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Abstract. We present the Why/Krakatoa/Caduceus set of tools for de-
ductive veri�cation of Java and C source code.

1 Introduction

Why/Krakatoa/Caduceus is a set of tools for deductive veri�cation of Java and
C source code. In both cases, the requirements are speci�ed as annotations in
the source, in a special style of comments. For Java (and Java Card), these
speci�cations are given in the Java Modeling Language [1] and are interpreted
by the Krakatoa tool. For C, we designed our own speci�cation language, largely
inspired from JML. Those are interpreted by the Caduceus tool. The tools are
available as open source software at http://why.lri.fr/.

The general approach is to generate Veri�cation Conditions (VCs for short):
logical formulas whose validity implies the soundness of the code with respect
to the given speci�cation. This includes automatically generated VCs to guar-
antee the absence of run-time errors: null pointer dereferencing, out-of-bounds
array access, etc. Then the VCs can be discharged using one or several theorem
provers. The main originality of this platform is that a large part is common to
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Fig. 1. Platform Architecture



typedef struct purse {

int balance;

} purse;

/*@ requires \valid(p) && s >= 0

@ assigns p->balance

@ ensures p->balance ==

@ \old(p->balance) + s

@*/

void credit(purse *p,int s) {

p->balance += s;

}

/*@ requires \valid(p1) && \valid(p2)

@ && p1 != p2 && p1->balance == 0

@ ensures p1->balance == 100

@*/

void test(purse *p1, purse *p2) {

credit(p1,100);

p2->balance = 0;

return p1->balance;

}

Fig. 2. Example of annotated C source code

C and Java. In particular there is a unique, stand-alone, VCs generator called
Why, which is able to output VCs in the native syntax of many provers, either
automatic or interactive ones. The overall architecture is presented on Figure 1.

Figure 2 shows a short example of annotated C code. Clauses requires

introduces a precondition, ensures a postcondition, and assigns speci�es the
set of modi�ed memory locations. \valid is a built-in predicate which speci�es
that the given pointer can be safely dereferenced, and \old denotes the value
of the given expression at the function entry. Other kind of annotations include
loop invariants and variants. VCs are generated modularly: when calling credit

from test, only the speci�cation of credit is used. To make this possible, the
assigns clause is essential.

2 The Why Veri�cation Condition Generator

The input syntax of Why is a speci�c language dedicated to program veri�cation.
As a programming language, it is a `WHILE' language which (1) has limited side-
e�ects (only mutable variables that cannot be aliased), (2) provides no built-in
data type, (3) proposes basic control statements (assignment, if, while) but
also exceptions (throwing and catching). A Why program is a set of functions,
annotated with pre- and postconditions. Those are written in a general purpose
speci�cation language: polymorphic multi-sorted �rst-order logic with built-in
equality and arithmetic. This logic can be used to introduce abstract data types,
by declaring new sorts, function symbols, predicates and axioms.

The VCs generation is based on a Weakest Precondition calculus, incorpo-
rating exceptional postconditions and computation of e�ects over mutable vari-
ables [2]. Last but not least, Why provides a multi-prover output as shown on
Figure 1. Actually Why can even by used only as a translator from �rst-order
formulas to the syntax of those back-end provers. This translation includes a
non-trivial removal of polymorphic sorts when the target logic does not support
polymorphism [3].



3 Krakatoa and Caduceus

The common approach to Java and C source code is to translate them into Why
programs. The Why speci�cation language is then used both for the transla-
tion of input annotations and for the modeling of Java objects (resp. C point-
ers/structures). This model of the memory heap is de�ned by introducing ab-
stract data types together with operations and an appropriate �rst-order axiom-
atization. Our heap memory models for C and Java both follow the principle
of the Burstall-Bornat `component-as-array' model [4]. Each Java object �eld
(resp. C structure �eld) becomes a Why mutable variable containing a purely
applicative map. This map is equipped with an access function select so that
select(f, p) denotes the �eld of the structure pointed-to by p; and an update
function store so that store(f, p, v) denotes a new map f ′ identical to f except
at position p where it has value v. These two functions satisfy the so-called theory
of arrays:

select(store(f, p, v), p) = p

p 6= p′ → select(store(f, p, v), p′) = select(f, p′)

In our example, the translation of the statement p->balance

+= s; from Figure 2 into the Why language is (1) balance :=
store(balance, p, select(balance, p) + s). The translation of the postcondition
balance == \old(balance)+s is select(balance, p) = select(balance@, p) + s
(where x@ denotes the old value of x in Why) and its weakest precon-
dition through (1) is select(store(balance, p, select(balance, p) + s), p) =
select(balance, p) + s which is a �rst-order consequence of the theory of arrays.

4 Past and future work

The heap memory models are original, in particular with the handling of as-
signs clauses [5], and C pointer arithmetic [6]. Since these publications, many
improvements have been made on the platform:

� Improved e�ciency, including a separation analysis [?].
� More tools, including a graphical interface.
� Support for more provers, e.g. SMT provers (Yices, rv-sat, CVC3, etc.) and
Ergo, with encodings of polymorphic sorts as seen above.

� Enhancements of speci�cation languages both for C and Java: ghost vari-
ables, axiomatic models

� Speci�cally to Krakatoa, more support for Java Card source: transactions [7].
� Support for �oating-point arithmetic [8].

Several case studies have been conducted: Java Card applets provided by Ax-
alto [9] and Trusted Logic companies; the Schorr-Waite graph-marking algo-
rithm, considered as a challenge for program veri�cation [10]; some avionics em-
bedded code provided by Dassault aviation company, which leaded to an original



analysis of memory separation [?]. Our intermediate �rst-order speci�cation lan-
guage was also used to design abstract models of programs [12].

To conclude, our platform is tailored to the proof of advanced behavioral
speci�cations and proposes an original approach based on an intermediate �rst-
order speci�cation language. Its main characteristic is versatility: multi-prover
output, multi-source input, on-the-�y generation of �rst-order models.

Future work includes the development of an integrated user environment.
We are also designing an improved support for abstract modeling, by providing
(UML-like) higher-level models and re�nement. A key issue for the future is also
the automatic generation of annotations. Long term perspective is to contribute
to Grand Challenge 6 on Veri�ed Software Repository: a key goal for us is to
build libraries of veri�ed software.
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