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eAbstra
tIn 1971, C. A. R. Hoare gave the proof of 
orre
tness and termination of a rather
omplex algorithm, in a paper entitled Proof of a program: Find. It is a hand-made proof, where the program is given together with its formal spe
i�
ation andwhere ea
h step is fully justi�ed by mathemati
al reasoning. We present here aformal proof of the same program in the system Coq, using the re
ent ta
ti
 ofthe system developed to establish the total 
orre
tness of imperative programs.We follow Hoare's paper as 
losely as possible, keeping the same program and thesame spe
i�
ation. We show that we get exa
tly the same proof obligations, whi
hare proved in a straightforward way, following the original paper. We also explainhow more informal aspe
ts of Hoare's proof are formalized in the system Coq. Thisdemonstrates the adequa
y of the system Coq in the pro
ess of 
ertifying imperativeprograms.Key words: formal methods, imperative programs, Hoare logi
, Coq proofassistant
1 Introdu
tion\Computer programming is an exa
t s
ien
e" is the main assertion of C. A. R.Hoare's famous paper An axiomati
 basis for 
omputer programming [1℄. Evenwithout any tool support, the pro
ess of writing software may be 
ompletelyformal, and mathemati
al reasoning 
an be applied to justify every step. Afew years later, Hoare 
learly demonstrated this assertion by publishing thefully detailed proof of a quite 
omplex algorithm, Find [2℄. This algorithm waspublished ten years before by Hoare himself [3℄, but is better known as Sele
t inthe algorithmi
 literature. It 
onsists, given an array A of 
omparable elementsand a parti
ular index f within this array, in reorganizing the elements of AEmail address: filliatr�lri.fr (Jean-Christophe Filliâtre).URL: www.lri.fr/~filliatr (Jean-Christophe Filliâtre).Preprint submitted to S
ien
e of Computer Programming 31 August 2001



in su
h a way that all the elements on the left side of index f are smaller thanor equal to A[f ℄ and all the elements on the right side of index f are greaterthan or equal to A[f ℄. Su
h an algorithm is useful, for instan
e, to �nd themedian of a set of elements without sorting them.Hoare's proof is based on the use of invariants. Proof obligations are madeexpli
it at ea
h step, and proved as lemmas. Hoare shows how the program
an be built in a top-down way, proof obligations being extra
ted and provedas soon as possible. He �rst 
onsiders the proof of 
orre
tness, and then theproof of termination is done in a next se
tion. The preservation of the array'selements is the subje
t of a separate proof. Finally, Hoare noti
es that provingthat all indi
es used are within the bounds of the array would be ne
essary,but does not do it.Hoare's proof is quite impressive. The reader 
an appre
iate the mathemat-i
al rigor of the development. Although it is done without any tool support,it illustrates a very pre
ise methodology and in
orporates modern ideas likere�nement. When reading his paper, one immediately imagines how it wouldbe ni
e to have a tool to support su
h program proofs. Hoare's logi
 [1℄ andrelated works of the early seventies have a
tually been waiting for tool supportfor years, even de
ades. The main reason was not the methods themselves butrelates instead to the la
k of formal logi
al frameworks to support them. Thereare nowadays many su
h frameworks, and software 
erti�
ation may at lastbe me
hani
ally assisted.In the author's thesis [4{6℄, a method to establish the total 
orre
tness of pro-grams mixing fun
tional and imperative features is introdu
ed, in the frame-work of Type Theory. The main idea is to build, for a given annotated pro-gram fPg e fQg, a proof of the property 8~x: P (~x) ) 9~y: Q(~x; ~y), where ~xand ~y respe
tively stand for the input and output variables of the program e.This proof has an informative 
ontent whi
h respe
ts the semanti
s of e, andmissing parts 
orresponding to the proof obligations. One of the main advan-tages of su
h an approa
h is a dire
t treatment of fun
tional 
onstru
tions,in
luding fun
tion 
alls and re
ursive fun
tions. This method is implementedin the Coq proof assistant [7℄ and has been applied to the proof of 
omplexalgorithms [5,8℄.When we began experimenting with the method, Hoare's proof appeared as agood 
andidate. First, it was a non-trivial program, although quite a
ademi
.Se
ond, it was already spe
i�ed and proved, so that we 
ould 
on
entrateon the method itself rather than on spe
ifying or proving tasks. We 
loselyfollowed Hoare's program and spe
i�
ation and, surprisingly, we found exa
tlythe same proof obligations as those given in [2℄. Then we easily followed Hoare'sproofs to dis
harge the proof obligations. This paper des
ribes this formaldevelopment in the system Coq, and details the relationships and di�eren
es2



between Hoare's paper and our fully formal proof. The original 
onstru
tionsof program and proof are not given in this paper, but Hoare's �nal annotatedprogram is given in Se
tion 3. The reader might refer to [2℄ for further details.This arti
le is organized as follows. Se
tion 2 qui
kly introdu
es the proof ofimperative programs in the system Coq. Then Se
tion 3 details the formal de-velopment in the system Coq, des
ribing the various annotations and 
ompar-ing them to the original ones. In the last se
tion, we give a global 
omparisonof the two proofs and dis
uss the easiness of su
h a formal development.2 Certifying programs in the system CoqThe system Coq [7℄ is a proof assistant for the Cal
ulus of Indu
tive Constru
-tions, a higher-order extension of Girard's system F with dependent types andindu
tive predi
ates, developed by T. Coquand, G. Huet and C. Paulin [9,10℄.Within this framework, the present author developed a methodology to es-tablish the total 
orre
tness of programs mixing fun
tional and imperativefeatures [4,5℄.The programming language in
ludes the usual 
onstru
ts of imperative pro-grams, namely referen
es and arrays, sequen
es, 
onditionals and loops, butalso fun
tional 
onstru
ts, namely possibly re
ursive fun
tions and pro
edures,
alls by value and by referen
e, and even restri
ted kinds of polymorphism andhigher-order fun
tions. Base types belong to the underlying logi
, that is anyindu
tive type de�nable in the Cal
ulus of Indu
tive Constru
tions. Thereis no distin
tion between statements and expressions, and 
onsequently ex-pressions may in
lude side-e�e
ts. The syntax is 
lose to the one of ML: areferen
e x is 
reated with the 
onstru
t ref, a

essed as !x, and modi�ed asx := e; lo
al variables are introdu
ed with the let in 
onstru
t, and ne
essarilyinitialized; the other 
onstru
ts are usual.Programs are annotated with pre- and post
onditions, using the traditionalnotation of Hoare logi
. These assertions are arbitrary propositions over theprogram's variables. The 
urrent value of a referen
e x is dire
tly referredto as x. In a post
ondition, its value before the evaluation (at the pre
ondi-tion point) is referred to as x�. More generally, labels may be inserted insideprograms with the keyword label, so that the value of a referen
e at a givenlabelled point L 
an be referred to as x�L. A parti
ular label 0 is automati-
ally inserted at the beginning of the program, and therefore x�0 stands forthe initial value of x. This fa
ility avoids the painful use of auxiliary variables,as illustrated later in this se
tion.A keyword assert 
an be used to 
laim that a proposition is true at a given3



point inside a sequen
e. It is useful to establish on
e a property that will beused several times in later proofs, or just to make the program 
learer. Akeyword invariant de
lares a loop invariant. It 
omes together with a variantintrodu
ed with the syntax variant � for R. � is an arbitrary expression of anytype, while R is a binary relation over that type. When R is not given, � mustbe an integer expression and the relation is �x; y: 0 � x < y. In this paper,we will use the latter kind of variants only.Arrays are axiomatized as an abstra
t datatype (array n T ) where n is thesize of the array and T the type of its elements. A

ess and assignment areabstra
t operations of respe
tive typesa

ess : 8n : Z: 8T : Set: (array n T )! Z ! Tstore : 8n : Z: 8T : Set: (array n T )! Z ! T ! (array n T )where Z is Coq's datatype for integers. In the following, (a

ess t i) is writtent[i℄. Arrays are indexed from 0 to n � 1 but to keep 
lose to Hoare's originalprogram and proof, we will use arrays indexed from 1 to n, as he did.The implementation of the method in the system Coq relies on a ta
ti
 
alledCorre
tness, whi
h takes an annotated program and generates the proof obli-gations, and on a few 
ommands to de
lare fun
tions and variables and toinspe
t the 
ontext. The obligations are standard Coq goals (i.e. propositionsto prove) and 
onsequently the user 
an use any Coq ta
ti
 to establish theirvalidity. The Corre
tness ta
ti
 works as follows: First, it performs a stati
 ef-fe
ts analysis of the program, whi
h determines the sets of variables a

essedand/or modi�ed by ea
h subexpression. Then it builds a fun
tional interpre-tation of the program using monads; however, it does not use store-basedmonads as in the traditional approa
h, but �ner grain monads that 
arry thevariables' values separately, a

ording to the e�e
ts [5℄. Finally, an in
ompleteproof term is obtained by inserting proof pla
eholders at the logi
al pla
es andis fed to the Coq proof engine.For instan
e, the following programbegin x := !x� 1; y := !y � 1 end f x+ y = x� + y� gmodi�es both referen
es x and y. Thus it is to be interpreted as a proof of theproposition 8x0; y0: 9x1; y1: x1 + y1 = x0 + y0. This proof looks like�x0; y0: let x1 = x0 + 1 inlet y1 = y0 � 1 in((x1; y1); ? : x1 + y1 = x0 + y0)4



where the two let 
onstru
ts 
orrespond to the monadi
 
omposition operator.They introdu
e new variables, namely x1 and y1, to represent the new values ofthe referen
es x and y. Proof obligations are propositions over su
h variables.In this example, there is only one proof obligation, identi�ed by the questionmark, to establish the proposition8x0; y0; x1; y1: x1 = x0 + 1 ^ y1 = y0 � 1) x1 + y1 = x0 + y0The ta
ti
 itself is written in Obje
tive Caml, the programming language inwhi
h Coq is written, and is approximatively 6,000 lines long. It 
omes with afew libraries, mainly dealing with arrays and their properties. Up to now, nospe
i�
 ta
ti
 was developed to help the user in proving the obligations. Theta
ti
 Corre
tness is already distributed with the system, and do
umentedin the Coq's referen
e manual [7℄, where a few examples are given. More
omplex proofs of 
orre
tness are available on the Coq web site [7℄, in
lud-ing in-pla
e sorting algorithms [8℄, Knuth-Pratt-Morris string sear
hing al-gorithm [5℄, Floyd's algorithm, Petersson's mutual ex
lusion algorithm [11℄,et
.3 A formal proofHoare's program Find is given in Figure 1, exa
tly as it appears at the endof [2℄. Find works by a `pivoting' me
hanism similar to that ofQui
ksort. Givenan array A of lengthN and a position f , it operates at ea
h step on what Hoare
alls the `middle se
tion', A[m℄ : : : A[n℄, 
ontaining position f , with m and ninitially 1 and N respe
tively. In ea
h iteration, Find sele
ts a `pivot' r fromthe middle se
tion (given by A[f ℄, in fa
t, although this 
hoi
e is immaterial),then permutes the middle se
tion so that entries smaller than r move to its leftand larger entries to its right. If r ends up at position f , then Find terminates;otherwise, it repeats the pro
ess, fo
using the middle se
tion on whi
heverpart|above or below r|
ontains index f . As this removes at least the pivotr, the middle se
tion gets smaller at ea
h step, ensuring termination.The annotated 
ode of our formal development 1 is given in Figure 2, at theend of this paper. The lines are numbered and we use these numbers in thefollowing to refer to parts of the 
ode and its spe
i�
ation (e.g. \see invariantslines 3{4, 9{11, 15{16 and 21{22"). We keep Hoare's terminology to designatethe program loops: there are the \main loop" (line 2), the \middle loop" (line8) and the two \inner loops" (line 14 and 20).1 This development is freely available on the web page of Coq users's 
ontributions,at http://
oq.inria.fr/
ontribs. 5



1. begin2. integer m; n;3. 
omment f m � f ^ 8p; q : Z: 1 � p < m � q � N ) A[p℄ � A[q ℄;4. f � n ^ 8p; q : Z: 1 � p � n < q � N ) A[p℄ � A[q ℄ g;5. m := 1; n := N ;6. while m < n do begin7. integer r ; i ; j ;w ;8. 
omment f m � i ^ 8p : Z: 1 � p < i ) A[p℄ � r ;9. j � n ^ 8q : Z: j < q � N ) r � A[q ℄ g;10. r := A[f ℄; i := m; j := n;11. while i � j do begin12. while A[i ℄ < r do i := i + 1;13. while r < A[j ℄ do j := j � 1;14. 
omment f A[j ℄ � r � A[i ℄ g;15. if i � j then begin16. w := A[i ℄; A[i ℄ := A[j ℄; A[j ℄ := w ;17. 
omment f A[i ℄ � r � A[j ℄ g;18. i := i + 1; j := j � 119. end20. end;21. if f � j then n := j22. else if i � f then m := i23. else goto L24. end;25. L :26. end27. f 8p; q : Z: 1 � p � f � q � N ) A[p℄ � A[f ℄ � A[q ℄ gFig. 1. The original 
ode and annotations of Find (ex
erpt from [2℄).Our 
ode is exa
tly the original given in Figure 1 ex
ept for two details.Firstly, sin
e lo
al variables must be initialized when de
lared, a pie
e of 
odelike begin integer i; i := 0; : : : end is translated into let i = ref 0 in : : : (lines1 and 6). Moreover, sin
e the variables r and w need not be mutable, theyare introdu
ed with a let instead of a let ref (lines 6 and 28). Se
ondly, thegoto statement at the end of the original 
ode is removed. Its role is to exitthe main loop when both i and j have 
rossed f . In our program, the samee�e
t is a
hieved by assigning both m and n the same value (namely f), whi
hmakes the test of the main loop be
ome false (lines 2 and 40).When fed to the ta
ti
 Corre
tness, this program generates 22 proof obliga-tions. These obligations and their proofs are not listed here, for obvious spa
e
onsiderations, but they 
an be respe
tively regenerated and replayed usingthe sour
e �les mentioned above. We now detail the four subproblems of theformal proof, namely those of proving the 
orre
tness, the termination, the6



preservation and the fa
t that all subs
ripts are within the bounds.3.1 Corre
tnessThe formal proof of 
orre
tness stri
tly follows Hoare's one, and we keep thenotations of [2℄ as mu
h as we 
an. We �rst introdu
e the size N of the arrayand the subs
ript f , as two parameters of type Z, with the following axiom:1 � f � NNoti
e that it implies in parti
ular 1 � N , whi
h is impli
itly used at severalpla
es in the original proof, and whi
h will be expli
itly used in the formalproof. Then we introdu
e the array A, as a global array of type (array N Z).The post-
ondition of the program is introdu
ed as a predi
ate Found on thearray A, de�ned as follows:(Found A) def= 8p; q : Z: 1 � p � f � q � N ) A[p℄ � A[f ℄ � A[q℄Then the program is given the post-
ondition (Found A), line 43. Rememberthat A denotes the 
urrent value of A, so its �nal value here.The invariants over m and n (lines 3 and 4 in Figure 1) are introdu
ed by thefollowing two de�nitions:(m invariant m A) def=m � f ^ 8p; q : Z: 1 � p < m � q � N ) A[p℄ � A[q℄(n invariant n A) def=f � n ^ 8p; q : Z: 1 � p � n < q � N ) A[p℄ � A[q℄Those properties are inserted as invariants of the main loop (line 3). Butthey are also inserted as invariants of the middle loop (line 10). Indeed, themiddle loop modi�es the array A, and therefore the fa
t that the above twoproperties are also invariants of the middle loop must be expli
itly expressed.At this point, one might noti
e that Hoare's keyword 
omment was ratherinformal: it 
learly introdu
es a loop invariant but also the stronger propertythat it holds at some parti
ular pla
es inside the loop body, those pla
es notbeing 
learly stated. For instan
e, the property stated in line 3 of Figure 1 isindeed also an invariant of the middle loop (line 11), be
ause the middle loop7



only modi�es the middle se
tion, but this is not an obvious property. By usingreal loop invariants, whose meanings are 
lear, we suppress the ambiguity ofthe keyword 
omment.Similarly, we introdu
e de�nitions for the invariants over i and j (lines 8 and9 in Figure 1):(i invariant m n i r A) def= m � i ^ 8p : Z: 1 � p < i) A[p℄ � r(j invariant m n j r A) def= j � n ^ 8q : Z: j < q � N ) r � A[q℄One might wonder why i invariant is a predi
ate over n and j invariant apredi
ate over m: it will be
ome 
lear in the next se
tion, where these predi-
ates will be extended in order to establish termination. The above propertiesabout i and j are added to the invariant of the middle loop (line 9). The pred-i
ate i invariant is also added as an invariant on the loop whi
h in
reases i(line 15), and similarly the predi
ate j invariant is added as an invariant ofthe loop whi
h de
reases j (line 21).Ea
h loop leads to two proof obligations: the �rst states that the invariantholds at the loop entran
e, and the se
ond states the preservation of the in-varian
e property together with the de
rease of the variant. For instan
e, theinitialization of the main loop's invariant generates the obligation(m invariant 1 A) ^ (n invariant N A)whi
h exa
tly 
ombines Hoare's Lemmas 1 and 2, and its preservation pro-du
es three other obligations (due to the three 
ases at the end of the loopbody) whi
h 
orrespond to Hoare's Lemma 6. Similarly, the initialization ofthe middle loop gives one obligation, 
orresponding to Lemmas 4 and 5, andthe preservation of its invariant is expressed by two other obligations, 
orre-sponding to Lemmas 10 up to 13 in Hoare's paper. The 
orre
tness of thetwo inner loops on i and j are expressed by four obligations, 
orresponding toLemmas 8 and 9. The establishment of the post
ondition is expressed by oneobligation, whi
h is exa
tly Lemma 3.The two assertions in the original 
ode (lines 14 and 17 in Figure 1) are keptin our program (lines 26 and 29). Although they are not absolutely needed,they help our understanding of the proof obligations, and allow us to keep
lose to the original proof. They give rise to four obligations, whi
h are easilydis
harged. 8



3.2 TerminationIn Hoare's paper, the problem of termination is 
onsidered in a separate para-graph. New invariants are added and �ve new lemmas are stated and proved.However, parts of the termination proof are done in a rather informal manner,without 
lear invariants. In our 
ase, the termination of ea
h loop is justi-�ed by a non negative integer variant (lines 5, 12, 17 and 23), whi
h stri
tlyde
reases at ea
h exe
ution of the loop body.For the two inner loops, we follow Hoare's argument, showing that i andj are ne
essarily bound. This requires additional invariants for these vari-ables, whi
h express the existen
e of su
h bounds. For the i-loop, the predi
atei invariant is modi�ed as follows:(i invariant m n i r A) def=: : : ^ (i � n) 9p : Z: i � p � n ^ r � A[p℄)There is a slight di�eren
e here with Hoare's argument: he uses the invariant9p: i � p � n ^ r � A[p℄ and shows that it is preserved in the middleloop, provided that i � j holds at the end of the loop body. So it is not a realinvariant, whi
h would hold at the end of the loop, but only a property thatholds inside the loop. Adding the guard i � n in front of the property makesit a real invariant. The 
orresponding obligations are proved following Hoare'spaper (Lemmas 14, 15 and 17). The de�nition of j invariant is extended in asimilar way:(j invariant m n j r A) def=: : : ^ (m � j ) 9q : Z: m � q � j ^ A[q℄ � r)The proof of termination of the middle loop is immediate, sin
e either i isin
reased or j is de
reased at ea
h step. Therefore, the quantity j � i alwaysde
reases and N +2+ j � i 
an be taken as variant. The 
orresponding proofobligations are rather trivial.The proof of termination of the main loop is surely the most 
omplex one.Indeed, although the variant n�m is quite simple, the fa
t that it de
reasesstri
tly is quite diÆ
ult to establish. Hoare's very subtle argument relies onthe fa
t that both m < i and j < n hold at the end of the middle loop(assertion line 34). Therefore, sin
e either n is assigned the value of j or m isassigned the value of i, the distan
e between n and m de
reases. To establishthe assertion m < i ^ j < n at the end of the middle loop, Hoare shows9



that the 
onditional line 27 (if !i � !j : : :) is always exe
uted at least on
e.Indeed, the �rst time we en
ounter this 
onditional, A[f ℄ is still equal to r,and therefore the property i � f � j holds. Although this is a perfe
tly
orre
t argument, we 
annot use it dire
tly: There is no way to express in thespe
i�
ation that some exe
ution of a loop body is the �rst one. The sameproperty must be expressed by an invariant. This is a
hieved by introdu
ingthe following predi
ate termination:(termination i j m n r A) def=(i > m ^ j < n) _ (i � f � j ^ A[f ℄ = r)whi
h expresses that, either both i and j have been respe
tively in
reased andde
reased, or they are still respe
tively on left and right sides of f , with A[f ℄equal to r. This predi
ate is added in the invariants of the three inner loops(lines 11, 16 and 22) and we prove that it is preserved. Then we 
an provethe assertion m < i ^ j < n at the end of the middle loop (line 34), whi
h isimmediate sin
e (termination i j m n r A) and i < j both hold.
3.3 PreservationPreservation of the initial elements of the array is qui
kly treated at the end ofHoare's paper. His argument is simple: sin
e the program only does ex
hangesof pairs of elements, and sin
e any 
omposition of ex
hanges is a permutation,it is obvious that we get a permutation of the initial array at the end of exe-
ution. Hoare seems satis�ed with this informal argument, and even explainsthat a fully formalized one would be diÆ
ult to obtain and imply tedious proofobligations.A
tually, it depends on the formal de�nition of a permutation, and if theintuitive de�nition is used, this part of the proof 
an be very easy. Indeed, we
an follow Hoare's argument, using the fa
t that(1) the only modi�
ations of A are ex
hanges of two elements;(2) the re
exive, symmetri
 and transitive 
losure of ex
hanges is exa
tly theset of permutations.We �rst de�ne a predi
ate ex
hange whi
h expresses that two arrays of N10



elements only di�er by swapping the two elements at subs
ripts i and j:(ex
hange t t0 i j) def=1 � i; j � N ^ t[i℄ = t0[j℄ ^ t[j℄ = t0[i℄ ^8k : Z: (1 � k � N ^ k 6= i ^ k 6= j)) t[k℄ = t0[k℄Noti
e that we impose for the subs
ripts i and j to be within the boundsof the arrays. Then we de�ne a predi
ate permut whi
h expresses that twoarrays are permutations of ea
h other. We de�ne it indu
tively, as the smallestequivalen
e relation 
ontaining all the ex
hanges:(ex
hange t t0 i j)(permut t t0) (permut t t)(permut t0 t)(permut t t0) (permut t t0) (permut t0 t00)(permut t t00)With this de�nition, the proof obligations are straightforward to prove andindeed follows the intuition quite 
losely: when the array A is not modi�ed,the re
exivity of permut is used; when two modi�
ations of the array A aredone su

essively, the transitivity of permut is used; and when the array Ais modi�ed at line 28, two of its elements are swapped, making the propertyex
hange true, and hen
e the property permut.Finally, the predi
ate (permut A A�) is added in the post-
ondition of theprogram, and in the invariants when ne
essary (lines 4 and 11). Noti
e theuse of the notation A�0 to refer to the initial value of A. We also add theassertion (ex
hange A A�L i j) in line 29 for 
onvenien
e. All the relatedobligations are easily proved.3.4 Corre
t a

esses in arraysThis last problem, whi
h 
onsists in proving that all the indi
es used in theprogram are within the bounds 1 to N , was not treated by Hoare, althoughhe noted the need of doing it. In our 
ase, the 
orresponding proof obligationsare automati
ally generated by the ta
ti
 Corre
tness, ea
h time the array isa

essed or modi�ed. In order to be able to establish those proof obligations,we need additional invariants about m, n, i and j. First, we add the properties1 � m and n � N in the invariant of the main loop (line 4). Then we add theproperties 0 � j and i � N + 1 in the invariant of the middle loop (line 10).And �nally we express in the two inner loops that i stays within its initial11



value and n (line 15), and that j stays within m and its initial value (line 21).Noti
e the use of the label L to denote the initial values of i and j inside themiddle loop. The proof obligations related to the indi
es are easily dis
hargedby the arithmeti
al ta
ti
 of Coq, Omega, all the ne
essary inequalities beingnow available from the 
ontext.4 Dis
ussionThe main purpose of this paper was to demonstrate the adequa
y of the systemCoq for spe
ifying and 
ertifying imperative programs. We illustrated this abil-ity with the proof of a non-trivial program, Find, following a handmade proofby Hoare [2℄. The spe
i�
ation stri
tly followed the original one. In parti
ular,Coq's notion of indu
tive predi
ates allowed us to de�ne the permutation oftwo arrays as the smallest equivalen
e relation 
ontaining transpositions, andthen to apply a simple argument from [2℄. Even Hoare's tri
ky reasoning toestablish the termination was easily translated into an invariant property. We�nally ended up writing a 43 line program, in
luding 17 lines of annotations.When this annotated program was fed to Coq's total 
orre
tness ta
ti
, 22proof obligations were generated, and they in
luded all Hoare's original 18proof obligations. Following Hoare's proofs was then easy, although it requiredover 600 intera
tions with the system. The automati
 de
ision pro
edure forlinear arithmeti
 Omega [12℄ 
oming with the system Coq was found parti
u-larly useful (invoked 130 times in total). The overall development time is notvery meaningful, sin
e spe
i�
ation and proofs were given in Hoare's paper,but proofs of similar algorithms (Qui
ksort, Heapsort, Knuth-Morris-Pratt)have been realized in 2 or 3 days [5,8℄.Obviously, su
h a formal proof 
an be 
ondu
ted in any tool supporting basi
imperative programming features. Regarding the dis
harge of proof obliga-tions, only a de
ision pro
edure for Presburger arithmeti
 is really mandatory,whi
h is now part of most proof assistants. To our knowledge, the formal proofof Find has only been done, beside Coq, with the Atelier B by V. Donzeau-Gouge [13℄. The only real diÆ
ulty en
ountered was in the de�nition of thepermutation predi
ate, somewhat 
umbersome in the set-theoreti
al spe
i�
a-tion language of the B method. (This predi
ate also appear in various sortingexamples from the VDM Examples Repository [14℄, and leads to quite tediousproof obligations.) One great advantage of using the Cal
ulus of Indu
tiveConstru
tions as a logi
 is the ability to de�ne indu
tive predi
ates, su
h asthe permutation predi
ate in this 
ase. Conversely, the proof in the Atelier Bwas 
ondu
ted by su

essful re�nements, following 
losely Hoare's top-down
onstru
tion. A similar re�nement me
hanism would be a great improvementto the ta
ti
 Corre
tness; it is work in progress.12



Although Hoare su

eeded in doing the proof of 
orre
tness of a quite 
om-plex program without any tool support|nor any mistake, whi
h is a reala
hievement|and 
laimed that \it is hardly more laborious than the tradi-tional pra
ti
e of testing", he noti
ed himself in the 
on
lusion of his paperthat\In the future, it may be possible to enlist the aid of a 
omputer in formu-lating the lemmas, and perhaps even in 
he
king the proofs."This has now be
ome true, and Hoare's Find program appears as a good 
hal-lenge for any method aiming at proving the 
orre
tness of imperative program,sin
e it is a rather 
omplex program of small size, and the mathemati
al proofsare not too easy, so that it also tests the proof support.A
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1. let m = ref 1 in let n = ref N in2. while !m < !n do3. f invariant (m invariant m A) ^ (n invariant n A)4. ^ (permut A A�0) ^ 1 � m ^ n � N5. variant n �m g6. let r = A[f ℄ in let i = ref !m in let j = ref !n in7. begin8. while !i � !j do9. f invariant (i invariant m n i r A) ^ (j invariant m n j r A)10. ^ (m invariant m A) ^ (n invariant n A) ^ 0 � j11. ^ i � N + 1 ^ (termination i j m n r A) ^ (permut A A�0)12. variant N + 2 + j � i g13. label L;14. while A[!i ℄ < !r do15. f invariant (i invariant m n i r A) ^ i�L � i ^ i � n16. ^ (termination i j m n r A)17. variant N + 1� i g18. i := !i + 119. done;20. while !r < A[!j ℄ do21. f invariant (j invariant m n j r A) ^ j � j�L ^ m � j22. ^ (termination i j m n r A)23. variant j g24. j := !j � 125. done;26. assert f A[j ℄ � r � A[i ℄ g;27. if !i � !j then begin28. let w = A[!i ℄ in begin A[!i ℄ := A[!j ℄; A[!j ℄ := w end;29. assert f (ex
hange A A�L i j ) ^ A[i ℄ � r � A[j ℄ g;30. i := !i + 1;31. j := !j � 132. end33. done;34. assert f m < i ^ j < n g;35. if f � !j then36. n := !j37. else if !i � f then38. m := !i39. else40. begin n := f ; m := f end41. end42. done43. f (Found A) ^ (permut A A�) gFig. 2. The �nal 
ode and annotations of Find.15


