodepOfDep.

The practical interest is obvious: the user may prefer one style of programming/proving
with CoQ while a particular implementation of finite sets is provided with the other style.
Applying the appropriate functor is providing the desired interface.

3.3 Additional properties

Signatures S and Sdep intend to be minimal. Many additional properties can be derived.
They may involve the set operations separetely or together, as in the following fact:

cardinal (union a b) + cardinal (inter a b) = cardinal a + cardinal b

Similarly to what we did for OrderedType in Section 3.1, we gather all such properties in a
functor taking a module of signature S as argument:

Module Properties [M:S].
Lemma union_inter_cardinal
(a,b:t) (cardinal (union a b)) + (cardinal (inter a b))
= (cardinal a) + (cardinal b).
Proof.

End Properties.
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4 Verifying finite sets implementations

Implementing and verifying a set library with all operations introduced so far is not nec-
essarily difficult: indeed, all operations can be coded using the four primitive operations
empty, add, remove and fold. However, most operations can be coded more efficiently in a
direct way, at the extra cost of a more difficult formal proof.

In this section, we present the formal verification of three different implementations using
respectively sorted lists, AVL trees and red-black trees. These three implementations are
functors taking an ordered type X as argument.

4.1 Sorted lists

Sets implemented as sorted lists offer poor performances but there are at least two reasons
to start with such an implementation. First, this is a quick way to debug our signature S
and, when done, to show its logical consistency®. Second, some of the operations over lists
are reused later in the code or verification of the other two implementations based on binary
trees.

The verification is (almost) straightforward.

4.2 AVL trees

The next implementation to be verified is the Set module from OCAML standard library [2].
This is a heavily used library, including in OCAML’s own code. It implements sets using
AVL trees [4], that are binary search trees where the difference between the heights of any
two sibling trees can not exceed a given value A. Although A =1 is an admissible choice [4],
the OCAML implementation relaxes it to A = 2, making a compromise between the overall
balancing and the cost of rebalancing when inserting or deleting.

The CoqQ formalization implements signature Sdep, following OCAML code as close as
possible. First a type for trees is introduced, where the height is stored for greater efficiency:

Inductive tree : Set :=
| Leaf : tree
| Node : tree — elt — tree — Z — tree.

The property of being a binary search tree, bst, is then defined as an inductive predicate:

Inductive bst : tree — Prop :=

| BSLeaf
(bst Leaf)

| BSNode : (x:elt)(1l,r:tree)(h:Z)
(bst 1) — (bst r) —
(1t_tree x 1) — (gt_tree x r) —
(bst (Node 1 x r h)).

®We indeed rephrased several specifications while doing this first verification.
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where 1t_tree x 1 (resp. gt_tree x 1) states that any element in 1 is smaller (resp.
greater) than x. Similarly, the balancing property is introduced as another inductive predi-
cate:

Inductive avl : tree — Prop :=

| RBLeaf
(avl Leaf)

| RBNode : (x:elt)(1,r:tree)(h:Z)
(avl 1) — (avl r) —
‘-2 <= (height 1) - (height r) <= 2‘ —
‘h = (max (height 1) (height r)) + 1¢ —
(avl (Node 1 x r h)).

Finally, the type t for sets is a record containing a tree and proofs that it is a well-balanced
binary search tree:

Record t : Set := t_intro {
the_tree :> tree;
is_bst : (bst the_tree);
is_avl : (avl the_tree)

T

Properties bst and avl could have been defined simultaneously but separating them eases
the proofs since most of the time one of the two is not relevant for the property to be proved.

Verification. Verifying the operations is mostly a matter of finding the precise specifica-
tions, where the OCAML code is only providing a few laconic comments. For instance, one
of the internal function (bal 1 x r) is informally specified as

“Same as create, but performs one step of rebalancing if necessary. Assumes 1
and r balanced.”

but its precise specification is (among other things):

“Assumes |(height 1) — (height r)| < 3. The size of the returned tree is ei-
ther max(height 1,height r) or max(height 1,height r) + 1, and is always
the latter when |(height 1) — (height r)| < 2.

Looking for these specifications, we actually discovered balancing bugs in OCAML code: two
internal functions were building incorrectly balanced trees while they were supposed to. (The
sets which were built were correct, though, i.e. were containing the right elements.) Patches
have been quickly provided by the OCAML team and we could verify the new code without
trouble.
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A termination challenge. Only one operation poses a real verification challenge: the
compare function providing a total ordering over sets. The idea is quite simple. Comparing
two sets is just a matter of comparing the sorted lists of their elements in a lexicographic
way. But the algorithm used is tricky. Instead of first building the two lists, the code is
building them lazily, as soon as elements are needed for the comparison, using a technique of
deforestation |15]. The problem is generalized to the comparison of two lists of trees, done
as follows:

let rec compare_aux 11 12 = match (11, 12) with

| (1, 1) =0
|, 2 — -1
I, 1) =1

I

(Empty :: t1, Empty :: t2) —
compare_aux tl1 t2
| (Node(Empty, vi, r1, _) :: tl, Node(Empty, v2, r2, _) :: t2) —
let ¢ = Ord.compare vl v2 in
if ¢ <> 0 then c else compare_aux (ril::t1) (r2::t2)
| (Node(11, vi, rl1, ) :: t1, t2) —
compare_aux (11 :: Node(Empty, v1i, rl, 0) :: t1) t2
| (t1, Node(1l2, v2, r2, _) :: t2) —
compare_aux tl1 (12 :: Node(Empty, v2, r2, 0) :: t2)

Proving the termination of this function is hard. Indeed, the last two cases may recursively
call compare_aux with “bigger” arguments when 11 (resp. 12) is Empty. The reason why it
terminates involves a global argument: the first elements of the lists will eventually become
both Empty and will then fall into the fourth case of the pattern matching. Fortunately, the
code can be slightly changed to recover a simpler termination argument, at the extra cost
of two additional cases but without any loss of efficiency. This modified version is proved
correct.

4.3 Red-black trees

Red-black trees [8] are another kind of balanced binary search trees. Nodes are colored either
red or black and any red-black tree must satisfy the following two invariants:

e A red node has no red child;

e Every path from the root to a leaf contains the same number of black nodes.

Okasaki nicely introduces red-black trees in a functional setting [14] but only the membership
and insertion operations are given. Xi specifies this code in DEPENDENT ML [16] but it is
also restricted to the insertion operation. Even Adams general approach balanced binary
search trees [3| does not apply nicely to red-black trees. Generally speaking, we could not
find a comprehensive implementation of finite sets using red-black trees and we wrote our
own. This code is available from the web site of the formalization.

As for AVL trees, the CoQ formalization implements signature Sdep following OCAML
code as close as possible. First, colored trees are defined:
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Inductive color : Set := red : color | black : color.

Inductive tree : Set :=
| Leaf : tree
| Node : color — tree — elt — tree — tree.

The binary search tree property bst is similar to the one for AVL trees. Then the red-black

trees invariant is introduced as an inductive predicate rbtree parameterized by the height
of black nodes:

Inductive rbtree : nat — tree — Prop :=

| RBLeaf
(rbtree 0 Leaf)

| RBRed : (x:elt)(1l,r:tree) (n:nat)
(rbtree n 1) — (rbtree n r) —
(is_not_red 1) — (is_not_red r) —
(rbtree n (Node red 1 x r))

| RBBlack : (x:elt)(1l,r:tree)(n:nat)
(rbtree n 1) — (rbtree n r) —
(rbtree (S n) (Node black 1 x r)).

where is_not_red has an obvious meaning. Finally, everything is collected together in a
record type:

Record t : Set := t_intro {
the_tree :> tree;
is_bst : (bst the_tree);
is_rbtree : (EX n:nat | (rbtree n the_tree))

.

Again, the formalization is roughly a matter of finding the right specification for each
function, followed by a quite long process of COQ tactics scripting (figures are given in
the conclusion). Some proofs from the AVL trees formalization could be reused with slight
modifications (e.g. the compare operation).

5 Conclusion

In this article, we presented the full formalization in COQ of three applicative implementa-
tions of finite sets libraries, including AVL and red-black trees. To our knowledge, this is the
first formal proof of a full set of operations over these two kinds of balanced binary search
trees.

This article also demonstrates the benefits of modules and functors in a logical framework,
and their relevance for program proving. More precisely, the adequacy between OCAML
and CoQ module systems allows the formalization of significant pieces of code. Correct-
by-construction functorized code can be obtained using COQ extraction, which is a real
improvement.
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Figure 3: The five signatures and the seven functors

Overall picture. Figure 3 summarizes the dependencies between the five signatures and
the seven functors used in this formalization. The following table details the size of the for-
malization, in terms of the size of code proved correct (not meaningful for sorted lists, which
were implemented directly in CoQ) and size of the CoQ development. The formalization
roughly amounts to 2 men-month.

specs | lists | AVL | RBT | total
lines of code 114 | 231 | 314 545
lines of Coq specs | 1160 | 375 | 532 | 405 | 2472
lines of Coq proofs | 1900 | 537 | 1800 | 1280 | 5517

Extraction and benchmark. Once the formalization done, OCAML code can be auto-
matically extracted from the proofs [12, 13]. Thus it can be compared to the original code.
We run a little benchmark comparing OCAML’s Set module (AVL), the extraction of its
formalization (e-AVL), a manual implementation of red-black trees (RBT) and the extrac-
tion of its formalization (e-RBT). The benchmark consists in testing operations on randomly
generated sets of various sizes®. Results are shown Figure 4.

The timings are very close, apart from e-AVL when trees are built, that is for all opera-
tions except mem. The reason is that arithmetical computations over heights are done using
CoqQ arbitrary precision arithmetic extracted to OCAML, which can not compete with the
hardware arithmetic used in OCAML Set. We could parameterize the whole formalization
of AVL trees with respect to the arithmetic used for computing heights, using yet another
functor. But we would loose the benefits of the Omega tactic (the decision procedure for Pres-
burger arithmetic) which is of heavy use in this development. A more realistic workaround
would be an automatic substitution of hardware arithmetic for CoQ arithmetic at extraction
time, but this is not yet a CoqQ feature.

Acknowledgements. We are grateful to Xavier Leroy for suggesting the verification of
OcaML’s AVL trees and for having provided patches almost immediately. We also thank

6The benchmark sources can be obtained from the authors.
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AVL | e-AVL | RBT | e-RBT

add-1 3.01 ] 13.80| 3.38 4.02
add-2 15.50 | 53.20 | 13.40 | 16.70
add-3 5.40 | 2230 | 4.57 6.55

mem-1 9.52 | 10.20 | 11.40 12.10
mem-2 11.10 | 11.70 | 13.00 13.60
mem-3 8.31 8.83 | 9.01 9.47
mem-4 9.93 | 10.40 | 10.60 11.00
remove-1 | 4.67 | 1870 | 5.92 6.85
remove-2 | 4.20 | 17.70 | 4.81 5.58
union 11.40 | 46.50 | 12.10 17.30
inter 4.76 | 17.70 | 4.76 6.19
diff 4.68 | 17.70 | 4.71 5.76
subset 11.50 | 46.30 | 11.20 14.00
compare | 11.50 | 45.70 | 11.70 13.90

Figure 4: Benchmark results (in seconds)

Benjamin Monate for the very nice user-interface COQIDE and Diego Olivier Fernandez Pons
for comments on implementing red-black trees.
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