type terminal = string

type non_terminal = string

type symbol =
  | Terminal of terminal
  | NonTerminal of non_terminal

type production = symbol list

type rule = non_terminal * production

type grammar = {
  start : non_terminal;
  rules : rule list;
}

(* point fixe *)

let rec fixpoint f x0 =
  let (x1,isnew) = f x0 in
  if isnew then fixpoint f x1 else x1

(* calcul des null *)

module Ntset = Set.Make(String)

type nulls = Ntset.t

let is_null_production nulls p =
  let is_null_symbol = function
    | Terminal _ -> false
    | NonTerminal nt -> Ntset.mem nt nulls
  in
  List.for_all is_null_symbol p

let null g =
  let step nulls =
    List.fold_left
      (fun ((n,_) as nb) (nt,p) ->
         if (not (Ntset.mem nt n)) && is_null_production n p then
           (Ntset.add nt n, true)
         else
           nb)
      (nulls,false)
      g.rules
  in
  fixpoint step Ntset.empty

(* calcul des first *)

module Ntmap = Map.Make(String)
module Tset = Set.Make(String)

type firsts = Tset.t Ntmap.t

let empty_map g =
  List.fold_left (fun f (s,_) -> Ntmap.add s Tset.empty f) Ntmap.empty g.rules

let first_production_step nulls firsts p =
  let rec fold_prod = function
    | [] ->
        Tset.empty
    | Terminal c :: _ ->
        Tset.add c Tset.empty
    | NonTerminal nt :: p ->
        if Ntset.mem nt nulls then
          Tset.union (Ntmap.find nt firsts) (fold_prod p)
        else
          Ntmap.find nt firsts
  in
  fold_prod p

let first g nulls =
  let step firsts =
    List.fold_left
      (fun (f,_ as fb) (nt,p) ->
         let fnt = Ntmap.find nt f in
         let fp = first_production_step nulls f p in
         if Tset.subset fp fnt then
           fb
         else
           (Ntmap.add nt (Tset.union fnt fp) f, true))
      (firsts,false)
      g.rules
  in
  fixpoint step (empty_map g)

(* follow *)

type follows = Tset.t Ntmap.t

let follow g nulls firsts =
  let update (follows,b) nt s =
    let ntn = Ntmap.find nt follows in
    if Tset.subset s ntn then
      (follows,b)
    else
      (Ntmap.add nt (Tset.union s ntn) follows,true)
  in
  let rec update_prod ((follows,b) as acc) nty = function
    | [] ->
        acc
    | NonTerminal ntx :: beta ->
        let acc' = update acc ntx (first_production_step nulls firsts beta) in
        let acc'' =
          if is_null_production nulls beta then
            update acc' ntx (Ntmap.find nty follows)
          else
            acc'
        in
        update_prod acc'' nty beta
    | Terminal _ :: beta ->
        update_prod acc nty beta
  in
  let step follows =
    List.fold_left
      (fun acc (nt,p) -> update_prod acc nt p)
      (follows,false) g.rules
  in
  fixpoint step (empty_map g)

(* table d'analyse descendante *)

module Tmap = Map.Make(String)
module Pset = Set.Make(struct type t = production let compare = compare end)

type expansion_table = Pset.t Tmap.t Ntmap.t

let add_entry table nt t p =
  let line = try Ntmap.find nt table with Not_found -> Tmap.empty in
  let s = try Tmap.find t line with Not_found -> Pset.empty in
  Ntmap.add nt (Tmap.add t (Pset.add p s) line) table

let expansions g =
  let nulls = null g in
  let firsts = first g nulls in
  let follows = follow g nulls firsts in
  List.fold_left
    (fun table (nt,p) ->
       let ts = first_production_step nulls firsts p in
       let ts' =
         if is_null_production nulls p then
           Tset.union ts (Ntmap.find nt follows)
         else
           ts
       in
       Tset.fold (fun t table -> add_entry table nt t p) ts' table)
    Ntmap.empty g.rules

let g1 = {
  start = "S'";
  rules = ["S'", [NonTerminal "S"; Terminal "#"];
           "S", [];
           "S", [Terminal "a"; NonTerminal "A"; NonTerminal "S"];
           "S", [Terminal "b"; NonTerminal "B"; NonTerminal "S"];
           "A", [Terminal "a"; NonTerminal "A"; NonTerminal "A"];
           "A", [Terminal "b"];
           "B", [Terminal "b"; NonTerminal "B"; NonTerminal "B"];
           "B", [Terminal "a"];
          ] };;

let pp_symbol fmt = function
  | Terminal s -> Format.fprintf fmt "\"%s\"" s
  | NonTerminal s -> Format.fprintf fmt "%s" s

let rec pp_production fmt = function
  | [] -> ()
  | [x] -> pp_symbol fmt x
  | x :: l -> Format.fprintf fmt "%a %a" pp_symbol x pp_production l

let pp_table fmt t =
  let print_entry c p =
    Format.fprintf fmt "  %s: @[%a@]@\n" c pp_production p in
  let print_row nt m =
       Format.fprintf fmt "@[Expansions for %s:@\n" nt;
       Tmap.iter (fun c rs -> Pset.iter (print_entry c) rs) m;
       Format.fprintf fmt "@]" in
  Ntmap.iter print_row t

let table1 = expansions g1
let () = Format.printf "%a@." pp_table table1

let g_arith =
  { start = "S'";
    rules = [ "S'", [ NonTerminal "E"; Terminal "#" ];
              "E",  [ NonTerminal "T"; NonTerminal "E'"; ];
              "E'", [ Terminal "+"; NonTerminal "T"; NonTerminal "E'"; ];
              "E'", [ ];
              "T",  [ NonTerminal "F"; NonTerminal "T'"; ];
              "T'", [ Terminal "*"; NonTerminal "F"; NonTerminal "T'"; ];
              "T'", [ ];
              "F",  [ Terminal "("; NonTerminal "E"; Terminal ")"; ];
              "F",  [ Terminal "int" ]; ] }

let table_arith = expansions g_arith
let () = Format.printf "%a@." pp_table table_arith

(* Caractérisation LL(1) *)

let is_ll1 t =
  try
    Ntmap.iter
      (fun _ m ->
         Tmap.iter (fun _ rs -> if Pset.cardinal rs > 1 then raise Exit) m)
      t;
    true
  with Exit ->
    false

let () = assert (is_ll1 table1)
let () = assert (is_ll1 table_arith)

(* Reconnaissance d'un mot *)

let analyze start table w =
  let rec scan = function
    | [], [] ->
        true
    | NonTerminal n :: s, (t :: _ as w) ->
        let p = Pset.choose (Tmap.find t (Ntmap.find n table)) in
        scan (p @ s, w)
    | Terminal t' :: s, t :: w when t' = t ->
        scan (s, w)
    | _ ->
        raise Not_found
  in
  try scan ([NonTerminal start], w @ ["#"])
  with Not_found -> false

let explode s =
  let n = String.length s in
  let rec make i = if i = n then [] else String.make 1 s.[i] :: make (i+1) in
  make 0

let test1 s = analyze g1.start (expansions g1) (explode s)

(* positifs *)

let () = assert (test1 "")
let () = assert (test1 "ab")
let () = assert (test1 "ba")
let () = assert (test1 "abab")
let () = assert (test1 "aaabbb")
let () = assert (test1 "aaabababbbababab")

(* négatifs *)

let () = assert (not (test1 "a"))
let () = assert (not (test1 "b"))
let () = assert (not (test1 "aab"))
let () = assert (not (test1 "aaabbba"))
let () = assert (not (test1 "aaabbbaabab"))
let () = assert (not (test1 "aaaaaaaaaaaaaaaaaaaaabbbbbbbbbbbbbbbbbbbb"))

(* Bootstrap : la grammaire des grammaires

   S' -> S#
   S  -> R
       | R ";" S
   R  -> "ident" "::=" P
   P  -> W
       | W "|" P
   W  ->
       | C W
   C  -> "ident"
       | "string"

*)

let g_gram =
  { start = "S'";
    rules = [ "S'", [ NonTerminal "S"; Terminal "#" ];
              "S",  [ NonTerminal "R" ];
              "S",  [ NonTerminal "R"; Terminal ";"; NonTerminal "S" ];
              "R",  [ Terminal "ident"; Terminal "::="; NonTerminal "P"];
              "P",  [ NonTerminal "W" ];
              "P",  [ NonTerminal "W"; Terminal "|"; NonTerminal "P" ];
              "W",  [ ];
              "W",  [ NonTerminal "C"; NonTerminal "W";];
              "C",  [ Terminal "ident"];
              "C",  [ Terminal "string"];
            ] }

let table_gram = expansions g_gram
let () = Format.printf "%a@." pp_table table_gram
let () = assert (not (is_ll1 table_gram))

let g_gram2 =
  { start = "S'";
    rules = [ "S'", [ NonTerminal "S"; Terminal "#" ];
              "S",  [ NonTerminal "R"; NonTerminal "S2"; ];
              "S2", [ ];
              "S2", [ Terminal ";"; NonTerminal "S" ];
              "R",  [ Terminal "ident"; Terminal "::="; NonTerminal "P"];
              "P",  [ NonTerminal "W"; NonTerminal "P2" ];
              "P2", [ ];
              "P2", [ Terminal "|"; NonTerminal "P" ];
              "W",  [ ];
              "W",  [ NonTerminal "C"; NonTerminal "W";];
              "C",  [ Terminal "ident"];
              "C",  [ Terminal "string"];
            ] }

let table_gram2 = expansions g_gram2
let () = Format.printf "%a@." pp_table table_gram2
let () = assert (is_ll1 table_gram2)



This document was generated using caml2html