Deductive Program Verification with Why3

Jean-Christophe Filliâtre CNRS

Digicosme Spring School
April 22, 2013

http://why3.lri.fr/digicosme-spring-school-2013/

definition

this is not new

A. M. Turing. Checking a large routine. 1949.

Tony Hoare. Proof of a program: FIND.
Commun. ACM, 1971.

programs

- pseudo code / mainstream languages / DSL
- small / large
specs
- safety, i.e. the program does not crash
- absence of arithmetic overflow
- complex behavioral property, e.g. "sorts an array"

which logic?

- too rich: we won't be able to automate proofs
- too poor: we can't model programming languages and we can't specify programs
typically, a compromise
- e.g. first-order logic + equality + arithmetic

what about proofs?

a gift: theorem provers

- proof assistants: Coq, PVS, Isabelle, etc.
- TPTP provers: Vampire, Eprover, SPASS, etc.
- SMT solvers: CVC3, Z3, Yices, Alt-Ergo, etc.
- dedicated provers

extracting verification conditions

a well-known technique: weakest preconditions
(Dijkstra 1971, Barnett/Leino 2005)
yet doing it for a realistic programming language is a lot of work

extracting verification conditions

a well-known technique: weakest preconditions
(Dijkstra 1971, Barnett/Leino 2005)
yet doing it for a realistic programming language is a lot of work
instead, we design an simpler language from which we extract VCs
two examples:

- Boogie (Microsoft Research)
- Why3 (Univ. Paris Sud / Inria)
- a programming language, WhyML
- polymorphism
- pattern-matching
- exceptions
- mutable data structures, with controlled aliasing
- a polymorphic first-order logic
- algebraic data types
- recursive definitions
- inductive and coinductive predicates
http://why3.lri.fr/

three different ways of using Why3
- as a logical language
(a convenient front-end to many theorem provers)
- as a programming language to prove algorithms (many examples in our gallery)
- as an intermediate language, to verify programs written in C, Java, Ada, etc.

some systems using Why3

Why3, bottom up

Part I

one logic to use them all

using theorem provers

there are many theorem provers

- SMT solvers: Alt-Ergo, Z3, CVC3, Yices, etc.
- TPTP provers: Vampire, Eprover, SPASS, etc.
- proof assistants: Coq, PVS, Isabelle, etc.
- dedicated provers, e.g. Gappa
we want to use all of them if possible
we make a compromise
logic of Why3 $=$ polymorphic first-order logic, with
- (mutually) recursive algebraic data types
- (mutually) recursive function/predicate symboles
- (mutually) inductive predicates
- let-in, match-with, if-then-else
formal definition in
Expressing Polymorphic Types in a Many-Sorted Language (FroCos 2011) One Logic To Use Them All (CADE 2013)
demo 1: the logic of Why3

declarations

- types
- abstract: type t
- alias: type $\mathrm{t}=$ list int
- algebraic: type list 'a = Nil | Cons 'a (list 'a)
- function / predicate
- uninterpreted: function f int : int
- defined: predicate non_empty (l: list 'a) = 1 <> Nil
- inductive predicate
- inductive trans t t $=$...
- axiom / lemma / goal
- goal G : forall x : int. $\mathrm{x}>=0 \rightarrow \mathrm{x} * \mathrm{x}>=0$

theories

logic declarations organized in theories
a theory T_{1} can be

- used (use) in a theory T_{2}
- cloned (clone) in another theory T_{2}

theories

logic declarations organized in theories
a theory T_{1} can be

- used (use) in a theory T_{2}
- symbols of T_{1} are shared
- axioms of T_{1} remain axioms
- lemmas of T_{1} become axioms
- goals of T_{1} are ignored
- cloned (clone) in another theory T_{2}

theories

logic declarations organized in theories
a theory T_{1} can be

- used (use) in a theory T_{2}
- cloned (clone) in another theory T_{2}
- declarations of T_{1} are copied or substituted
- axioms of T_{1} remain axioms or become lemmas/goals
- lemmas of T_{1} become axioms

- goals of T_{1} are ignored
a technology to talk to provers
central concept: task
- a context (a list of declarations)
- a goal (a formula)

transformations

- eliminate algebraic data types and match-with
- eliminate inductive predicates
- eliminate if-then-else, let-in
- encode polymorphism, encode types
- etc.
efficient: results of transformations are memoized
a task journey is driven by a file
- transformations to apply
- prover's input format
- syntax
- predefined symbols / axioms
- prover's diagnostic messages
more details: Why3: Shepherd your herd of provers (Boogie 2011)

example: Z3 driver (excerpt)

```
printer "smtv2"
valid "^unsat"
invalid "^sat"
transformation "inline_trivial"
transformation "eliminate_builtin"
transformation "eliminate_definition"
transformation "eliminate_inductive"
transformation "eliminate_algebraic"
transformation "simplify_formula"
transformation "discriminate"
transformation "encoding_smt"
prelude "(set-logic AUFNIRA)"
theory BuiltIn
    syntax type int "Int"
    syntax type real "Real"
    syntax predicate (=) "(= %1 %2)"
    meta "encoding : kept" type int
end
```

Why3 has an OCaml API

- to build terms, declarations, theories, tasks
- to call provers

defensive API

- well-typed terms
- well-formed declarations, theories, and tasks

Why3 can be extended via three kinds of plug-ins

- parsers (new input formats)
- transformations (to be used in drivers)
- printers (to add support for new provers)

API and plug-ins

summary

- numerous theorem provers are supported
- Coq, SMT, TPTP, Gappa
- user-extensible system
- input languages
- transformations
- output syntax
- efficient
- e.g. transformations are memoized
more details:
- Why3: Shepherd your herd of provers. (Boogie 2011)
- Preserving User Proofs Across Specification Changes (VSTTE 2013)

Part II

program verification

demo 2: an historical example

A. M. Turing. Checking a Large Routine. 1949.

demo 2: an historical example

A. M. Turing. Checking a Large Routine. 1949.

$$
\begin{aligned}
& u \leftarrow 1 \\
& \text { for } r=0 \text { to } n-1 \text { do } \\
& v \leftarrow u \\
& \text { for } s=1 \text { to } r \text { do } \\
& \quad u \leftarrow u+v
\end{aligned}
$$

demo (access code)

demo 3: another historical example

$$
\begin{aligned}
& f(n)= \begin{cases}n-10 & \text { si } n>100 \\
f(f(n+11)) & \text { sinon. }\end{cases} \\
& \text { demo (access code) }
\end{aligned}
$$

demo 3: another historical example

$$
\begin{aligned}
& f(n)= \begin{cases}n-10 & \text { si } n>100 \\
f(f(n+11)) & \text { sinon. }\end{cases} \\
& \text { demo (access code) }
\end{aligned}
$$

$$
\begin{aligned}
& e \leftarrow 1 \\
& \text { while } e>0 \text { do } \\
& \text { if } n>100 \text { then } \\
& \qquad \begin{array}{l}
n \leftarrow n-10 \\
e \\
\text { else } \\
\left.\qquad \begin{array}{l}
n \\
\\
e
\end{array}\right) \leftarrow n+11 \\
\text { return } n
\end{array}
\end{aligned}
$$

Recapitulation

- pre/postcondition

$$
\begin{aligned}
& \text { let foo } \mathrm{x} \text { y } \mathrm{z} \\
& \text { requires }\{P\} \text { ensures }\{Q\} \\
& =\ldots
\end{aligned}
$$

- loop invariant

$$
\begin{aligned}
& \text { while } . . \text { do invariant }\{I\} \ldots \text { done } \\
& \text { for } i=\ldots \text { do invariant }\{I(i)\} \ldots \text { done }
\end{aligned}
$$

Recapitulation

termination of a loop (resp. a recursive function) is ensured by a variant

$$
\text { variant }\{t\} \text { with } R
$$

- R is a well-founded order relation
- t decreases for R at each step (resp. each recursive call)
by default, t is of type int and R is the relation

$$
y \prec x \stackrel{\text { def }}{=} y<x \wedge 0 \leq x
$$

as show with function 91, proving termination may require to establish behavioral properties as well
another example:

- Floyd's cycle detection (Hare and Tortoise algorithm)

data structures

up to now, we have only used integers
let us consider more complex data structures

- arrays
- algebraic data types

Why3 standard library provides arrays

```
use import array.Array
```

that is

- a polymorphic type
array 'a
- an access operation, written

$$
\mathrm{a}[\mathrm{e}]
$$

- an assignment operation, written

$$
\mathrm{a}[\mathrm{e} 1]<-\mathrm{e} 2
$$

- operations create, append, sub, copy, etc.

demo 4: two-way sort

sort an array of Boolean, using the following algorithm

```
let two_way_sort (a: array bool) =
    let i = ref 0 in
    let j = ref (length a - 1) in
    while !i < !j do
        if not a[!i] then
        incr i
        else if a[!j] then
        decr j
        else begin
        let tmp = a[!i] in
        a[!i] <- a[!j];
        a[!j] <- tmp;
        incr i;
        decr j
        end
    done
```


exercise 1: Dutch national flag

an array contains elements of the following enumerated type
type color = Blue | White | Red
sort it, in such a way we have the following final situation:

$$
\begin{array}{|l|l|l|}
\hline \ldots \text { Blue ... } & \text {... White Red ... } \\
\hline
\end{array}
$$

exercise: Dutch national flag

```
let dutch_flag (a:array color) (n:int) =
    let b = ref 0 in
    let i = ref 0 in
    let r = ref n in
    while !i < !r do
        match a[!i] with
        | Blue ->
            swap a !b !i;
            incr b;
            incr i
        | White ->
                        incr i
        | Red ->
            decr r;
            swap a !r !i
        end
    done
```

 exercise: exo_flag.mlw
 as for termination, proving safety (such as absence of array access our of bounds) may be arbitrarily difficult
an example:

- Knuth's algorithm for N first primes (TAOCP vol. 1)

demo 5: Boyer-Moore's majority

given a multiset of N votes

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline \mathrm{A} & \mathrm{~A} & \mathrm{~A} & \mathrm{C} & \mathrm{C} & \mathrm{~B} & \mathrm{~B} & \mathrm{C} & \mathrm{C} & \mathrm{C} & \mathrm{~B} & \mathrm{C} & \mathrm{C} \\
\hline
\end{array}
$$

determine the majority, if any

an elegant solution

due to Boyer \& Moore (1980)
linear time
uses only three variables

MJRTY-A Fast Majority Vote Algorithm'

Robert S. Boyer and J Strother Moore
Computer Sciences Department
University of Texas at Austin
and
Computational Logic, Inc. 1717 West Sixth Street, Suite 290

Austin, Texas

Abstract

A new algorithm is presented for determining which, if any, of an arbitrary number of candidates has received a majority of the votes cast in an election.

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline \mathrm{A} & \mathrm{~A} & \mathrm{~A} & \mathrm{C} & \mathrm{C} & \mathrm{~B} & \mathrm{~B} & \mathrm{C} & \mathrm{C} & \mathrm{C} & \mathrm{~B} & \mathrm{C} & \mathrm{C} \\
\hline \uparrow & \\
\hline
\end{array}
$$

$$
\begin{aligned}
\text { cand } & =\mathrm{A} \\
\mathrm{k} & =1
\end{aligned}
$$

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline A & A & A & C & C & B & B & C & C & C & B & C & C \\
\hline & \uparrow & & & & & & & & & \\
\hline
\end{array}
$$

$$
\begin{aligned}
\text { cand } & =\mathrm{A} \\
\mathrm{k} & =2
\end{aligned}
$$

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline A & A & A & C & C & B & B & C & C & C & B & C & C \\
\hline & & \uparrow & & & & & & & & \\
\hline
\end{array}
$$

$$
\begin{aligned}
\text { cand } & =\mathrm{A} \\
\mathrm{k} & =3
\end{aligned}
$$

$$
\begin{aligned}
\text { cand } & =\mathrm{A} \\
\mathrm{k} & =2
\end{aligned}
$$

$$
\begin{aligned}
\text { cand } & =\mathrm{A} \\
\mathrm{k} & =1
\end{aligned}
$$

$$
\begin{aligned}
\text { cand } & =\mathrm{A} \\
\mathrm{k} & =0
\end{aligned}
$$

$$
\begin{aligned}
\text { cand } & =\mathrm{B} \\
\mathrm{k} & =1
\end{aligned}
$$

$$
\begin{aligned}
\text { cand } & =\mathrm{B} \\
\mathrm{k} & =0
\end{aligned}
$$

$$
\begin{aligned}
\text { cand } & =\mathrm{C} \\
\mathrm{k} & =1
\end{aligned}
$$

$$
\begin{aligned}
\text { cand } & =\mathrm{C} \\
\mathrm{k} & =2
\end{aligned}
$$

$$
\begin{aligned}
\text { cand } & =\mathrm{C} \\
\mathrm{k} & =1
\end{aligned}
$$

$$
\begin{aligned}
\text { cand } & =\mathrm{C} \\
\mathrm{k} & =2
\end{aligned}
$$

$$
\begin{aligned}
\text { cand } & =\mathrm{C} \\
\mathrm{k} & =3
\end{aligned}
$$

$$
\begin{aligned}
\text { cand } & =\mathrm{C} \\
\mathrm{k} & =3
\end{aligned}
$$

then we check if C indeed has majority, with a second pass (in that case, it has: $7>13 / 2$)

Fortran

SUBROUTINE MJRTY (A, N, BOOLE, CAND)
INTEGER N
INTEGER A
LOGICAL BOOLE
INTEGER CAND
INTEGER I
INTEGER K
DIMENSION A(N)
$\mathrm{K}=0$
THE FOLLOWING DO IMPLEMENTS THE PAIRING PHASE. CAND IS THE CURRENTLY LEADING CANDIDATE AND K IS THE NUMBER OF
UNPAIRED VOTES FOR CAND
DO $100 \mathrm{I}=1, \mathrm{~N}$
IF ((K .EQ. O)) GOTO 50
IF ((CAND .EQ. A(I))) COTO 75
$K=(K-1)$
GOTO 100
CAIID $=\mathrm{A}(\mathrm{I})$
$K=1$
GOTO 100
$75 \quad K=(K+1)$
100 CONTINUE
IF ((K .EQ. O)) GOTO 300
BOOLE = .TRUE.
IF ($(\mathrm{K} . \mathrm{GT}$. (N/2))) RETURN
WE NOW ENTER THE COUNTING PHASE. BOOLE IS SET TO TRUE
C IN ANTICIPATION OF FINDING CAND IN THE MAJORITY. K IS
C USED AS THE RUNNING TALLY FOR CAND. WE EXIT AS SOON
C AS K EXCEEDS $\mathrm{N} / 2$.
$K=0$
DO $200 \mathrm{I}=1, \mathrm{~N}$
IF ((CAIID .NE. A(I))) GOTO 200
$\mathrm{K}=(\mathrm{K}+1)$
IF ((K .GT. (N / 2))) RETURN
200
CONTINUE
BOOLE $=$. FALSE .
RETURN
END

```
let mjrty (a: array candidate) =
    let n = length a in
    let cand = ref a[0] in let k = ref 0 in
    for i = 0 to n-1 do
        if !k = 0 then begin cand := a[i]; k := 1 end
        else if !cand = a[i] then incr k else decr k
    done;
    if !k = O then raise Not_found;
    try
        if 2 * !k > n then raise Found; k := 0;
        for i = 0 to n-1 do
            if a[i] = !cand then begin
            incr k; if 2 * !k > n then raise Found
            end
        done;
        raise Not_found
    with Found ->
        !cand
    end
```

- precondition

```
let mjrty (a: array candidate)
    requires { 1 <= length a }
```

- postcondition in case of success

```
ensures
    { 2 * numof a result 0 (length a) > length a }
```

- postcondition in case of failure

```
raises { Not_found ->
    forall c: candidate.
    2 * numof a c O (length a) <= length a }
```


annotations

each loop is given a loop invariant

```
for i = 0 to n-1 do
    invariant { 0 <= !k <= i /\
        numof a !cand 0 i >= !k /\
        2 * (numof a !cand 0 i - !k) <= i - !k /\
        forall c: candidate.
            c <> !cand -> 2 * numof a c 0 i <= i - !k
    }
for i = 0 to n-1 do
    invariant { !k = numof a !cand 0 i /\ 2 * !k <= n }
    ...
```

the verification condition expresses

- safety
- array access within bounds
- termination
- validity of annotations
- invariants are initialized and preserved
- postconditions are established
automatically discharged by SMT solvers
may be inserted for the purpose of specification and/or proof
rules are:
- ghost code may read regular data (but can't modify it)
- ghost code cannot modify the control flow of regular code
- regular code does not see ghost data
in particular, ghost code may be removed without observable modification

demo 6: ring buffer

a circular buffer is implemented within an array

```
type buffer 'a = {
    mutable first: int;
    mutable len : int;
        data : array 'a;
}
```

len elements are stored, starting at index first

first
they may wrap around the array bounds

first

demo 6: ring buffer

we add an extra ghost field to model the buffer contents

```
type buffer 'a = {
    mutable first: int;
    mutable len : int;
        data : array 'a;
    ghost mutable sequence: list 'a;
}
```


demo 6: ring buffer

ghost code is added to set this ghost field accordingly
example:

```
let push (b: buffer 'a) ( \(\mathrm{x}: ~\) 'a) : unit
    =
    ghost b.sequence <- b.sequence ++ Cons x Nil;
    let i = b.first + b.len in
    let \(\mathrm{n}=\) Array.length b.data in
    b.data[if i >= n then i - n else i] <- x;
    b.len <- b.len + 1
```


demo 6: ring buffer

we link the array contents and the ghost field with a type invariant

```
type buffer 'a =
invariant {
    let size = Array.length self.data in
    0 <= self.first < size /\
    0 <= self.len <= size /\
    self.len = L.length self.sequence /\
    forall i: int. 0 <= i < self.len ->
    (self.first + i < size ->
        nth i self.sequence =
        Some self.data[self.first + i]) /\
        (0 <= self.first + i - size ->
        nth i self.sequence =
        Some self.data[self.first + i - size])
}
```


demo 6: ring buffer

such a type invariant

- is assumed at function entry
- must be ensured for values returned or modified

demo 6: ring buffer

alternatively, we could have introduced a logical function mapping the buffer to a list

```
function buffer model (b: buffer 'a) : list 'a
(* + suitable axioms *)
```

but ghost code

- is more compact
- results in simpler proofs (it provides explicit witnesses)

other data structures

a key idea of Hoare logic:
any types and symbols from the logic can be used in programs
note: we already used type int this way

algebraic data types

we can do so with algebraic data types
in the library, we find
type bool = True | False
type option 'a = None | Some 'a
(in bool.Bool)
type list 'a = Nil | Cons 'a (list 'a) (in list.List)

demo 7: same fringe

given two binary trees, do they contain the same elements when traversed in order?

demo 7: same fringe

```
type elt
type tree =
    | Empty
    | Node tree elt tree
function elements (t: tree) : list elt = match t with
    | Empty -> Nil
    | Node l x r -> elements l ++ Cons x (elements r)
end
let same_fringe (t1 t2: tree) : bool
    ensures { result=True <-> elements t1 = elements t2 }
    =
    ...
```


demo 7: same fringe

one solution: look at the left branch as
a list, from bottom up

demo 7: same fringe

one solution: look at the left branch as a list, from bottom up

demo (access code)

exercise 2: inorder traversal

```
type elt
type tree = Null | Node tree elt tree
```

inorder traversal of t, storing its elements in array a

```
let rec fill (t: tree) (a: array elt) (start: int) : int =
    match t with
    | Null ->
            start
    | Node l x r ->
            let res = fill l a start in
            if res <> length a then begin
                a[res] <- x;
                fill r a (res + 1)
            end else
                res
    end
```


Part III

controlled aliasing

only one kind of mutable data structure: records with mutable fields
for instance, references are defined this way
type ref 'a = \{ mutable contents : 'a \}
and ref, !, and := are regular functions
similarly, the library introduces arrays as follows:
type array 'a model \{ length: int; mutable elts: map int 'a \}
keyword model instead of = makes a distinction

- in programs, array 'a is an abstract data type
- in the logic, array 'a is a (immutable) record type

operations on arrays

one cannot define operations over type array 'a (it is abstract) but one may declare them
examples:

```
val ([]) (a: array 'a) (i: int) : 'a
    requires { 0 <= i < length a }
    ensures { result = a[i] }
val ([]<-) (a: array 'a) (i: int) (v: 'a) : unit
    requires { 0 <= i < length a }
    writes { a.elts }
    ensures { a.elts = M.set (old a.elts) i v }
```


nested mutable data structures

mutable data structures can be nested
example: hash tables

```
type t 'a = {
    mutable size: int;
    mutable data: array (list (key, 'a));
}
```

field data is mutable to allow resizing

controlled aliasing

but WhyML imposes a static control of aliasing

why? to get simpler verification conditions how? using regions (internally)

demo 8: hash tables

consider hash tables again

```
type t 'a = {
    mutable size: int;
    mutable data: array (list (key, 'a));
}
```

a function resize (called from add) enlarges the bucket array

```
let resize (h: t 'a) : unit
    writes { h.data }
=
    let nsize = 2 * Array.length h.data + 1 in
    let ndata = Array.make nsize Nil in
    ... rehash all values ...
    h.data <- ndata
```


demo 8: hash tables

then the following code is rejected

```
let alias (h: t int) (k: key) : unit =
    let old_data = h.data in
    add h k 42;
    old_data[0] <- Nil
```

with error
This expression prohibits further usage of variable old_data
indeed, add may call resize, and thus may invalidate old_data
more details:
Why3 - Where Program Meet Provers (ESOP 2013)

consequence of controlled aliasing

to use Why3 to verify programs with aliasing, you have to come up with a memory model

```
type loc
type value = ...
type state = map loc value
```

this is what is done for C, Java, Ada, etc.

memory model

consider for instance C programs with pointers of type int*
a possible model is
type loc
val memory: ref (map loc int)
the C expression
*p
is translated into the Why3 expression
!memory [p]

memory model

there are more subtle models
such as the component-as-array model (Burstall / Bornat)
each structure field is modeled as a separate map
the C type

```
struct List {
    int head;
    struct List *next;
};
```

is modeled as

```
type loc
val head: ref (map loc int)
val next: ref (map loc loc)
```


memory models

such models are used in tools for C, Java, and Ada

conclusion

we saw three different ways of using Why3

- as a logical language
(a convenient front-end to many theorem provers)
- as a programming language to prove algorithms (currently 78 examples in our gallery)
- as an intermediate language (for the verification of C, Java, Ada, etc.)

things not covered in this lecture

- how aliases are excluded
- how verification conditions are computed
- how formulas are sent to provers
- how floating-point arithmetic is modeled
- etc.
see http://why3.lri.fr for more details

