Formal Proof of a Program: Find

Jean-Christophe Filliatre

LRI, Université Paris Sud, 91405 Orsay Cedez, France

Abstract

In 1971, C. A. R. Hoare gave the proof of correctness and termination of a rather
complex algorithm, in a paper entitled Proof of a program: Find. 1t is a hand-
made proof, where the program is given together with its formal specification and
where each step is fully justified by mathematical reasoning. We present here a
formal proof of the same program in the system Coq, using the recent tactic of
the system developed to establish the total correctness of imperative programs.
We follow Hoare’s paper as closely as possible, keeping the same program and the
same specification. We show that we get exactly the same proof obligations, which
are proved in a straightforward way, following the original paper. We also explain
how more informal aspects of Hoare’s proof are formalized in the system Coq. This
demonstrates the adequacy of the system Coq in the process of certifying imperative
programs.

Key words: formal methods, imperative programs, Hoare logic, Coq proof
assistant

1 Introduction

“Computer programming is an exact science” is the main assertion of C. A. R.
Hoare’s famous paper An axiomatic basis for computer programming [1]. Even
without any tool support, the process of writing software may be completely
formal, and mathematical reasoning can be applied to justify every step. A
few years later, Hoare clearly demonstrated this assertion by publishing the
fully detailed proof of a quite complex algorithm, Find [2]. This algorithm was
published ten years before by Hoare himself [3], but is better known as Select in
the algorithmic literature. It consists, given an array A of comparable elements
and a particular index f within this array, in reorganizing the elements of A

Email address: £illiatr@lri.fr (Jean-Christophe Fillidtre).
URL: www.lri.fr/"filliatr (Jean-Christophe Filliatre).

Preprint submitted to Science of Computer Programming 31 August 2001

in such a way that all the elements on the left side of index f are smaller than
or equal to A[f] and all the elements on the right side of index f are greater
than or equal to A[f]. Such an algorithm is useful, for instance, to find the
median of a set of elements without sorting them.

Hoare’s proof is based on the use of invariants. Proof obligations are made
explicit at each step, and proved as lemmas. Hoare shows how the program
can be built in a top-down way, proof obligations being extracted and proved
as soon as possible. He first considers the proof of correctness, and then the
proof of termination is done in a next section. The preservation of the array’s
elements is the subject of a separate proof. Finally, Hoare notices that proving
that all indices used are within the bounds of the array would be necessary,
but does not do it.

Hoare’s proof is quite impressive. The reader can appreciate the mathemat-
ical rigor of the development. Although it is done without any tool support,
it illustrates a very precise methodology and incorporates modern ideas like
refinement. When reading his paper, one immediately imagines how it would
be nice to have a tool to support such program proofs. Hoare’s logic [1] and
related works of the early seventies have actually been waiting for tool support
for years, even decades. The main reason was not the methods themselves but
relates instead to the lack of formal logical frameworks to support them. There
are nowadays many such frameworks, and software certification may at last
be mechanically assisted.

In the author’s thesis [4-6], a method to establish the total correctness of pro-
grams mixing functional and imperative features is introduced, in the frame-
work of Type Theory. The main idea is to build, for a given annotated pro-
gram {P} e {Q}, a proof of the property VZ. P(Z) = 3y. Q(Z,7), where &
and ¢/ respectively stand for the input and output variables of the program e.
This proof has an informative content which respects the semantics of e, and
missing parts corresponding to the proof obligations. One of the main advan-
tages of such an approach is a direct treatment of functional constructions,
including function calls and recursive functions. This method is implemented
in the Coq proof assistant [7] and has been applied to the proof of complex
algorithms [5,8].

When we began experimenting with the method, Hoare’s proof appeared as a
good candidate. First, it was a non-trivial program, although quite academic.
Second, it was already specified and proved, so that we could concentrate
on the method itself rather than on specifying or proving tasks. We closely
followed Hoare’s program and specification and, surprisingly, we found ezactly
the same proof obligations as those given in [2]. Then we easily followed Hoare’s
proofs to discharge the proof obligations. This paper describes this formal
development in the system Coq, and details the relationships and differences

between Hoare’s paper and our fully formal proof. The original constructions
of program and proof are not given in this paper, but Hoare’s final annotated
program is given in Section 3. The reader might refer to [2] for further details.

This article is organized as follows. Section 2 quickly introduces the proof of
imperative programs in the system Coq. Then Section 3 details the formal de-
velopment in the system Coq, describing the various annotations and compar-
ing them to the original ones. In the last section, we give a global comparison
of the two proofs and discuss the easiness of such a formal development.

2 Certifying programs in the system Coq

The system Coq [7] is a proof assistant for the Calculus of Inductive Construc-
tions, a higher-order extension of Girard’s system F with dependent types and
inductive predicates, developed by T. Coquand, G. Huet and C. Paulin [9,10].
Within this framework, the present author developed a methodology to es-
tablish the total correctness of programs mixing functional and imperative
features [4,5].

The programming language includes the usual constructs of imperative pro-
grams, namely references and arrays, sequences, conditionals and loops, but
also functional constructs, namely possibly recursive functions and procedures,
calls by value and by reference, and even restricted kinds of polymorphism and
higher-order functions. Base types belong to the underlying logic, that is any
inductive type definable in the Calculus of Inductive Constructions. There
is no distinction between statements and expressions, and consequently ex-
pressions may include side-effects. The syntax is close to the one of ML: a
reference x is created with the construct ref, accessed as !z, and modified as
x := e; local variables are introduced with the let in construct, and necessarily
initialized; the other constructs are usual.

Programs are annotated with pre- and postconditions, using the traditional
notation of Hoare logic. These assertions are arbitrary propositions over the
program’s variables. The current value of a reference z is directly referred
to as z. In a postcondition, its value before the evaluation (at the precondi-
tion point) is referred to as zaq. More generally, labels may be inserted inside
programs with the keyword label, so that the value of a reference at a given
labelled point L can be referred to as xa;. A particular label 0 is automati-
cally inserted at the beginning of the program, and therefore zqo stands for
the initial value of x. This facility avoids the painful use of auxiliary variables,
as illustrated later in this section.

A keyword assert can be used to claim that a proposition is true at a given

point inside a sequence. It is useful to establish once a property that will be
used several times in later proofs, or just to make the program clearer. A
keyword invariant declares a loop invariant. It comes together with a variant
introduced with the syntax variant ¢ for R. ¢ is an arbitrary expression of any
type, while R is a binary relation over that type. When R is not given, ¢ must
be an integer expression and the relation is Az,y. 0 < x < y. In this paper,
we will use the latter kind of variants only.

Arrays are axiomatized as an abstract datatype (array n T') where n is the
size of the array and T the type of its elements. Access and assignment are
abstract operations of respective types

access : Vn : Z. VT : Set. (arraynT) - Z — T

store :Vn:Z. VT :Set. (arraynT) - Z —T — (arrayn T)

where 7 is Coq’s datatype for integers. In the following, (access ¢ i) is written
t[7]. Arrays are indexed from 0 to n — 1 but to keep close to Hoare’s original
program and proof, we will use arrays indexed from 1 to n, as he did.

The implementation of the method in the system Coq relies on a tactic called
Correctness, which takes an annotated program and generates the proof obli-
gations, and on a few commands to declare functions and variables and to
inspect the context. The obligations are standard Coq goals (i.e. propositions
to prove) and consequently the user can use any Coq tactic to establish their
validity. The Correctness tactic works as follows: First, it performs a static ef-
fects analysis of the program, which determines the sets of variables accessed
and/or modified by each subexpression. Then it builds a functional interpre-
tation of the program using monads; however, it does not use store-based
monads as in the traditional approach, but finer grain monads that carry the
variables’ values separately, according to the effects [5]. Finally, an incomplete
proof term is obtained by inserting proof placeholders at the logical places and
is fed to the Coq proof engine.

For instance, the following program

beginz ==z —1; y :==ly—lend {z+y=1a+%ya}
modifies both references x and y. Thus it is to be interpreted as a proof of the
proposition Vg, yo. 371, y1. ©1 + y1 = 2o + yo. This proof looks like

)\l'o,yo. let Tr1 =g+ 1in

Ietylzyg—lin
(z1,91), 721 +y1 = 20 + Yo)

where the two let constructs correspond to the monadic composition operator.
They introduce new variables, namely x; and yy, to represent the new values of
the references x and y. Proof obligations are propositions over such variables.
In this example, there is only one proof obligation, identified by the question
mark, to establish the proposition

Vxo, Y0, 1, 01- 1 =2+ 1Ay =y — 1= 21 +y1 =20+ Yo

The tactic itself is written in Objective Caml, the programming language in
which Coq is written, and is approximatively 6,000 lines long. It comes with a
few libraries, mainly dealing with arrays and their properties. Up to now, no
specific tactic was developed to help the user in proving the obligations. The
tactic Correctness is already distributed with the system, and documented
in the Coq’s reference manual [7], where a few examples are given. More
complex proofs of correctness are available on the Coq web site [7], includ-
ing in-place sorting algorithms [8], Knuth-Pratt-Morris string searching al-
gorithm [5], Floyd’s algorithm, Petersson’s mutual exclusion algorithm [11],
ete.

3 A formal proof

Hoare’s program Find is given in Figure 1, exactly as it appears at the end
of [2]. Find works by a ‘pivoting’ mechanism similar to that of Quicksort. Given
an array A of length NV and a position f, it operates at each step on what Hoare
calls the ‘middle section’, A[m]... A[n], containing position f, with m and n
initially 1 and N respectively. In each iteration, Find selects a ‘pivot’ r from
the middle section (given by A[f], in fact, although this choice is immaterial),
then permutes the middle section so that entries smaller than r move to its left
and larger entries to its right. If » ends up at position f, then Find terminates;
otherwise, it repeats the process, focusing the middle section on whichever
part—above or below r—contains index f. As this removes at least the pivot
r, the middle section gets smaller at each step, ensuring termination.

The annotated code of our formal development ! is given in Figure 2, at the
end of this paper. The lines are numbered and we use these numbers in the
following to refer to parts of the code and its specification (e.g. “see invariants
lines 3-4, 9-11, 15-16 and 21-22”). We keep Hoare’s terminology to designate
the program loops: there are the “main loop” (line 2), the “middle loop” (line
8) and the two “inner loops” (line 14 and 20).

I This development is freely available on the web page of Coq users’s contributions,
at http://coq.inria.fr/contribs.

1. begin

2. integer m, n;

3. comment{ m<f AVpqg:Z. 1<p<m<qg<N = Ap] < Alq],
4. f<n AVpq:Z 1<p<n<q<N = A]p] <Alq }
5. m = 1, n := N;

6. while m < n do begin

7, integer r, 1,7, w;

8. comment{ m<i AVp:Z 1<p<i = Alp]<r,
9. j<n AVq:Z.j<q<N = r<Alq] }
10. ro= Alf]; i == m; j = n;

11. while © < j do begin

12. while Afi] < rdoi := i+ 1;

13. while r < A[j] doj = j —1;

14. comment { A[j] < r < A[i] };

15. if 4+ < j then begin

w = Alils Ali] = Alj); A] = w;

17. comment { A[i] < r < A[j] };

18. =41+ 1 7 = j5—1

19. end

20. end;

21. if f<jthenn := j

22, else if 1 < f then m =1

23. else goto L

24. end;

25. L:

26. end

m { Vg Z1<p<f<q<N = A <A <Al)

Fig. 1. The original code and annotations of Find (excerpt from [2]).

Our code is exactly the original given in Figure 1 except for two details.
Firstly, since local variables must be initialized when declared, a piece of code
like begin integer i; i :=0; ... end is translated into let i = ref 0 in ... (lines
1 and 6). Moreover, since the variables r and w need not be mutable, they
are introduced with a let instead of a let ref (lines 6 and 28). Secondly, the
goto statement at the end of the original code is removed. Its role is to exit
the main loop when both 7 and j have crossed f. In our program, the same
effect is achieved by assigning both m and n the same value (namely f), which
makes the test of the main loop become false (lines 2 and 40).

When fed to the tactic Correctness, this program generates 22 proof obliga-
tions. These obligations and their proofs are not listed here, for obvious space
considerations, but they can be respectively regenerated and replayed using
the source files mentioned above. We now detail the four subproblems of the
formal proof, namely those of proving the correctness, the termination, the

preservation and the fact that all subscripts are within the bounds.
3.1 Correctness

The formal proof of correctness strictly follows Hoare’s one, and we keep the
notations of [2] as much as we can. We first introduce the size N of the array
and the subscript f, as two parameters of type Z, with the following axiom:

1<f<N

Notice that it implies in particular 1 < N, which is implicitly used at several
places in the original proof, and which will be explicitly used in the formal
proof. Then we introduce the array A, as a global array of type (array N 7).

The post-condition of the program is introduced as a predicate Found on the
array A, defined as follows:

(Found A) % Vp,q:Z.1<p<f<q<N= Alp| <Af] < Alg

Then the program is given the post-condition (Found A), line 43. Remember
that A denotes the current value of A, so its final value here.

The invariants over m and n (lines 3 and 4 in Figure 1) are introduced by the
following two definitions:

(m_invariant m A) dof

m<f AVpqg:Z. 1<p<m<qg<N = Alp] < Alq]

(n_invariant n 4) <

f<n AVpg:Z 1<p<n<q<N= Alp| <Al

Those properties are inserted as invariants of the main loop (line 3). But
they are also inserted as invariants of the middle loop (line 10). Indeed, the
middle loop modifies the array A, and therefore the fact that the above two
properties are also invariants of the middle loop must be explicitly expressed.
At this point, one might notice that Hoare’s keyword comment was rather
informal: it clearly introduces a loop invariant but also the stronger property
that it holds at some particular places inside the loop body, those places not
being clearly stated. For instance, the property stated in line 3 of Figure 1 is
indeed also an invariant of the middle loop (line 11), because the middle loop

only modifies the middle section, but this is not an obvious property. By using
real loop invariants, whose meanings are clear, we suppress the ambiguity of
the keyword comment.

Similarly, we introduce definitions for the invariants over 7 and j (lines 8 and
9 in Figure 1):

(isinvariant mnir A) = m<i AVp:Z. 1<p<i= A]p]<r

(j-invariant mn jr A) = j<n AVq:Z.j<q<N=r< Al

One might wonder why i_invariant is a predicate over n and j_invariant a
predicate over m: it will become clear in the next section, where these predi-
cates will be extended in order to establish termination. The above properties
about ¢ and j are added to the invariant of the middle loop (line 9). The pred-
icate i_invartant is also added as an invariant on the loop which increases i
(line 15), and similarly the predicate j_invariant is added as an invariant of
the loop which decreases j (line 21).

Each loop leads to two proof obligations: the first states that the invariant
holds at the loop entrance, and the second states the preservation of the in-
variance property together with the decrease of the variant. For instance, the
initialization of the main loop’s invariant generates the obligation

(m_invariant 1 A) A (n_invariant N A)

which exactly combines Hoare’'s Lemmas 1 and 2, and its preservation pro-
duces three other obligations (due to the three cases at the end of the loop
body) which correspond to Hoare’s Lemma 6. Similarly, the initialization of
the middle loop gives one obligation, corresponding to Lemmas 4 and 5, and
the preservation of its invariant is expressed by two other obligations, corre-
sponding to Lemmas 10 up to 13 in Hoare’s paper. The correctness of the
two inner loops on ¢ and j are expressed by four obligations, corresponding to
Lemmas 8 and 9. The establishment of the postcondition is expressed by one
obligation, which is exactly Lemma 3.

The two assertions in the original code (lines 14 and 17 in Figure 1) are kept
in our program (lines 26 and 29). Although they are not absolutely needed,
they help our understanding of the proof obligations, and allow us to keep
close to the original proof. They give rise to four obligations, which are easily
discharged.

3.2 Termination

In Hoare’s paper, the problem of termination is considered in a separate para-
graph. New invariants are added and five new lemmas are stated and proved.
However, parts of the termination proof are done in a rather informal manner,
without clear invariants. In our case, the termination of each loop is justi-
fied by a non negative integer variant (lines 5, 12, 17 and 23), which strictly
decreases at each execution of the loop body.

For the two inner loops, we follow Hoare’s argument, showing that ¢ and
j are necessarily bound. This requires additional invariants for these vari-
ables, which express the existence of such bounds. For the i-loop, the predicate
i_tnvariant is modified as follows:

. . . def
(i_invariant mnir A) =

AN(i<n=Tp:Z i<p<n A r<Ap)

There is a slight difference here with Hoare’s argument: he uses the invariant
dp. i < p <n A r < Alp| and shows that it is preserved in the middle
loop, provided that © < j holds at the end of the loop body. So it is not a real
invariant, which would hold at the end of the loop, but only a property that
holds inside the loop. Adding the guard ¢ < n in front of the property makes
it a real invariant. The corresponding obligations are proved following Hoare’s
paper (Lemmas 14, 15 and 17). The definition of j_invariant is extended in a
similar way:

(j-invariant m n j r A) dof

A(m<j=3q:Zm<q<j A Alg<r)

The proof of termination of the middle loop is immediate, since either ¢ is
increased or j is decreased at each step. Therefore, the quantity 7 — ¢ always
decreases and N + 2+ j — ¢ can be taken as variant. The corresponding proof
obligations are rather trivial.

The proof of termination of the main loop is surely the most complex one.
Indeed, although the variant n — m is quite simple, the fact that it decreases
strictly is quite difficult to establish. Hoare’s very subtle argument relies on
the fact that both m < 7 and j < n hold at the end of the middle loop
(assertion line 34). Therefore, since either n is assigned the value of j or m is
assigned the value of 7, the distance between n and m decreases. To establish
the assertion m < ¢ A j < n at the end of the middle loop, Hoare shows

that the conditional line 27 (if i <!j ...) is always executed at least once.
Indeed, the first time we encounter this conditional, A[f] is still equal to r,
and therefore the property ¢ < f < j holds. Although this is a perfectly
correct argument, we cannot use it directly: There is no way to express in the
specification that some execution of a loop body is the first one. The same
property must be expressed by an invariant. This is achieved by introducing
the following predicate termination:

(termination i jmnr A) %

(i>m AN j<n)V @< f<jNAf]l=r)

which expresses that, either both 7 and 7 have been respectively increased and
decreased, or they are still respectively on left and right sides of f, with A[f]
equal to r. This predicate is added in the invariants of the three inner loops
(lines 11, 16 and 22) and we prove that it is preserved. Then we can prove
the assertion m < i A j < n at the end of the middle loop (line 34), which is
immediate since (termination i 5 m n r A) and ¢ < j both hold.

3.8 Preservation

Preservation of the initial elements of the array is quickly treated at the end of
Hoare’s paper. His argument is simple: since the program only does exchanges
of pairs of elements, and since any composition of exchanges is a permutation,
it is obvious that we get a permutation of the initial array at the end of exe-
cution. Hoare seems satisfied with this informal argument, and even explains
that a fully formalized one would be difficult to obtain and imply tedious proof
obligations.

Actually, it depends on the formal definition of a permutation, and if the
intuitive definition is used, this part of the proof can be very easy. Indeed, we
can follow Hoare’s argument, using the fact that

(1) the only modifications of A are exchanges of two elements;
(2) the reflexive, symmetric and transitive closure of exchanges is exactly the
set of permutations.

We first define a predicate exchange which expresses that two arrays of N

10

elements only differ by swapping the two elements at subscripts ¢ and j:

(exchange t ' i j) &

1<ij <N At =[] A tlj) =1 A
Vk:Z. (1<k<N Ak#i A k+#j)=tlk] =t[k]

Notice that we impose for the subscripts ¢ and j to be within the bounds
of the arrays. Then we define a predicate permut which expresses that two
arrays are permutations of each other. We define it inductively, as the smallest
equivalence relation containing all the exchanges:

(ezchange t t' i j)

(permut t t') (permut t t)
(permut t' t) (permut t t') (permut t' t")
(permut t t') (permut t t")

With this definition, the proof obligations are straightforward to prove and
indeed follows the intuition quite closely: when the array A is not modified,
the reflexivity of permut is used; when two modifications of the array A are
done successively, the transitivity of permut is used; and when the array A
is modified at line 28, two of its elements are swapped, making the property
exchange true, and hence the property permut.

Finally, the predicate (permut A Aq) is added in the post-condition of the
program, and in the invariants when necessary (lines 4 and 11). Notice the
use of the notation Aqg to refer to the initial value of A. We also add the
assertion (exchange A Aaqr ¢ j) in line 29 for convenience. All the related
obligations are easily proved.

3.4 Correct accesses in arrays

This last problem, which consists in proving that all the indices used in the
program are within the bounds 1 to N, was not treated by Hoare, although
he noted the need of doing it. In our case, the corresponding proof obligations
are automatically generated by the tactic Correctness, each time the array is
accessed or modified. In order to be able to establish those proof obligations,
we need additional invariants about m, n, 7 and j. First, we add the properties
1 <m and n < N in the invariant of the main loop (line 4). Then we add the
properties 0 < j and i < N + 1 in the invariant of the middle loop (line 10).
And finally we express in the two inner loops that i stays within its initial

11

value and n (line 15), and that j stays within m and its initial value (line 21).
Notice the use of the label L to denote the initial values of 7 and j inside the
middle loop. The proof obligations related to the indices are easily discharged
by the arithmetical tactic of Coq, Omega, all the necessary inequalities being
now available from the context.

4 Discussion

The main purpose of this paper was to demonstrate the adequacy of the system
Coq for specifying and certifying imperative programs. We illustrated this abil-
ity with the proof of a non-trivial program, Find, following a handmade proof
by Hoare [2]. The specification strictly followed the original one. In particular,
Coq’s notion of inductive predicates allowed us to define the permutation of
two arrays as the smallest equivalence relation containing transpositions, and
then to apply a simple argument from [2]. Even Hoare’s tricky reasoning to
establish the termination was easily translated into an invariant property. We
finally ended up writing a 43 line program, including 17 lines of annotations.

When this annotated program was fed to Coq’s total correctness tactic, 22
proof obligations were generated, and they included all Hoare’s original 18
proof obligations. Following Hoare’s proofs was then easy, although it required
over 600 interactions with the system. The automatic decision procedure for
linear arithmetic Omega [12] coming with the system Coq was found particu-
larly useful (invoked 130 times in total). The overall development time is not
very meaningful, since specification and proofs were given in Hoare’s paper,
but proofs of similar algorithms (Quicksort, Heapsort, Knuth-Morris-Pratt)
have been realized in 2 or 3 days [5,8].

Obviously, such a formal proof can be conducted in any tool supporting basic
imperative programming features. Regarding the discharge of proof obliga-
tions, only a decision procedure for Presburger arithmetic is really mandatory,
which is now part of most proof assistants. To our knowledge, the formal proof
of Find has only been done, beside Coq, with the Atelier B by V. Donzeau-
Gouge [13]. The only real difficulty encountered was in the definition of the
permutation predicate, somewhat cumbersome in the set-theoretical specifica-
tion language of the B method. (This predicate also appear in various sorting
examples from the VDM Examples Repository [14], and leads to quite tedious
proof obligations.) One great advantage of using the Calculus of Inductive
Constructions as a logic is the ability to define inductive predicates, such as
the permutation predicate in this case. Conversely, the proof in the Atelier B
was conducted by successful refinements, following closely Hoare’s top-down
construction. A similar refinement mechanism would be a great improvement
to the tactic Correctness; it is work in progress.

12

Although Hoare succeeded in doing the proof of correctness of a quite com-
plex program without any tool support—nor any mistake, which is a real
achievement—and claimed that “it is hardly more laborious than the tradi-
tional practice of testing”, he noticed himself in the conclusion of his paper
that

“In the future, it may be possible to enlist the aid of a computer in formu-
lating the lemmas, and perhaps even in checking the proofs.”

This has now become true, and Hoare’s Find program appears as a good chal-
lenge for any method aiming at proving the correctness of imperative program,
since it is a rather complex program of small size, and the mathematical proofs
are not too easy, so that it also tests the proof support.

Acknowledgements. This article was written while the author was an In-
ternational Fellow at Computer Science Laboratory, SRI International (Menlo
Park, CA), which provided a high quality working environment. The author
thanks the anonymous referees for the many suggested improvements to this
paper. The author is also grateful to Christine Paulin for her help in finding
the right invariant involved in the proof of totality.

References

[1] C. A. R. Hoare, An axiomatic basis for computer programming,
Communications of the ACM 12 (10) (1969) 576-580,583, also in [15] pages
45-58.

[2] C. A.R. Hoare, Proof of a program : Find, Communications of the ACM 14 (1)
(1971) 39-45, also in [15] pages 59-T74.

[3] C. A. R. Hoare, Algorithm 65: Find, Communications of the ACM 4 (7) (1961)
321-322.

[4] J.-C. Fillidtre, Proof of Imperative Programs in Type Theory, in: International
Workshop, TYPES 98, Kloster Irsee, Germany, Vol. 1657 of Lecture Notes in
Computer Science, Springer-Verlag, 1998.

URL http://www.lri.fr/"filliatr/ftp/publis/types98.ps.gz

[5] J.-C. Fillidtre, Preuve de programmes impératifs en théorie des types, Theése de
doctorat, Université Paris-Sud (July 1999).
URL http://www.lri.fr/"filliatr/ftp/publis/these.ps.gz

[6] J.-C. Filliatre, Verification of Non-Functional Programs using Interpretations in
Type Theory, Journal of Functional Programming (2001) English translation
of [5]. To appear.

URL http://www.lri.fr/"filliatr/ftp/publis/jphd.ps.gz

13

[7] Coq, The Coq Proof Assistant, http://coq.inria.fr/ (2001).

[8] J.-C. Filliatre, N. Magaud, Certification of sorting algorithms in the system
Coq, in: Theorem Proving in Higher Order Logics: Emerging Trends, 1999.
URL http://www.lri.fr/"filliatr/ftp/publis/Filliatre-Magaud’.ps.

gz

9] T. Coquand, G. Huet, The Calculus of Constructions, Information and
Computation 76 (2/3) (1988) 95-120.

[10] C. Paulin-Mohring, Extracting F,’s programs from proofs in the Calculus
of Constructions, in: Sixteenth Annual ACM Symposium on Principles of
Programming Languages, ACM, Austin, 1989.

[11] E. Giménez, Two Approaches to the Verification of Concurrent Programs in
Coq, personal communication (1999).
URL http://pauillac.inria.fr/“gimenez/papers.html

[12] W. Pugh, The Omega Test: a fast and practical integer programming algorithm
for dependence analysis, Communications of the ACM 35 (8) (1992) 102-114.

[13] V. Donzeau-Gouge, Proof of the Find algorithm with the B method, personal
communication (1999).

[14] The VDM Examples Repository.
URL http://www.csr.ncl.ac.uk/vdm/examples

[15] C. A. R. Hoare, C. B. Jones, Essays in Computing Science, Prentice Hall, New
York, 1989.

14

B R R R W W W W W W W W W NN NN NN NN e e e e e e e e e
TR S S PSS G A B0 RS ®® NS SE®N S S ®® NS s AL NS

© 00 N O Ut ks W N =

let m = ref linletn = ref N in
while !m < !n do
{ invariant (m_invariant m A) A (n_invariant n A)
A (permut A Aag) N 1<m A n<N
variant n — m }
let + = A[f]inleti = ref !Iminletj = ref !nin
begin
while 1i < 1j do
{ invariant (i-invariant m n i r A) A (j_invariant m n j r A)
A (m_invariant m A) A (n_invariant n A) A 0<j
AN i< N+1 A (termination i j m nr A) N (permut A Aao)
variant N +2+j—i }
label L;
while A[li] < !r do
{ invariant (i_invariant m n i r A) A iar, <i A i<n
A (termination i j m n r A)
variant N +1—1i }
o= li+1
done;
while 17 < Alj] do
{ invariant (j_invariant m n jr A) N j<jar N m<j
A (termination i j m n r A)
variant j }
jo= -1
done;
assert { Alj] <r < A[i] };
if 14 <!y then begin

let w = A[li] in begin A[li] := A[lj]; A[!j] := w end;
assert { (exchange A Aar 1 j) N Ali] <r < A[j] };
= li41;
jo= li—1
end
done;
assert {f m<i A j<n };
if f <! then
n =1
else if 17 < f then
m = i
else
beginn = f; m = f end
end
done

{ (Found A) N (permut A Aa) }

Fig. 2. The final code and annotations of Find.

15

