(**************************************************************************) (* *) (* Ocamlgraph: a generic graph library for OCaml *) (* Copyright (C) 2004-2010 *) (* Sylvain Conchon, Jean-Christophe Filliatre and Julien Signoles *) (* *) (* This software is free software; you can redistribute it and/or *) (* modify it under the terms of the GNU Library General Public *) (* License version 2.1, with the special exception on linking *) (* described in file LICENSE. *) (* *) (* This software is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. *) (* *) (**************************************************************************) (* $Id: delaunay.ml,v 1.12 2005-11-02 13:43:35 filliatr Exp $ *) (** Code follows Don Knuth's algorithm from ``Axioms and hulls'' (LNCS 606, Springer-Verlag, 1992), pp. 73-77. Some code and comments are taken from the Stanford Graph Base, file [gb_plane]. *) module type CCC = sig type point val ccw : point -> point -> point -> bool val in_circle : point -> point -> point -> point -> bool end module type Triangulation = sig module S : CCC type triangulation val triangulate : S.point array -> triangulation val iter : (S.point -> S.point -> unit) -> triangulation -> unit val fold : (S.point -> S.point -> 'a -> 'a) -> triangulation -> 'a -> 'a val iter_triangles : (S.point -> S.point -> S.point -> unit) -> triangulation -> unit end module Make (S : CCC) = struct module S = S type point = Point of int Infinity (* Each edge of the current triangulation is represented by two arcs pointing in opposite directions; the two arcs are called mates. Each arc conceptually has a triangle on its left and a mate on its right. *) type arc = { mutable vert : point; (* v, if this arc goes from u to v *) mutable next : arc; (* the arc from v that shares a triangle with this one *) mutable inst : node ref; (* instruction to change when the triangle is modified *) mate : int } and node = Branch of int * int * node ref * node ref Terminal of arc type triangulation = { points : S.point array; arcs : arc array; last_used_arc : int } let rec dummy_arc = { vert = Infinity; next = dummy_arc; inst = ref (Terminal dummy_arc); mate = -1 } let make_arc n i = { vert = Infinity; next = dummy_arc; inst = ref (Terminal dummy_arc); mate = 6 * n - 7 - i } let finite = function Point p -> p Infinity -> assert false (* [flip] will be used in both steps T4 and T5 *) let flip c d e t'' p n n' = let e' = e.next in let c' = c.next in let c'' = c'.next in e.next <- c; c.next <- c''; c''.next <- e; c''.inst <- n; c.inst <- n; e.inst <- n; c.vert <- Point p; d.next <- e'; e'.next <- c'; c'.next <- d; c'.inst <- n'; e'.inst <- n'; d.inst <- n'; d.vert <- Point t'' let triangulate points = let ccw p q r = S.ccw points.(p) points.(q) points.(r) in let in_circle p q r s = S.in_circle points.(p) points.(q) points.(r) points.(s) in let n = Array.length points in if n < 2 then invalid_arg "triangulate"; let arcs = Array.init (6 * n - 6) (make_arc n) in let mate i = 6 * n - 7 - i in (*i DEBUG let rec dump d l = eprintf "%s" (String.make (2*d) ' '); match !l with | Terminal a -> eprintf "T %d\n" (mate a.mate) | Branch (u, v, l, r) -> eprintf "N %d %d\n" u v; dump (d+1) l; dump (d+1) r in i*) (* initialization: create a trivial triangulation for the first 2 vertices *) let u = 0 in let v = 1 in let a1 = arcs.(0) in let a2 = arcs.(1) in let a3 = arcs.(2) in let b1 = arcs.(mate 0) in let b2 = arcs.(mate 1) in let b3 = arcs.(mate 2) in let l1 = ref (Terminal a2) in let l2 = ref (Terminal b3) in a1.vert <- Point v; a1.next <- a2; a1.inst <- l1; a2.vert <- Infinity; a2.next <- a3; a2.inst <- l1; a3.vert <- Point u; a3.next <- a1; a3.inst <- l1; b1.vert <- Point u; b1.next <- b3; b1.inst <- l2; b2.vert <- Point v; b2.next <- b1; b2.inst <- l2; b3.vert <- Infinity; b3.next <- b2; b3.inst <- l2; let l0 = ref (Branch (u, v, l1, l2)) in let j = ref 2 in (* last used arc *) (* then for each new vertex [p] *) for p = 2 to n - 1 do (* Step T1 *) let rec step_T1 l p = match !l with Terminal al -> l, al Branch (pl, ql, al, bl) -> step_T1 (if ccw pl ql p then al else bl) p in let l, al = step_T1 l0 p in (* Step T2 *) let a = al in let b = a.next in let c = b.next in let q = a.vert in let r = b.vert in let s = c.vert in j := !j + 3; let aj = arcs.(!j) in let aj_1 = arcs.(!j - 1) in let aj_2 = arcs.(!j - 2) in let bj = arcs.(aj.mate) in let bj_1 = arcs.(aj_1.mate) in let bj_2 = arcs.(aj_2.mate) in let l' = ref (Terminal a) in let l'' = ref (Terminal aj) in let l''' = ref (Terminal c) in aj.vert <- q; aj.next <- b; aj.inst <- l''; aj_1.vert <- r; aj_1.next <- c; aj_1.inst <- l'''; aj_2.vert <- s; aj_2.next <- a; aj_2.inst <- l'; bj.vert <- Point p; bj.next <- aj_2; bj.inst <- l'; bj_1.vert <- Point p; bj_1.next <- aj; bj_1.inst <- l''; bj_2.vert <- Point p; bj_2.next <- aj_1; bj_2.inst <- l'''; a.next <- bj; a.inst <- l'; b.next <- bj_1; b.inst <- l''; c.next <- bj_2; c.inst <- l'''; let r = finite r in let s = finite s in (* steps T3 or T4 depending on [q] *) let r = match q with Point q -> (* Step T3 *) let n = ref (Branch (q, p, l', l'')) in let n' = ref (Branch (s, p, l''', l')) in l := Branch (r, p, n, n'); r Infinity -> (* Step T4 *) let n = ref (Branch (s, p, l''', l')) in l := Branch (r, p, l'', n); let rec loop m a d s t = if t <> r && ccw p s t then begin let n = ref (Terminal d) in match !m with Branch (mu, mv, ml, is_l') -> assert (is_l' == l'); m := Branch (mu, mv, ml, d.inst); d.inst := Branch (t, p, n, l'); let m = d.inst in flip a arcs.(a.mate) d t p n l'; let a = arcs.(a.mate).next in let d = arcs.(a.mate).next in let s = t in let t = finite d.vert in l' := Terminal a; loop m a d s t Terminal _ -> assert false end else begin (* at exit of while loop *) let n = ref (Terminal d.next) in d.inst := Branch (s, p, n, l'); d.inst <- n; d.next.inst <- n; d.next.next.inst <- n; s end in let d = arcs.(a.mate).next in loop n a d s (finite d.vert) in (* Step T5 *) let rec loop c = let d = arcs.(c.mate) in let e = d.next in let t = finite d.vert in let t' = finite c.vert in let t'' = e.vert in if t'' <> Infinity && in_circle (finite t'') t' t p then begin let t'' = finite t'' in let n = ref (Terminal e) in let n' = ref (Terminal d) in c.inst := Branch (t'', p, n, n'); d.inst := Branch (t'', p, n, n'); flip c d e t'' p n n'; loop e end else if t' <> r then loop arcs.(c.next.mate).next else () (* break *) in loop c done; { points = points; arcs = arcs; last_used_arc = !j } let iter f t = let points = t.points in let n = Array.length t.arcs in for i = 0 to t.last_used_arc do match t.arcs.(i).vert, t.arcs.(n - 1 - i).vert with Point u, Point v -> f points.(u) points.(v) _ -> () done let iter_triangles f t = let n = Array.length t.arcs in let seen_arc = Array.make n false in let mate i = n - 1 - i in let index a = mate a.mate in for i = 0 to n-1 do if not seen_arc.(i) then begin let a1 = t.arcs.(i) in let a2 = a1.next in let a3 = a2.next in seen_arc.(i) <- true; seen_arc.(index a2) <- true; seen_arc.(index a3) <- true; match a1.vert, a2.vert, a3.vert with Point i1, Point i2, Point i3 -> f t.points.(i1) t.points.(i2) t.points.(i3) _ -> () end done let fold f t a = let points = t.points in let n = Array.length t.arcs in let rec loop i a = if i <= t.last_used_arc then match t.arcs.(i).vert, t.arcs.(n - 1 - i).vert with Point u, Point v -> loop (succ i) (f points.(u) points.(v) a) _ -> loop (succ i) a else a in loop 0 a end (** Points with floating point coordinates *) module FloatPoints = struct type point = float * float let ( + ) = ( +. ) let ( - ) = ( -. ) let ( * ) = ( *. ) let det = function [| [| a00; a01 |]; [| a10; a11 |] |] -> a00 * a11 - a01 * a10 [| [| a00; a01; a02 |]; [| a10; a11; a12 |]; [| a20; a21; a22 |] |] -> a00*a11*a22 - a00*a12*a21 - a10*a01*a22 + a10*a02*a21 + a20*a01*a12 - a20*a02*a11 [| [| a00; a01; a02; a03 |]; [| a10; a11; a12; a13 |]; [| a20; a21; a22; a23 |]; [| a30; a31; a32; a33 |] |] -> a00*a11*a22*a33 - a00*a11*a23*a32 - a00*a21*a12*a33 + a00*a21*a13*a32 + a00*a31*a12*a23 - a00*a31*a13*a22 - a10*a01*a22*a33 + a10*a01*a23*a32 + a10*a21*a02*a33 - a10*a21*a03*a32 - a10*a31*a02*a23 + a10*a31*a03*a22 + a20*a01*a12*a33 - a20*a01*a13*a32 - a20*a11*a02*a33 + a20*a11*a03*a32 + a20*a31*a02*a13 - a20*a31*a03*a12 - a30*a01*a12*a23 + a30*a01*a13*a22 + a30*a11*a02*a23 - a30*a11*a03*a22 - a30*a21*a02*a13 + a30*a21*a03*a12 _ -> assert false let ccw (xu,yu) (xv,yv) (xw,yw) = det [| [| xu; yu; 1.0 |]; [| xv; yv; 1.0 |]; [| xw; yw; 1.0 |] |] > 0.0 (*i DEBUG let ccw (xu,yu) (xv,yv) (xw,yw) = eprintf "ccw((%.0f,%.0f),(%.0f,%.0f),(%.0f,%.0f)) -> " xu yu xv yv xw yw; let r = ccw (xu,yu) (xv,yv) (xw,yw) in eprintf "%b\n" r; flush stderr; r i*) let in_circle (xt,yt) (xu,yu) (xv,yv) (xw,yw) = det [| [| xt; yt; (xt * xt + yt * yt); 1.0 |]; [| xu; yu; (xu * xu + yu * yu); 1.0 |]; [| xv; yv; (xv * xv + yv * yv); 1.0 |]; [| xw; yw; (xw * xw + yw * yw); 1.0 |]; |] > 0.0 (*i DEBUG let in_circle (xt,yt) (xu,yu) (xv,yv) (xw,yw) = eprintf "in_circle((%.0f,%.0f),(%.0f,%.0f),(%.0f,%.0f),(%.0f,%.0f)) -> " xt yt xu yu xv yv xw yw; let r = in_circle (xt,yt) (xu,yu) (xv,yv) (xw,yw) in eprintf "%b\n" r; flush stderr; r i*) end module Float = Make(FloatPoints) (** Points with integer coordinates. We approximate using module [FloatPoints] but this could be made exact following Knuth's code in Axioms and Hulls *) module IntPoints = struct type point = int * int let ccw (xu,yu) (xv,yv) (xw,yw) = FloatPoints.ccw (float xu, float yu) (float xv, float yv) (float xw, float yw) let in_circle (xt,yt) (xu,yu) (xv,yv) (xw,yw) = FloatPoints.in_circle (float xt, float yt) (float xu, float yu) (float xv, float yv) (float xw, float yw) end module Int = Make(IntPoints)
This document was generated using caml2html