Deductive Program Verification with Why3

Jean-Christophe Filliâtre CNRS

Digicosme Spring School April 22, 2013

http://why3.lri.fr/digicosme-spring-school-2013/

definition

this is not new

A. M. Turing. Checking a large routine. 1949.

this is not new

Tony Hoare.

Proof of a program: FIND.

Commun. ACM, 1971.

k		
$\leq v$	٧	$\geq v$

which programs? which specs?

programs

- pseudo code / mainstream languages / DSL
- small / large

specs

- safety, i.e. the program does not crash
- absence of arithmetic overflow
- complex behavioral property, e.g. "sorts an array"

which logic?

- too rich: we won't be able to automate proofs
- too poor: we can't model programming languages and we can't specify programs

typically, a compromise

• e.g. first-order logic + equality + arithmetic

what about proofs?

a gift: theorem provers

- proof assistants: Coq, PVS, Isabelle, etc.
- TPTP provers: Vampire, Eprover, SPASS, etc.
- SMT solvers: CVC3, Z3, Yices, Alt-Ergo, etc.
- dedicated provers

extracting verification conditions

a well-known technique: weakest preconditions (Dijkstra 1971, Barnett/Leino 2005)

yet doing it for a realistic programming language is a lot of work

extracting verification conditions

a well-known technique: weakest preconditions (Dijkstra 1971, Barnett/Leino 2005)

yet doing it for a realistic programming language is a lot of work

instead, we design an simpler language from which we extract VCs

two examples:

- Boogie (Microsoft Research)
- Why3 (Univ. Paris Sud / Inria)

Why3 in a nutshell

- a programming language, WhyML
 - polymorphism
 - pattern-matching
 - exceptions
 - mutable data structures, with controlled aliasing

- a polymorphic first-order logic
 - algebraic data types
 - recursive definitions
 - inductive and coinductive predicates

file.mlw WhyML **VCgen** file.why Why transform/translate print/run CVC4 Coq Alt-Ergo

http://why3.lri.fr/

applications

three different ways of using Why3

- as a logical language

 (a convenient front-end to many theorem provers)
- as a programming language to prove algorithms (many examples in our gallery)
- as an intermediate language, to verify programs written in C, Java, Ada, etc.

some systems using Why3

Why3, bottom up

Part I

one logic to use them all

using theorem provers

there are many theorem provers

- SMT solvers: Alt-Ergo, Z3, CVC3, Yices, etc.
- TPTP provers: Vampire, Eprover, SPASS, etc.
- proof assistants: Coq, PVS, Isabelle, etc.
- dedicated provers, e.g. Gappa

we want to use all of them if possible

we make a compromise

in a nutshell

logic of Why3 = polymorphic first-order logic, with

- (mutually) recursive algebraic data types
- (mutually) recursive function/predicate symboles
- (mutually) inductive predicates
- let-in, match-with, if-then-else

formal definition in Expressing Polymorphic Types in a Many-Sorted Language (FroCos 2011) One Logic To Use Them All (CADE 2013) demo 1: the logic of Why3

declarations

- types
 - abstract: type t
 - alias: type t = list int
 - algebraic: type list 'a = Nil | Cons 'a (list 'a)
- function / predicate
 - uninterpreted: function f int : int
 - defined: predicate non_empty (1: list 'a) = 1 <> Nil
- inductive predicate
 - inductive trans t t = ...
- axiom / lemma / goal
 - goal G: forall x: int. x >= 0 -> x*x >= 0

theories

logic declarations organized in theories

- a theory T_1 can be
 - used (use) in a theory T_2
 - cloned (clone) in another theory T_2

theories

logic declarations organized in theories

- a theory T_1 can be
 - used (use) in a theory T_2
 - symbols of T_1 are shared
 - axioms of T_1 remain axioms
 - lemmas of T₁ become axioms
 - ullet goals of T_1 are ignored
 - cloned (clone) in another theory T_2

logic declarations organized in theories

- a theory T_1 can be
 - used (use) in a theory T_2
 - cloned (clone) in another theory T_2
 - declarations of T₁ are copied or substituted
 - axioms of T₁ remain axioms or become lemmas/goals
 - lemmas of T₁ become axioms
 - goals of T_1 are ignored

under the hood

a technology to talk to provers

central concept: task

- a context (a list of declarations)
- a goal (a formula)

Alt-Ergo

Z3

Vampire

Alt-Ergo

Z3

Vampire

transformations

- eliminate algebraic data types and match-with
- eliminate inductive predicates
- eliminate if-then-else, let-in
- encode polymorphism, encode types
- etc.

efficient: results of transformations are memoized

driver

a task journey is driven by a file

- transformations to apply
- prover's input format
 - syntax
 - predefined symbols / axioms
- prover's diagnostic messages

more details: Why3: Shepherd your herd of provers (Boogie 2011)

example: Z3 driver (excerpt)

```
printer "smtv2"
valid "^unsat"
invalid "^sat"
transformation "inline trivial"
transformation "eliminate builtin"
transformation "eliminate definition"
transformation "eliminate inductive"
transformation "eliminate_algebraic"
transformation "simplify_formula"
transformation "discriminate"
transformation "encoding_smt"
prelude "(set-logic AUFNIRA)"
theory BuiltIn
   syntax type int "Int"
   syntax type real "Real"
   syntax predicate (=) "(= %1 %2)"
  meta "encoding : kept" type int
end
```

Why3 has an OCaml API

- to build terms, declarations, theories, tasks
- to call provers

defensive API

- well-typed terms
- well-formed declarations, theories, and tasks

plug-ins

Why3 can be extended via three kinds of plug-ins

- parsers (new input formats)
- transformations (to be used in drivers)
- printers (to add support for new provers)

API and plug-ins

summary

- numerous theorem provers are supported
 - Coq, SMT, TPTP, Gappa
- user-extensible system
 - input languages
 - transformations
 - output syntax
- efficient
 - e.g. transformations are memoized

more details:

- Why3: Shepherd your herd of provers. (Boogie 2011)
- Preserving User Proofs Across Specification Changes (VSTTE 2013)

Part II

program verification

demo 2: an historical example

A. M. Turing. Checking a Large Routine. 1949.

demo 2: an historical example

A. M. Turing. Checking a Large Routine. 1949.

$$u \leftarrow 1$$

for $r = 0$ to $n - 1$ do
 $v \leftarrow u$
for $s = 1$ to r do
 $u \leftarrow u + v$

demo (access code)

demo 3: another historical example

$$f(n) = \left\{ egin{array}{ll} n-10 & ext{si } n > 100, \\ f(f(n+11)) & ext{sinon.} \end{array}
ight.$$

demo 3: another historical example

$$f(n) = \left\{ \begin{array}{l} n-10 & \text{si } n > 100, \\ f(f(n+11)) & \text{sinon.} \end{array} \right.$$

$$\begin{array}{l} \text{demo (access code)} \end{array}$$

$$\begin{array}{l} e \leftarrow 1 \\ \text{while } e > 0 \text{ do} \\ \text{if } n > 100 \text{ then} \\ n \leftarrow n-10 \\ e \leftarrow e-1 \\ \text{else} \end{array}$$

 $n \leftarrow n + 11$ $e \leftarrow e + 1$

return n

demo (access code)

Recapitulation

pre/postcondition

```
let foo x y z
  requires { P } ensures { Q }
  = ...
```

• loop invariant

```
while ... do invariant \{I\} ... done
for i = ... do invariant \{I(i)\} ... done
```

Recapitulation

termination of a loop (resp. a recursive function) is ensured by a variant

variant
$$\{t\}$$
 with R

- R is a well-founded order relation
- t decreases for R at each step (resp. each recursive call)

by default, t is of type int and R is the relation

$$y \prec x \stackrel{\mathsf{def}}{=} y < x \land 0 \le x$$

remark

as show with function 91, proving termination may require to establish behavioral properties as well

another example:

• Floyd's cycle detection (Hare and Tortoise algorithm)

data structures

up to now, we have only used integers

let us consider more complex data structures

- arrays
- algebraic data types

Why3 standard library provides arrays

that is

a polymorphic type

an access operation, written

an assignment operation, written

$$a[e1] \leftarrow e2$$

• operations create, append, sub, copy, etc.

demo 4: two-way sort

sort an array of Boolean, using the following algorithm

```
let two_way_sort (a: array bool) =
  let i = ref 0 in
  let j = ref (length a - 1) in
  while !i < !j do
    if not a[!i] then
                                False
                                                     True
      incr i
    else if a[!j] then
      decr j
    else begin
      let tmp = a[!i] in
      a[!i] \leftarrow a[!j];
      a[!j] <- tmp;
      incr i;
                                          demo (access code)
      decr j
    end
  done
```

exercise 1: Dutch national flag

an array contains elements of the following enumerated type

```
type color = Blue | White | Red
```

sort it, in such a way we have the following final situation:

```
... Blue ... ... White ... ... Red ...
```

exercise: Dutch national flag

```
let dutch_flag (a:array color) (n:int) =
 let b = ref 0 in
 let i = ref 0 in
 let r = ref n in
  while !i < !r do
     match a[!i] with
     | Blue ->
         swap a !b !i;
         incr b;
         incr i
     | White ->
         incr i
     | Red ->
         decr r;
         swap a !r !i
     end
  done
```

remark

as for termination, proving safety (such as absence of array access our of bounds) may be arbitrarily difficult

an example:

• Knuth's algorithm for N first primes (TAOCP vol. 1)

demo 5: Boyer-Moore's majority

given a multiset of N votes

determine the majority, if any

an elegant solution

due to Boyer & Moore (1980)

linear time

uses only three variables

MJRTY—A Fast Majority Vote Algorithm

Robert S. Boyer and J Strother Moore

Computer Sciences Department University of Texas at Austin and

Computational Logic, Inc. 1717 West Sixth Street, Suite 290 Austin, Texas

Abstract

A new algorithm is presented for determining which, if any, of an arbitrary number of candidates has received a majority of the votes cast in an election.

$$\begin{array}{ccc} \texttt{cand} & \texttt{=} & \texttt{A} \\ \texttt{k} & \texttt{=} & \texttt{1} \end{array}$$

cand =
$$A$$

k = 2

$$cand = A$$
$$k = 3$$

cand =
$$A$$

k = 2

$$cand = A$$
$$k = 1$$

$$cand = A$$
$$k = 0$$

$$cand = B$$
$$k = 1$$

$$cand = B$$
$$k = 0$$

$$cand = C$$
$$k = 1$$

cand =
$$C$$

k = 2

$$cand = C$$
$$k = 1$$

$$cand = C$$
$$k = 2$$

$$cand = C$$
 $k = 3$

$$cand = C$$
$$k = 3$$

then we check if C indeed has majority, with a second pass (in that case, it has: 7>13/2)

Fortran

```
SUBROUTINE MJRTY(A, N, BOOLE, CAND)
     INTEGER N
     INTEGER A
     LOGICAL BOOLE
     INTEGER CAND
     INTEGER I
     INTEGER K
     DIMENSION A(N)
     K = 0
C
     THE FOLLOWING DO IMPLEMENTS THE PAIRING PHASE. CAND IS
     THE CURRENTLY LEADING CANDIDATE AND K IS THE NUMBER OF
     UNPAIRED VOTES FOR CAND.
     DO 100 I = 1, N
     IF ((K .EQ. 0)) GOTO 50
     IF ((CAND .EQ. A(I))) GOTO 75
     K = (K - 1)
     GOTO 100
50 CAND = A(I)
     K = 1
     GOTO 100
    K = (K + 1)
100 CONTINUE
     IF ((K .EQ. 0)) GOTO 300
     BOOLE = .TRUE.
     IF ((K .GT. (N / 2))) RETURN
C
     WE NOW ENTER THE COUNTING PHASE. BOOLE IS SET TO TRUE
    IN ANTICIPATION OF FINDING CAND IN THE MAJORITY. K IS
     USED AS THE RUNNING TALLY FOR CAND. WE EXIT AS SOON
     AS K EXCEEDS N/2.
     K = 0
     DO 200 I = 1, N
     IF ((CAND .NE. A(I))) GOTO 200
     K = (K + 1)
     IF ((K .GT. (N / 2))) RETURN
200 CONTINUE
300 BOOLE = .FALSE.
     RETURN
     END
```

Why3

```
let mjrty (a: array candidate) =
 let n = length a in
  let cand = ref a[0] in let k = ref 0 in
  for i = 0 to n-1 do
    if !k = 0 then begin cand := a[i]; k := 1 end
    else if !cand = a[i] then incr k else decr k
  done:
  if !k = 0 then raise Not_found;
  try
    if 2 * !k > n then raise Found; k := 0;
    for i = 0 to n-1 do
      if a[i] = !cand then begin
        incr k; if 2 * !k > n then raise Found
      end
    done:
    raise Not found
  with Found ->
    !cand
  end
```

specification

precondition

```
let mjrty (a: array candidate)
  requires { 1 <= length a }</pre>
```

• postcondition in case of success

ensures

```
{ 2 * numof a result 0 (length a) > length a }
```

postcondition in case of failure

```
raises { Not_found ->
  forall c: candidate.
    2 * numof a c 0 (length a) <= length a }</pre>
```

each loop is given a loop invariant

```
for i = 0 to n-1 do
  invariant { 0 <= !k <= i /\
    numof a !cand 0 i >= !k /
    2 * (numof a ! cand 0 i - !k) <= i - !k / 
    forall c: candidate.
      c \iff !cand \implies 2 * numof a c 0 i \iff i - !k
for i = 0 to n-1 do
  invariant \{ !k = numof a ! cand 0 i / 2 * !k <= n \}
```

the verification condition expresses

- safety
 - array access within bounds
 - termination
- validity of annotations
 - invariants are initialized and preserved
 - postconditions are established

automatically discharged by SMT solvers

ghost code

may be inserted for the purpose of specification and/or proof

rules are:

- ghost code may read regular data (but can't modify it)
- ghost code cannot modify the control flow of regular code
- regular code does not see ghost data

in particular, ghost code may be removed without observable modification

demo 6: ring buffer

a circular buffer is implemented within an array

len elements are stored, starting at index first

they may wrap around the array bounds

demo 6: ring buffer

we add an extra ghost field to model the buffer contents

ghost code is added to set this ghost field accordingly

example:

we link the array contents and the ghost field with a type invariant

```
type buffer 'a =
invariant {
  let size = Array.length self.data in
  0 <= self.first < size /\</pre>
  0 <= self.len <= size /\
  self.len = L.length self.sequence /\
  forall i: int. 0 <= i < self.len ->
    (self.first + i < size ->
       nth i self.sequence =
       Some self.data[self.first + i]) /\
    (0 <= self.first + i - size ->
       nth i self.sequence =
       Some self.data[self.first + i - size])
}
```

such a type invariant

- is assumed at function entry
- must be ensured for values returned or modified

alternatively, we could have introduced a logical function mapping the buffer to a list

```
function buffer_model (b: buffer 'a) : list 'a
(* + suitable axioms *)
```

but ghost code

- is more compact
- results in simpler proofs (it provides explicit witnesses)

other data structures

a key idea of Hoare logic:

any types and symbols from the logic can be used in programs

note: we already used type int this way

algebraic data types

we can do so with algebraic data types

in the library, we find

given two binary trees, do they contain the same elements when traversed in order?


```
type elt
type tree =
  | Empty
  | Node tree elt tree
function elements (t: tree) : list elt = match t with
  | Empty -> Nil
  | Node 1 x r -> elements 1 ++ Cons x (elements r)
end
let same_fringe (t1 t2: tree) : bool
  ensures { result=True <-> elements t1 = elements t2 }
  . . .
```

one solution: look at the left branch as a list, from bottom up

one solution: look at the left branch as a list, from bottom up

demo (access code)

exercise 2: inorder traversal

```
inorder traversal of t, storing its elements in array a
  let rec fill (t: tree) (a: array elt) (start: int) : int =
    match t with
    | N1111 ->
        start
    | Node | x r ->
        let res = fill l a start in
        if res <> length a then begin
          a[res] \leftarrow x;
           fill r a (res + 1)
        end else
          res
     end
```

type tree = Null | Node tree elt tree

type elt

Part III

controlled aliasing

mutable data

```
only one kind of mutable data structure: records with mutable fields
```

```
for instance, references are defined this way
  type ref 'a = { mutable contents : 'a }
and ref, !, and := are regular functions
```

similarly, the library introduces arrays as follows:

```
type array 'a model { length: int; mutable elts: map int 'a }
```

keyword model instead of = makes a distinction

- in programs, array 'a is an abstract data type
- in the logic, array 'a is a (immutable) record type

operations on arrays

```
one cannot define operations over type array 'a (it is abstract) but one may declare them
```

examples:

```
val ([]) (a: array 'a) (i: int) : 'a
  requires { 0 <= i < length a }
  ensures { result = a[i] }

val ([]<-) (a: array 'a) (i: int) (v: 'a) : unit
  requires { 0 <= i < length a }
  writes { a.elts }
  ensures { a.elts = M.set (old a.elts) i v }</pre>
```

nested mutable data structures

mutable data structures can be nested

```
example: hash tables

type t 'a = {
   mutable size: int;
   mutable data: array (list (key, 'a));
}

field data is mutable to allow resizing
```

controlled aliasing

but WhyML imposes a static control of aliasing

why? to get simpler verification conditions how? using regions (internally)

```
consider hash tables again
  type t 'a = {
    mutable size: int;
    mutable data: array (list (key, 'a));
a function resize (called from add) enlarges the bucket array
  let resize (h: t 'a) : unit
    writes { h.data }
    let nsize = 2 * Array.length h.data + 1 in
    let ndata = Array.make nsize Nil in
    ... rehash all values ...
    h.data <- ndata
```

demo 8: hash tables

then the following code is rejected

```
let alias (h: t int) (k: key) : unit =
  let old_data = h.data in
  add h k 42;
  old_data[0] <- Nil</pre>
```

with error

This expression prohibits further usage of variable old_data

indeed, add may call resize, and thus may invalidate old_data

more details:

Why3 — Where Program Meet Provers (ESOP 2013)

consequence of controlled aliasing

to use Why3 to verify programs with aliasing, you have to come up with a memory model

```
type loc
type value = ...
type state = map loc value
...
```

this is what is done for C, Java, Ada, etc.

memory model

```
consider for instance C programs with pointers of type int*
a possible model is
    type loc
    val memory: ref (map loc int)
the C expression
    *p
is translated into the Why3 expression
     !memory[p]
```

memory model

```
there are more subtle models
such as the component-as-array model (Burstall / Bornat)
each structure field is modeled as a separate map
the C type
    struct List {
      int
                     head:
      struct List *next;
    };
is modeled as
    type loc
    val head: ref (map loc int)
    val next: ref (map loc loc)
```

memory models

such models are used in tools for C, Java, and Ada

conclusion

conclusion

we saw three different ways of using Why3

- as a logical language

 (a convenient front-end to many theorem provers)
- as a programming language to prove algorithms (currently 78 examples in our gallery)
- as an intermediate language (for the verification of C, Java, Ada, etc.)

things not covered in this lecture

- how aliases are excluded
- how verification conditions are computed
- how formulas are sent to provers
- how floating-point arithmetic is modeled
- etc.

see http://why3.lri.fr for more details