

an intermediate language for deductive program verification

Jean-Christophe Filliâtre

CNRS Orsay, France

AFM workshop

Grenoble, June 27, 2009

how to do **deductive program verification** on realistic programs?

- **•** deductive verification means that we want to prove safety but also behavioral correctness, with arbitrary proof complexity
- realistic programs means pointers, aliases, dynamic allocation, arbitrary data structures, etc.

since **Hoare logic** (1968), we know how to turn a program correctness into logical formulas, the so-called verification conditions

we could

- design Hoare logic rules for a real programming language
- choose an interactive theorem prover

the Why approach: don't do that!

instead,

- design a **small** language dedicated to program verification and compile complex programs into it
- use as many theorem provers as possible (interactive or automatic)

there is another such tool: the **Boogie** tool developed at Microsoft Research, initially in the context of the $SPEC\#$ project (Barnett, Leino, Schulte)

there are differences but the main idea is the same: verification conditions should be computed on a small, dedicated language

 \bullet the WHY language

and its application to the verification of algorithms

² Why as an intermediate language for program verification complete example with a C program

the essence of Hoare logic fits in the rule for assignment

$$
\overline{\{P[x \leftarrow E]\} \times \mathrel{\mathop:}= E \{P\}}
$$

two key ideas

- **•** there is **no alias**, since only variable x is substituted
- \bullet the pure expression E belongs to both logic and program

Why captures these ideas

- programs can manipulate pure values (i.e. logical terms) arbitrarily
- the sole data structures are mutable variables containing pure values
- **•** any program that would create an alias is rejected
- a Why file contains
	- **o** logical declarations

logic a : int logic $f : int, int \rightarrow int$ axiom A : forall x: int. ... type set

• variable/program declarations

parameter x : int ref parameter $p1$: a: int \rightarrow ...

• program implementations

let $p2(x:int)$ $(y:int) = ...$

- a few types and symbols are predefined
	- a type int of arbitrary precision integers, with usual infix syntax
	- a type real of real numbers
	- a type bool of booleans
	- a singleton type unit

one nice idea taken from functional programming: no distinction between expressions and statements

- \Rightarrow less constructs, thus less rules
- \Rightarrow side-effects in expressions for free

but Why is not at all a functional language

let us check that n is even with the following (rather stupid) code

while $n \geq 1$ $n \leftarrow n-2$ return $n = 0$

we first introduce the predicate even, as an uninterpreted predicate with two axioms

```
logic even : int -> prop
axiom even0 :
  even(0)
axiom even2 :
  forall n: int. n \ge 0 \Rightarrow even(n) \Rightarrow even(n+2)
```
the program is even is a function with n as argument

its body is a Hoare triple

```
let is even (n: int) =
  \{ n \ge 0 \}...
  { result=true \rightarrow even(n) }
```
in the postcondition, result is the returned value, i.e. the value of the function body (which is an expression)

we introduce a local mutable variable x initialized to n

```
let is even (n: int) =
  \{ n \ge 0 \}let x = ref n in...
  \{ result = true \rightarrow even(n) \}
```
finally, we add the while loop and its invariant

```
let is even (n: int) =
  \{ n \ge 0 \}let x = ref n inwhile !x \geq 2 do
    { invariant even(x) \rightarrow even(n) }
    x := !x - 2done;
  l_x = 0\{ result = true \rightarrow even(n) \}
```
A First Example

we are ready for program verification

two options

• command line tool

why --smtlib even.why why $-\text{pvs}$ even.why

GUI to display verification conditions and launch provers

termination can be proved by adding a **variant** to the loop annotation

```
let is even (n: int) =
  \{ n \ge 0 \}let x = ref n inwhile \vert x \rangle = 2 do
    { invariant even(x) \rightarrow even(n)
       variant x }
    x := |x - 2|done;
  !x = 0\{ result = true \rightarrow even(n) \}
```
to get completeness, we add the axiom

```
axiom even inv :
  forall n: int. even(n) \rightarrow n=0 or (n \geq 2 and even(n-2))
```
and we turn the postcondition (and the invariant) into an equivalence

```
let is even (n: int) =
   \{ n \ge 0 \}...
   { result=true \left\{ \left. \right. \left. \right\} even(n) }
```
a function argument can be a mutable variable

here, it simplifies the code

```
let is even2 (n: int ref) =while \ln > \approx 2 do
    n := ln - 2done;
  ln = 0
```
but it complicates the specification, since values of n at different program steps are now involved

in a postcondition, n@ stands for the value of n in the pre-state

```
let is even2 (n: int ref) =\{ n \ge 0 \}...
  { result=true \left\langle -\right\rangle even(n0) }
```
more generally, a program point can be labelled (like for a goto) and then x@L stands for the value of x at point L

here it is used to refer to the value of n before the loop

```
let is even2 (n: int ref) =\{ n \ge 0 \}L:while \ln >= 2 do
    { invariant even(n) <-> even(n@L) }
    ...
```
WHY favors the use of labels instead of the traditional **auxiliary variables**, since it simplifies the VCs

note that it is yet possible to use auxiliary variables, if desired: simply add extra arguments to functions

Why supports recursive functions

```
let rec is even rec (n: int) : bool \{variant n\} =\{ n \ge 0 \}if n > = 2 then is even rec (n-2) else n=0{ result=true \left\{ \left. \right. > even(n) }
```
Why also features

- **polymorphism**, in both logic and programs
- exceptions in programs, and corresponding annotations
- local assertions
- **modularity**, i.e. verification only depends on specifications

all of these features are illustrated in the following

let us consider a more complex program: Dijkstra's algorithm for single-source shortest path in a weighted graph

we are going to use WHY to verify the **algorithm** i.e. a high-level pseudo-code, e.g. from the Cormen-Leiserson-Rivest, not an actual **implementation** in a given programming language

single-source shortest path in a weighted graph

 $S \leftarrow \emptyset$ $Q \leftarrow \{src\};$ $d[src] \leftarrow 0$ while $Q \backslash S$ not empty do extract u from $Q \ S$ with minimal distance $d[u]$ $S \leftarrow S \cup \{u\}$ for each vertex v such that $u \stackrel{w}{\rightarrow} v$ $d[v] \leftarrow min(d[v], d[u] + w)$ $Q \leftarrow Q \cup \{v\}$

we need **finite sets** for the program and its specification

- set of vertices V
- **o** set of successors of u
- \bullet sets S and Q

all we need is

- the empty set \emptyset
- addition $\{x\} \cup s$
- subtraction $s \setminus \{x\}$
- membership predicate $x \in s$

let us axiomatize polymorphic sets

```
type 'a set
```

```
logic set_empty : 'a set
logic set_add : a, a set \rightarrow a set
logic set_rmv : 'a, 'a set \rightarrow 'a set
logic In : a, a set \rightarrow prop
```

```
predicate Is_empty(s : 'a set) =
 forall x: 'a. not In(x, s)
```

```
predicate Incl(s1 : 'a set, s2 : 'a set) =
  forall x: 'a. In(x, s1) \rightarrow In(x, s2)
```

```
axiom set empty def :
  Is empty(set empty)
```

```
axiom set add def :
  forall x,y: 'a. forall s: 'a set.
  In(x, set_add(y,s)) <-> (x = y or In(x, s))
```

```
axiom set rmv def :
  forall x,y: 'a. forall s: 'a set.
  In(x, set_rmv(y,s)) <-> (x <> y and In(x, s))
```
Dijkstra's Shortest Path: the Weighted Graph

the graph is introduced as follows

type vertex

logic V : vertex set

logic g_succ : vertex -> vertex set

axiom g _succ_sound : forall x: vertex. Incl(g _succ(x), V)

logic weight : vertex, vertex \rightarrow int (* a total function *)

axiom weight nonneg : forall x,y : vertex. weight (x,y) >= 0

the set S of visited vertices is introduced as a global variable containing a value of type vertex set

```
parameter S : vertex set ref
```
to modify S, we could use assignment $(:=)$ directly, but we can equivalently declare a function

```
parameter S_add :
  x: vertex \rightarrow {} unit writes S { S = set_add(x, S@) }
```
which reads as "function S add takes a vertex x, has no precondition, returns nothing, modifies the contents of S and has postcondition $S = \text{set_add}(x, S@)$ "

Dijkstra's Shortest Path: the Priority Queue

we proceed similarly for the priority queue

```
parameter Q : vertex set ref
parameter Q is empty :
  unit \rightarrow{ }
    bool reads Q
    { if result then Is_empty(Q) else not Is_empty(Q) }
```

```
parameter init :
  src: vertex \rightarrow {} ...
```

```
parameter relax :
  u: vertex \rightarrow v: vertex \rightarrow {} ...
```
17 VCs are generated

they are all automatically discharged, with the help of two lemmas

these two lemmas are proved using an interactive proof assistant (they require induction)

demo

using Why as an intermediate language

let us say we want to verify programs written in a language such as C or Java; what do we need?

- to cope with complex **data structures** (arrays, pointers, records, objects, etc.) and possible aliasing
- to cope with new control statements such as for loops, abrupt return, switch, goto, etc.
- to cope with memory allocation, function pointers, dynamic binding, casts, machine arithmetic, etc.

Why can be used conveniently to handle most of these aspects

two connected parts

• we design a **memory model**, that is a set of logical types and operations to describe the memory layout

• we design a **compilation** process to translate programs in WHY constructs

A Simple Example

let us consider the following C code

```
int binary search (int* t, int n, int v) {
  int l = 0, u = n-1;
  while (1 \le u) {
    int m = (1 + u) / 2;
    if (t[m] < v)l = m + 1;
    else if (t[m] > v)u = m - 1;
    else
      return m;
  }
  return -1;
```
}

two (simple) problems with this code

- C pointers (but no pointer arithmetic, i.e. arrays) int binary_search(int* t, int n, int v) $\{ \ldots \}$
- an abrupt return in the while loop

```
while (1 \le u) {
  if ...
  else
    return m;
}
```
we consider a very simple memory model here

```
type pointer
```

```
type memory
```
logic get : memory, pointer, int -> int

```
parameter mem : memory ref
  (* the current state of the memory *)
```
some remarks at this point

- we assume the memory to be accessed by words (type int); accessing the same portion of memory using a char* pointer would require a finer model
- C local variables can be translated into Why local variables, unless their address is taken

thus the code looks like

```
let binary search (t: pointer) (n: int) (v: int) =
  { ... }
  let l = ref 0 inlet u = ref (n-1) in
  while | \cdot | = \cdot |u do
    let m = (1 + 1) / 2 in
    if get !mem t m < v then l := m + 1else if get !mem t m > v then u : = m - 1
    else ...
  done
```
...

to interpret the return statement we introduce an exception

```
exception Return int of int
```
the whole function body is put into a try/with statement

```
let binary search (t: pointer) (n: int) (v: int) =
  try
     ...
  with Return int r \rightarrowr
  end
```
and any return e is translated into

```
raise (Return int e)
```
with suitable annotations for correctness, completeness and termination, we get 17 VCs

with the help of the axiom

```
axiom mean_1: forall x, y: int. x \le y \Rightarrow x \le (x+y)/2 \le y
```
all VCs are discharged automatically

demo

let us say we want to add **array bound checking**

we need to refine our model with a notion of **block size**

```
logic block_size: memory, pointer -> int
```
it is then convenient to introduce a *function* to access memory

```
parameter get.:
  p: pointer -> ofs: int ->
    \{ 0 \leq s \leq s \leq block_size(\text{mem}, p) \}int reads mem
    \{ result = get(mem, p, of s) \}
```
so that its precondition introduces the suitable VC

we get 2 additional VCs, easily proved once we add the suitable requirement

let binary_search $(t: pointer)$ $(n: int)$ $(v: int)$ = $\{ n \ge 0 \text{ and block_size(mem, t)} \ge n \text{ and } ... \}$

...

finally, let us model 32 bit integers.

two possibilities

- to prove that there is no arithmetic overflow
- to model modulo arithmetic faithfully

one requirement:

we do not want to loose the arithmetic capabilities of the provers

we introduce a new type for 32 bit integers

type int32

the value of an int32 is given by

logic to int: int32 -> int

annotations only use arbitrary prevision integers, i.e. if x of type int32 appears in an annotation, it is actually to int(x) we need to set the range of 32 bit integers

when using them...

axiom int32 domain: forall x: int32. $-2147483648 \leq \text{to} \text{int}(x) \leq 2147483647$

... and when building them

```
parameter of int :
  x: int. ->\{-2147483648 \leq x \leq 2147483647\}int32
    \{ to_int(result) = x \}
```
and that's it!

let us prove the absence of integer overflow in binary search

demo

we found a bug (that is the purpose of verification, after all)

indeed, when computing

int $m = (1 + u) / 2$;

the addition l+u may overflow (for instance on a 32 bit architecture with arrays of billions of elements)

it can be fixed as follows

int $m = 1 + (u - 1) / 2$;

Conclusion

regarding Why itself

- how to exclude aliases
- how to send VCs to all provers (typing systems differ)
- how to compute VCs efficiently

regarding the use of Why

- **•** how to design a high-level specification language
- how to design a more subtle memory model (component-as-array, regions, etc.)
- how to model floating-point arithmetic

in the **ProVal** team, we develop the following softwares

- \bullet Jessie, another intermediate language on top of WHY
- Krakatoa, a tool to verify JML-annotated Java programs
- \bullet Alt-Ergo, an SMT solver with WHY syntax as input

we also collaborate to $Frame-C$, a platform to verify C programs (which subsumes the tool Caduceus formerly developed at ProVal)

our tools deal with **floating-point arithmetic**: annotations, models, interactive and automatic proofs

thank you