
Why
—

an intermediate language
for deductive program verification

Jean-Christophe Filliâtre

CNRS
Orsay, France

AFM workshop
Grenoble, June 27, 2009

Jean-Christophe Filliâtre Why tutorial AFM’09 1 / 56



Motivations

how to do deductive program verification on realistic programs?

deductive verification means that we want to prove safety but also
behavioral correctness, with arbitrary proof complexity

realistic programs means pointers, aliases, dynamic allocation,
arbitrary data structures, etc.

Jean-Christophe Filliâtre Why tutorial AFM’09 2 / 56



Motivations

since Hoare logic (1968), we know how to turn a program correctness
into logical formulas, the so-called verification conditions

we could

design Hoare logic rules for a real programming language

choose an interactive theorem prover

the Why approach: don’t do that!

Jean-Christophe Filliâtre Why tutorial AFM’09 3 / 56



Principles

instead,

design a small language dedicated to program verification
and compile complex programs into it

use as many theorem provers as possible (interactive or automatic)

Jean-Christophe Filliâtre Why tutorial AFM’09 4 / 56



Related Work

there is another such tool: the Boogie tool developed at Microsoft
Research, initially in the context of the SPEC# project (Barnett, Leino,
Schulte)

there are differences but the main idea is the same: verification conditions
should be computed on a small, dedicated language

Jean-Christophe Filliâtre Why tutorial AFM’09 5 / 56



Overview

1 the Why language

and its application to the verification of algorithms

2 Why as an intermediate language for program verification

complete example with a C program

Jean-Christophe Filliâtre Why tutorial AFM’09 6 / 56



The essence of Hoare logic

the essence of Hoare logic fits in the rule for assignment

{P[x ← E ]} x := E {P}

two key ideas

there is no alias, since only variable x is substituted

the pure expression E belongs to both logic and program

Jean-Christophe Filliâtre Why tutorial AFM’09 7 / 56



The essence of Hoare logic

Why captures these ideas

programs can manipulate pure values (i.e. logical terms) arbitrarily

the sole data structures are mutable variables containing pure values

any program that would create an alias is rejected

Jean-Christophe Filliâtre Why tutorial AFM’09 8 / 56



Structure of a Why File

a Why file contains

logical declarations

logic a : int
logic f : int, int -> int
axiom A : forall x : int. ...
type set

variable/program declarations

parameter x : int ref
parameter p1 : a : int -> ...

program implementations

let p2 (x : int) (y : int) = ...

Jean-Christophe Filliâtre Why tutorial AFM’09 9 / 56



Predefined Types

a few types and symbols are predefined

a type int of arbitrary precision integers, with usual infix syntax

a type real of real numbers

a type bool of booleans

a singleton type unit

Jean-Christophe Filliâtre Why tutorial AFM’09 10 / 56



ML Syntax

one nice idea taken from functional programming:
no distinction between expressions and statements

⇒ less constructs, thus less rules
⇒ side-effects in expressions for free

but Why is not at all a functional language

Jean-Christophe Filliâtre Why tutorial AFM’09 11 / 56



A First Example

let us check that n is even with the following (rather stupid) code

while n ≥ 1
n← n − 2

return n = 0

Jean-Christophe Filliâtre Why tutorial AFM’09 12 / 56



A First Example

we first introduce the predicate even, as an uninterpreted predicate with
two axioms

logic even : int -> prop

axiom even0 :
even(0)

axiom even2 :
forall n : int. n >= 0 -> even(n) -> even(n+2)

Jean-Christophe Filliâtre Why tutorial AFM’09 13 / 56



A First Example

the program is even is a function with n as argument

its body is a Hoare triple

let is even (n : int) =
{ n >= 0 }
...
{ result=true -> even(n) }

in the postcondition, result is the returned value, i.e. the value of the
function body (which is an expression)

Jean-Christophe Filliâtre Why tutorial AFM’09 14 / 56



A First Example

we introduce a local mutable variable x initialized to n

let is even (n : int) =
{ n >= 0 }
let x = ref n in
...
{ result=true -> even(n) }

Jean-Christophe Filliâtre Why tutorial AFM’09 15 / 56



A First Example

finally, we add the while loop and its invariant

let is even (n : int) =
{ n >= 0 }
let x = ref n in
while !x >= 2 do
{ invariant even(x) -> even(n) }
x : = !x - 2

done;
!x = 0
{ result=true -> even(n) }

Jean-Christophe Filliâtre Why tutorial AFM’09 16 / 56



A First Example

we are ready for program verification

two options

command line tool

why --smtlib even.why
why --pvs even.why

GUI to display verification conditions and launch provers

Jean-Christophe Filliâtre Why tutorial AFM’09 17 / 56



A First Example

termination can be proved by adding a variant to the loop annotation

let is even (n : int) =
{ n >= 0 }
let x = ref n in
while !x >= 2 do
{ invariant even(x) -> even(n)
variant x }

x : = !x - 2
done;
!x = 0
{ result=true -> even(n) }

Jean-Christophe Filliâtre Why tutorial AFM’09 18 / 56



A First Example

to get completeness, we add the axiom

axiom even inv :
forall n : int. even(n) -> n=0 or (n >= 2 and even(n-2))

and we turn the postcondition (and the invariant) into an equivalence

let is even (n : int) =
{ n >= 0 }
...
{ result=true <-> even(n) }

Jean-Christophe Filliâtre Why tutorial AFM’09 19 / 56



Previous Values of a Variable

a function argument can be a mutable variable

here, it simplifies the code

let is even2 (n : int ref) =
while !n >= 2 do
n : = !n - 2

done;
!n = 0

but it complicates the specification, since values of n at different program
steps are now involved

Jean-Christophe Filliâtre Why tutorial AFM’09 20 / 56



Previous Values of a Variable

in a postcondition, n@ stands for the value of n in the pre-state

let is even2 (n : int ref) =
{ n >= 0 }
...
{ result=true <-> even(n@) }

Jean-Christophe Filliâtre Why tutorial AFM’09 21 / 56



Previous Values of a Variable

more generally, a program point can be labelled (like for a goto) and then
x@L stands for the value of x at point L

here it is used to refer to the value of n before the loop

let is even2 (n : int ref) =
{ n >= 0 }
L :
while !n >= 2 do
{ invariant even(n) <-> even(n@L) }
...

Jean-Christophe Filliâtre Why tutorial AFM’09 22 / 56



Auxiliary Variables

Why favors the use of labels instead of the traditional auxiliary
variables, since it simplifies the VCs

note that it is yet possible to use auxiliary variables, if desired: simply add
extra arguments to functions

Jean-Christophe Filliâtre Why tutorial AFM’09 23 / 56



Recursive Functions

Why supports recursive functions

let rec is even rec (n : int) : bool {variant n} =
{ n >= 0 }
if n >= 2 then is even rec (n-2) else n=0
{ result=true <-> even(n) }

Jean-Christophe Filliâtre Why tutorial AFM’09 24 / 56



Other Features

Why also features

polymorphism, in both logic and programs

exceptions in programs, and corresponding annotations

local assertions

modularity, i.e. verification only depends on specifications

all of these features are illustrated in the following

Jean-Christophe Filliâtre Why tutorial AFM’09 25 / 56



A More Complex Example

let us consider a more complex program: Dijkstra’s algorithm for
single-source shortest path in a weighted graph

we are going to use Why to verify the algorithm i.e. a high-level
pseudo-code, e.g. from the Cormen-Leiserson-Rivest, not an actual
implementation in a given programming language

Jean-Christophe Filliâtre Why tutorial AFM’09 26 / 56



Dijkstra’s Shortest Path

single-source shortest path in a weighted graph

S ← ∅
Q ← {src};
d [src]← 0
while Q\S not empty do

extract u from Q\S with minimal distance d [u]
S ← S ∪ {u}
for each vertex v such that u

w→ v
d [v ]← min(d [v ], d [u] + w)
Q ← Q ∪ {v}

Jean-Christophe Filliâtre Why tutorial AFM’09 27 / 56



Dijkstra’s Shortest Path: Finite Sets

we need finite sets for the program and its specification

set of vertices V

set of successors of u

sets S and Q

all we need is

the empty set ∅
addition {x} ∪ s

subtraction s\{x}
membership predicate x ∈ s

Jean-Christophe Filliâtre Why tutorial AFM’09 28 / 56



Dijkstra’s Shortest Path: Finite Sets

let us axiomatize polymorphic sets

type ’a set

logic set empty : ’a set
logic set add : ’a, ’a set -> ’a set
logic set rmv : ’a, ’a set -> ’a set
logic In : ’a, ’a set -> prop

predicate Is empty(s : ’a set) =
forall x : ’a. not In(x, s)

predicate Incl(s1 : ’a set, s2 : ’a set) =
forall x : ’a. In(x, s1) -> In(x, s2)

Jean-Christophe Filliâtre Why tutorial AFM’09 29 / 56



Dijkstra’s Shortest Path: Finite Sets

axiom set empty def :
Is empty(set empty)

axiom set add def :
forall x,y : ’a. forall s : ’a set.
In(x, set add(y,s)) <-> (x = y or In(x, s))

axiom set rmv def :
forall x,y : ’a. forall s : ’a set.
In(x, set rmv(y,s)) <-> (x <> y and In(x, s))

Jean-Christophe Filliâtre Why tutorial AFM’09 30 / 56



Dijkstra’s Shortest Path: the Weighted Graph

the graph is introduced as follows

type vertex

logic V : vertex set

logic g succ : vertex -> vertex set

axiom g succ sound : forall x : vertex. Incl(g succ(x), V)

logic weight : vertex, vertex -> int (* a total function *)

axiom weight nonneg : forall x,y : vertex. weight(x,y) >= 0

Jean-Christophe Filliâtre Why tutorial AFM’09 31 / 56



Dijkstra’s Shortest Path: Visited Vertices

the set S of visited vertices is introduced as a global variable containing a
value of type vertex set

parameter S : vertex set ref

to modify S , we could use assignment (:=) directly, but we can
equivalently declare a function

parameter S add :
x : vertex -> {} unit writes S { S = set add(x, S@) }

which reads as “function S add takes a vertex x, has no precondition,
returns nothing, modifies the contents of S and has postcondition
S = set add(x ,S@)”

Jean-Christophe Filliâtre Why tutorial AFM’09 32 / 56



Dijkstra’s Shortest Path: the Priority Queue

we proceed similarly for the priority queue

parameter Q : vertex set ref

parameter Q is empty :
unit ->
{ }
bool reads Q
{ if result then Is empty(Q) else not Is empty(Q) }

parameter init :
src : vertex -> {} ...

parameter relax :
u : vertex -> v : vertex -> {} ...

Jean-Christophe Filliâtre Why tutorial AFM’09 33 / 56



Dijkstra’s Shortest Path: Demo

17 VCs are generated

they are all automatically discharged, with the help of two lemmas

these two lemmas are proved using an interactive proof assistant (they
require induction)

demo

Jean-Christophe Filliâtre Why tutorial AFM’09 34 / 56



using Why as an intermediate language

Jean-Christophe Filliâtre Why tutorial AFM’09 35 / 56



Program Verification in the Large

let us say we want to verify programs written in a language such as C or
Java; what do we need?

to cope with complex data structures (arrays, pointers, records,
objects, etc.) and possible aliasing

to cope with new control statements such as for loops, abrupt
return, switch, goto, etc.

to cope with memory allocation, function pointers, dynamic binding,
casts, machine arithmetic, etc.

Jean-Christophe Filliâtre Why tutorial AFM’09 36 / 56



Solutions

Why can be used conveniently to handle most of these aspects

two connected parts

we design a memory model, that is a set of logical types and
operations to describe the memory layout

we design a compilation process to translate programs in Why
constructs

Jean-Christophe Filliâtre Why tutorial AFM’09 37 / 56



A Simple Example

let us consider the following C code

int binary search(int* t, int n, int v) {
int l = 0, u = n-1;
while (l <= u) {
int m = (l + u) / 2;
if (t[m] < v)
l = m + 1;

else if (t[m] > v)
u = m - 1;

else
return m;

}
return -1;

}

Jean-Christophe Filliâtre Why tutorial AFM’09 38 / 56



Binary Search

two (simple) problems with this code

C pointers (but no pointer arithmetic, i.e. arrays)

int binary search(int* t, int n, int v) { ...

an abrupt return in the while loop

while (l <= u) {
if ...
else
return m;

}

Jean-Christophe Filliâtre Why tutorial AFM’09 39 / 56



Binary Search: Memory Model

we consider a very simple memory model here

type pointer

type memory

logic get : memory, pointer, int -> int

parameter mem : memory ref
(* the current state of the memory *)

Jean-Christophe Filliâtre Why tutorial AFM’09 40 / 56



Binary Search: Memory Model

some remarks at this point

we assume the memory to be accessed by words (type int); accessing
the same portion of memory using a char* pointer would require a
finer model

C local variables can be translated into Why local variables, unless
their address is taken

Jean-Christophe Filliâtre Why tutorial AFM’09 41 / 56



Binary Search: Memory Model

thus the code looks like

let binary search (t : pointer) (n : int) (v : int) =
{ ... }
let l = ref 0 in
let u = ref (n-1) in
while !l <= !u do
let m = (!l + !u) / 2 in
if get !mem t m < v then l : = m + 1
else if get !mem t m > v then u : = m - 1
else ...

done
...

Jean-Christophe Filliâtre Why tutorial AFM’09 42 / 56



Binary Search: return Statement

to interpret the return statement we introduce an exception

exception Return int of int

the whole function body is put into a try/with statement

let binary search (t : pointer) (n : int) (v : int) =
try
...

with Return int r ->
r

end

and any return e is translated into

raise (Return int e)

Jean-Christophe Filliâtre Why tutorial AFM’09 43 / 56



Binary Search: Demo

with suitable annotations for correctness, completeness and termination,
we get 17 VCs

with the help of the axiom

axiom mean 1 : forall x,y : int. x <= y -> x <= (x+y)/2 <= y

all VCs are discharged automatically

demo

Jean-Christophe Filliâtre Why tutorial AFM’09 44 / 56



Binary Search: Array Bound Checking

let us say we want to add array bound checking

we need to refine our model with a notion of block size

logic block size : memory, pointer -> int

it is then convenient to introduce a function to access memory

parameter get :
p : pointer -> ofs : int ->
{ 0 <= ofs < block size(mem, p) }
int reads mem
{ result = get(mem, p, ofs) }

so that its precondition introduces the suitable VC

Jean-Christophe Filliâtre Why tutorial AFM’09 45 / 56



Binary Search: Array Bound Checking

we get 2 additional VCs, easily proved once we add the suitable
requirement

let binary search (t : pointer) (n : int) (v : int) =
{ n >= 0 and block size(mem, t) >= n and ... }
...

Jean-Christophe Filliâtre Why tutorial AFM’09 46 / 56



Binary Search: Machine Arithmetic

finally, let us model 32 bit integers,

two possibilities

to prove that there is no arithmetic overflow

to model modulo arithmetic faithfully

one requirement:
we do not want to loose the arithmetic capabilities of the provers

Jean-Christophe Filliâtre Why tutorial AFM’09 47 / 56



Binary Search: Machine Arithmetic

we introduce a new type for 32 bit integers

type int32

the value of an int32 is given by

logic to int : int32 -> int

annotations only use arbitrary prevision integers, i.e.
if x of type int32 appears in an annotation, it is actually to int(x)

Jean-Christophe Filliâtre Why tutorial AFM’09 48 / 56



Binary Search: Machine Arithmetic

we need to set the range of 32 bit integers

when using them...

axiom int32 domain :
forall x : int32. -2147483648 <= to int(x) <= 2147483647

... and when building them

parameter of int :
x : int ->
{ -2147483648 <= x <= 2147483647 }
int32
{ to int(result) = x }

Jean-Christophe Filliâtre Why tutorial AFM’09 49 / 56



Binary Search: Machine Arithmetic

and that’s it!

let us prove the absence of integer overflow in binary search

demo

Jean-Christophe Filliâtre Why tutorial AFM’09 50 / 56



Binary Search: Machine Arithmetic

we found a bug (that is the purpose of verification, after all)

indeed, when computing

int m = (l + u) / 2;

the addition l+u may overflow
(for instance on a 32 bit architecture with arrays of billions of elements)

it can be fixed as follows

int m = l + (u - l) / 2;

Jean-Christophe Filliâtre Why tutorial AFM’09 51 / 56



Conclusion

Jean-Christophe Filliâtre Why tutorial AFM’09 52 / 56



Things Not Discussed in that Tutorial

regarding Why itself

how to exclude aliases

how to send VCs to all provers (typing systems differ)

how to compute VCs efficiently

regarding the use of Why

how to design a high-level specification language

how to design a more subtle memory model (component-as-array,
regions, etc.)

how to model floating-point arithmetic

Jean-Christophe Filliâtre Why tutorial AFM’09 53 / 56



Existing Software

in the ProVal team, we develop the following softwares

Jessie, another intermediate language on top of Why

Krakatoa, a tool to verify JML-annotated Java programs

Alt-Ergo, an SMT solver with Why syntax as input

we also collaborate to Frama-C, a platform to verify C programs
(which subsumes the tool Caduceus formerly developed at ProVal)

our tools deal with floating-point arithmetic: annotations, models,
interactive and automatic proofs

Jean-Christophe Filliâtre Why tutorial AFM’09 54 / 56



C+ACSL

Frama-C Core

CIL+annot

Jessie Plugin

Java+JML

Krakatoa

Jessie

Jessie2Why

Why

VC Generator

VC

Automatic Provers:
Alt-Ergo, CVC3, Simplify, Yices, Z3, etc.

Proof Assistants:
Coq, HOL, Isabelle/HOL, PVS, etc.

Frama-C

Why
The
Platform

Jean-Christophe Filliâtre Why tutorial AFM’09 55 / 56



thank you

Jean-Christophe Filliâtre Why tutorial AFM’09 56 / 56


