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Chapter 1

Introduction

Any computer scientist knows John McCarthy’s 91 function [?]. It is the recursive func-
tion defined as follows:

[ n-10 if 7 > 100,
fn) = f(f(n+11)) otherwise.

One may wonder whether this function always return 91, as suggested by its name, or,
otherwise, under which condition it does. One may also want to prove its termination,
which is not obvious, or to prove that it is equivalent to the following iterative code:

e+ 1
while e > 0 do
if n > 100 then

n<+<n—10
e<—e—1
else
n<+<n+11
e+e+1
return n

These are questions related to program wverification. The programs above are given in
pseudo-code, but we can pose similar questions for programs written in mainstream pro-
gramming languages. For instance, one may wish to prove that the following Java code
indeed sorts an array of Boolean values

int i = 0, j = a.length - 1;
while (i < j)

if (ta[il) i++;

else if (aljl) j-;

else swap(a, i++, j-);

or that the following C program, although purposely obfuscated, indeed computes the
number of solutions to the N-queens problem:
t(a,b,c){int d=0,e=a&"b&"c,f=1;if (a)for(f=0;d=(e-=d)&-e;f+=t(a-d, (b+d)*2, (
c+d)/2)) ;return f;}main(q){scanf ("%d",&q) ;printf ("%d\n",t("("0«q),0,0));}



This lecture is an introduction to Why3 [?], a set of tools to perform deductive program
verification [?]. Deductive verification means that we express the correctness of a program
as a mathematical statement and then we prove it, which can be summarized as follows:

program
+
specification

verification

i —> proof
conditions

This idea is as old as computer science [?, 7|, but it is making a giant leap today thanks
to recent progress in automated theorem provers, especially those of the SMT familyE].
SMT solvers are able to discharge a huge amount of the verification tasks, if not all.

The Why3 platform provides a logic language (called Why) and a programming lan-
guage (called WhyML). The logic is an extension of first-order logic with polymorphism,
algebraic data types, and inductive predicates. The programming language is a first-order
ML-like language with imperative features, pattern matching, and exceptions. The two
languages are intimately tied: any logic symbol can be used in programs, and the logic is
used to specify programs (via traditional pre- and postconditions, loop invariants, etc.).
A standard weakest precondition calculus [?] is used to extract verification conditions
from programs. The resulting formulas are then going through several transformations
to be sent to a wide set of external theorem provers. The data flow may be depicted as
follows:

file.mlw

l WhyML
file.why VCgen

/-

transform/translate
\4
print/run

— 7/ \\

Coq Alt-Ergo CVC4 73 etc.

There are basically three ways of using Why3.

for its logic only

It is perfectly fine using Why3 without writing a single program. It means you use
the logic only (declaring, defining, axiomatizing, stating goals) and you see Why3 as
a mere front-end for dozens of theorem provers. Yet you save the burden of learning
the input languages of all these tools, and the various ways of calling them. You can
also use Why3 to manipulate formulas by implementing your own transformations

(there is an OCaml API).

LA computer scientist recently coined the concept of SMT revolution.



to verify algorithms and data structures

Though WhyML has limited imperative features (aliasing is not allowed), a lot of
programs and data structures can be implemented in WhyML. Even when some
data structure cannot be implemented, it is usually easy to model it and the re-
maining of the verification can be carried out. WhyML programs can be translated
to executable OCaml code.

as an intermediate language

To verify programs written in a mainstream programming language, it is convenient
to use Why3 as an intermediate language. A suitable memory model is designed in
Why3 logic and then program constructs are compiled into WhyML constructs. The
task of extracting verification conditions (and to pass them to theorem provers) is
left to Why3.

So far, Why3 has been successfully used that way to verify Java programs [?|, C
programs [?, 7|, Ada programs |?], probabilistic programs [?], and cryptographic
programs [7].

The following three chapters describe these three ways of using Whya3.

Many technical aspects are not covered in this tutorial, such as the transformation
process to encode Why3’s logic into SMT logic, the type checking rules to exclude aliasing,
or the weakest precondition calculus used to extract verification conditions. We invite to
reader to get more information from Why3’s web site (http://why3.1lri.fr) and from
publications related to Why3 [?, 7,7, 7,2, 7 7|


http://why3.lri.fr




Chapter 2
Logic

In this chapter, we introduce Why3 logic. Program verification will be covered in the next
two chapters.

2.1 First Contact with Why3

In a file demo_logic.why, let us define the algebraic data type of polymorphic lists. To
do so, we introduce a theory List containing the definition of type 1ist ’aE|.

theory List
type list ’a = Nil | Cons ’a (list ’a)
end

This file can be processed in a batch way using the following command:
why3 demo_logic.why

The contents of file demo_logic.why is checked, then printed on standard output. Let
us add the definition of a recursive predicate mem checking for the presence of an element
X in a list 1.

predicate mem (x: ’a) (1: list ’a) = match 1 with
| Nil -> false
| Cons yr ->x =y \/ mem x r

end

The system automatically checks for the terminations of mem, looking for a subset of its
arguments that ensures a lexicographic structural decreasing. In this case, it is limited
to argument 1. If we had written mem x 1 instead of mem x r, then the definition of mem
would have been rejected:

why3 demo_logic.why
File "demo_logic.why", line 10, characters 2-6:
Cannot prove the termination of mem

Let us add a third declarations to theory List, namely a goal to show that 2 belongs to
the list [1;2;3]. We state it as follows:

'The type variable « is written ’a in the concrete syntax, as in OCaml.



goal G1: mem 2 (Cons 1 (Cons 2 (Cons 3 Nil)))

It is then possible to attempt discharging this goal using one of the theorem provers sup-
ported by Why3. Let us assume that the SMT solver Alt-Ergo is installed and recognized
by Why3 (this can be checked with why3 -list-provers). Then we pass goal G1 to
Alt-Ergo using option -P.

why3 -P alt-ergo demo_logic.why
demo_logic.why List G1 : Valid (0.03s)

As we see, the goal is declared valid, without surprise. We can use the graphical user
interface why3ide instead.

why3ide demo_logic.why

Then we can launch theorem provers interactively, including proof assistants such as Coq.

Let us define now the length of a list. We do that in a second theory Length, whose
first two declarations import the previous theory List, as well as the theory of integer
arithmetic from Why3 standard library, namely int.Int.

theory Length
use import List
use import int.Int

In theory List, we did not have to import arithmetic, since only integer literals were
used; but here we need addition and order relation as well. We define a recursive function
length over lists, similarly to what we did for predicate mem.

function length (1: list ’a) : int = match 1 with
| Nil -> 0
| Cons _ r -> length r + 1

end

Once again, the system automatically checks for termination. Then we state a lemma
saying that a list length is always nonnegative.

lemma length_nonnegative: forall 1l:list ’a. length(l) >= 0

The automated theorem prover Alt-Ergo is not able to discharge it. More specifically, it
quickly aborts with message Unknown, which means it could not check the validity of the
goal.

why3 -P alt-ergo demo_logic.why
demo_logic.why List G1 : Valid (0.01s)
demo_logic.why Length length_nonnegative : Unknown: Unknown (0.01s)

Indeed, proving lemma length_nonnegative requires induction, which is out of reach of
SMT solvers. One may use the Coq proof assistant instead to do that proof, by calling
it from why3ide for instance. However, Alt-Ergo is able to discharge the following goal,
using lemma length_nonnegative as an hypothesis:

goal G3: forall x: int, 1: list int. length (Cons x 1) > O

10



This is the distinction between declarations goal and lemma: the latter introduces a goal
that may be used in the following. It is easy to check that lemma length_nonnegative
is indeed an hypothesis of goal G3 from the graphical user interface (in the top-right
window).

Let us now define the notion of sorted list. We start with lists of integers. We
introduce a new theory SortedList for that purpose, containing the declarations of an
inductive predicate sorted?’

theory SortedList
use import List
use import int.Int

inductive sorted (list int) =
| sorted_nil:
sorted Nil
| sorted_one:
forall x: int. sorted (Cons x Nil)
| sorted_two:
forall x y: int, 1: list int.
x <=y -> sorted (Cons y 1) -> sorted (Cons x (Cons y 1))
end

Such a declaration defines sorted as the smallest predicate satisfying the three “axioms”
sorted_nil, sorted_one, and sorted_two. We can state a goal saying that the list
[1;2;3] is sorted:

goal sorted123: sorted (Cons 1 (Cons 2 (Cons 3 Nil)))

and it is easily discharged by automated theorem provers. However, defining sorted over
lists of integers only, and using the order relation <= only, is not satisfactory. As much as
possible, we could prefer defining sorted in a generic way, once and for all. The logic of
Why3 being a first-order logic, it is not possible to pass the order relation as an argument
to predicate sorted. Though, there is an alternative. We modify theory SortedList to
use an abstract data type t instead of integers and an uninterpreted binary predicate <=
over t.

theory SortedlList
use import List
type t
predicate (=) t t

To make it right, we add three axioms to express that <= is an order relation.

2We could have defined predicate sorted recursively, as follows:

predicate sorted (1: list int) = match 1 with

| Nil | Cons _ Nil -> true

| Cons x (Cons y _ as r) -> x <=y /\ sorted r
end

But the purpose here is to introduce inductive predicates.

11



axiom le_refl: forall x: t. x <= X
axiom le_asym: forall x y: t. x <=y ->y <=x ->x =y
axiom le_trans: forall x y z: t. x <=y >y <=2z ->x <=2z

The definition of sorted is mostly unchanged: we simply substitute t for int and relation
<= over type t for relation <= over type int.

inductive sorted (list t) =
| sorted_nil:
sorted Nil
| sorted_one:
forall x: t. sorted (Cons x Nil)
| sorted_two:
forall x y: t, 1: list t.
x <=y -> sorted (Cons y 1) -> sorted (Cons x (Cons y 1))
end

To handle the particular case of lists of integers, we first set up a new theory in which
we import lists and integers:

theory SortedIntList
use import int.Int
use import List

Then we instantiate the generic theory SortedList with type int and with order relation
<= over integers. To do so, we use the clone command, rather than use, as follows:

clone import SortedList with type t = int, predicate (<=) = (<=),
lemma le_refl, lemma le_asym, lemma le_trans

This command makes a copy of theory SortedList, while substituting type int to type
t and the order relation <= over integers to the uninterpreted predicate <= (in this case,
the two predicates have the same name but this is not a requirement). This command
introduces the declaration of a new inductive predicate sorted, with an argument of type
list int. We can use it to state the following goal:

goal sorted123: sorted (Cons 1 (Cons 2 (Cons 3 Nil)))

Additionally, we notice that the clone command above also included lemma le_refl,
lemma le_asym, and lemma

le_trans. It means that these three axioms must be proved® They are turned into
lemmas. We can easily check this out by looking at the set of goals contained in file
demo_logic.why:

why3 -P alt-ergo demo_logic.why

demo_logic.why SortedIntList le_refl : Valid (0.00s)
demo_logic.why SortedIntList le_asym : Valid (0.00s)
demo_logic.why SortedIntList le_trans : Valid (0.00s)
demo_logic.why SortedIntList sorted123 : Valid (0.00s)

3The system cannot automatically infer axioms that could become lemmas; this is not decidable.
Thus it is up to the user to indicate the axioms to be turned into lemmas.
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As illustrated by this example, the concept of cloning allows the design of generic
theories to be instantiated later in various ways. This is analogous to generic classes in
Java or functors in ML. But this is also slightly more flexible, as parameters do not have
to be set once and for all. A theory is thus parameterized in various ways simultaneously.

In the example above, we can introduce another generic theory, namely that of order
relation. It contains type t, order relation <=, and the three axioms.

theory Order
type t
predicate (<=) t t

axiom le_refl: forall x: t. x <= Xx

axiom le_asym: forall x y: t. x <=y ->y <=x ->x =y

axiom le_trans: forall x y z: t. x <=y ->y <=2z ->x <=z
end

Then we simply clone it inside theory SortedList, to get the exact same theory as before:

theory SortedList
use import List
clone export Order

end

The benefit here is the ability to reuse theory Order in other contexts. Figure 7?7 sum-
marizes this new version of theory SortedList and its use on lists of integers. The Why3
standard library is built this way. Beside the obvious benefit of factorization, splitting
the declarations into small theories also allows a fine grain control of the context of each
goal. With SMT solvers, in particular, limiting the size of the logical context may improve
performances significantly.

Summary. The logic of Why3 is an extension of first-order logic with polymorphism,
mutually recursive algebraic data types, mutually recursive function/predicate symbols,
mutually inductive predicates, and constructs let-in, match-with, and if-then-else.
Logical declarations are of four different kinds:

e type declaration;
e function or predicate declaration;
e inductive predicate declaration;

e axiom, lemma, or goal declaration.
Logical declarations are organized into theories. A theory 77 may be

e used (use) in another theory T5. In that case, symbols from T; are shared, axioms
from 77 remain axioms, lemmas from 7} become axioms, and goals from 7T} are

discarded.

e or cloned (clone) in another theory 7. In that case, declarations from 77 are copied
or substituted, axioms from 7} remain axioms or become lemmas/goals, lemmas from
T} become axioms, and goals from 77 are discarded.
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theory List
type list ’a = Nil | Cons ’a (list ’a)
end

theory Order
type t
predicate (<=) t t

axiom le_refl: forall x: t. x <= Xx
axiom le_asym: forall x y: t. x <=y ->y <=x ->x =y
axiom le_trans: forall x y z: t. x <=

end

y -> y <=z ->x <=2

theory SortedList
use import List
clone export Order

inductive sorted (list t) =
| sorted_nil:
sorted Nil
| sorted_one:
forall x: t. sorted (Cons x Nil)
| sorted_two:
forall x y: t, 1: list t.

x <=y -> sorted (Cons y 1) -> sorted (Cons x (Cons y 1))
end

theory SortedIntList
use import int.Int
use import List

clone import SortedList with type t = int, predicate (<=) = (=),
lemma le_refl, lemma le_asym, lemma le_trans

goal sorted123: sorted (Cons 1 (Cons 2 (Cons 3 Nil)))
end

Figure 2.1: A generic theory of sorted lists.
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2.2 Talking to Theorem Provers

One of the first benefits of Why3 is to provide a technology to talk to provers. There
are various theorem provers available and they have distinct logical languages, predefined
theories, or type systems. Why3 provides a common language and a common tool to use
them.

This technology is organized around the notion of task. A task is a logical context,
that is a list of declarations, followed but exactly one goal, that is a formula. Tasks
are extracted from the various theories. Given a task and a target theorem prover,
Why3 performs a series of transformations on the task, so that it fits in the logic of the
prover. For example, if the target prover is Z3, Why3 will apply, among other things, a
transformation to get rid of inductive predicates, since Z3 knows nothing about it. Once
all transformations are applied, Why3 simply prints the resulting task into the native
syntax of the prover, using a pretty-printer. We can display the task flow as follows:

theory
end Alt-Ergo
X
theor = — =—
v = 1= | = P
—,E=E EE |43
end goal goal goal
f .
theory Vamplre

end

This journey is driven by a file (called a driver in Why3’s terminology). This file lists
the transformations to apply, the output format (that is the input syntax of the prover
as well as predefined symbols and axioms), and regular expressions to diagnose messages
from the prover. Such a file can be set up by the user, for instance to add support for
a new prover or to conduct experiments with a prover. Drivers are provided with Why3
for the following proves: Alt-Ergo, CVC3, Yices, E-prover, Gappa, MathSAT, Simplify,
Spass, Vampire, VeriT, Z3, Zenon, iProver, Mathematica, Coq, PVS.

Additionally, Why3 provides an OCaml API. One can build terms, formulas, declara-
tions, tasks, theories (that are all guaranteed to be well-formed), and call provers. Using
plug-ins, the system can be extended with new input languages, new transformations, and
new pretty-printers. In particular, everything needed to add support for a new prover
can be added to the system.

More details can be found in the paper Why3: Shepherd your herd of provers |?| as
well as Why3’s manual [?].
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Chapter 3

Program Verification

We now turn to program verification using Why3.

3.1 First Examples

3.1.1 Turing’s Proof of a Program

As a first example, let us consider what is most likely the very first proof of a program.
It is a 1949 paper by Alan Turing called Checking a Large Routine |?]. The program
computes n! using only additions. It is given as a control flow graph:

(+STOP

r=1
— W' =u [ TEST r —nf—{s =1Fp{u =u+v

v

s’s+1—‘

The notation u' = u+ v stands for the assignment of w4+ v to variable u, that is u < u+wv
using a modern notation. Variable n contains the input parameter and is not modified.
When the program exits, variable u contains n!, the factorial of n. There are two nested
loops. In the outer loop, variable u contains 7! and its contents is copied into variable v.
The inner loop computes (r + 1)! in u, using repetitive additions of v. Variables r and
s are loop counters, so we can easily rewrite the program using two for loops. With a
slight modification of the control ﬂowE]7 the program above is thus equivalent to:

A

TEST s —r

A

r=r+1

u<+1
forr=0ton—1do
V< u
for s=1tor do
U$—Uu-+v

Let us prove the correctness of this program using Why3. In a file demo_turing.mlw we
write the program above in the syntax of WhyML, the programming language of Why3.

'Finding which is left to the reader as an exercise.
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Program declarations are grouped in modules (the programming equivalent to logical
theories).

module CheckingALargeRoutine
use import int.Fact
use import ref.Ref

The first command imports the logical theory int.Fact, that is theory Fact from Why3
standard library. This theory provides a function symbol fact denoting the factorial.
The second command imports a module from the standard library of WhyML, namely
the module Ref providing references. As in ML, references are mutable variables: a
reference is created with function ref, we access the contents of reference x with !x,
and we assign it with x := e. We can now write a function routine taking an integer
argument n as argument and computing its factorial using the algorithm above:

let routine (n: int) : int
requires { n >= 0 }
ensures { result = fact n }

let u = ref 1 in

for r = 0 to n-1 do
let v = !'u in
for s =1 to r do

u :=l!u+v

done

done;

lu

The code itself is similar to OCaml code. The specification is introduced with keywords
requires and ensures. requires introduces the precondition n >= 0 and ensures the
postcondition result = fact n. Within the postcondition, variable result stands for
the value returned by the function.

As we did in the previous chapter with a file containing logical declarations, we can
pass this file to Why3 for type checking and proof processing.

why3 -P alt-ergo demo_turing.mlw
WP CheckingALargeRoutine WP_parameter routine : Unknown: Unknown (0.08s)

We see that Alt-Ergo was not able to discharge the verification condition. If we switch to
the graphical user interface (why3ide) — which is quickly mandatory when performing
program verification — we can have a look at the goal expressing the correctness of
function routine. Omitting the context, it reduces to the following formula:

Vn,m>0=(0>n—-1=1=factn)A(0<n—1=Yu, u=—~factn)

The first part of the formula corresponds to the case where we do not even enter the
outer for loop, since n = 0. Then we have to show 1 = fact n, that is provable. The
other part of the formula corresponds to the case where we enter the for loop. Then we
have to prove that the final value of variable u, here written u, is equal to the factorial
of n. But we do not have any information over u, which makes the formula unprovable.

18



module CheckingAlLargeRoutine

use import int.Fact
use import ref.Ref

let routine (n: int) : int
requires { n >= 0 }
ensures { result = fact n }

let u = ref 1 in
for r = 0 to n-1 do invariant { !'u = fact r }
let v = 'u in
for s =1 to r do invariant { 'u = s * fact r }
u :=l!u+v
done
done;
lu

end

Figure 3.1: Computing the factorial using additions (Turing, 1949).

Indeed, we have to first set a loop invariant to get information regarding the final value
of u. In our case, this invariant states that u contains the factorial of r. We write it as
follows:

for r = 0 to n-1 do invariant { 'u = fact r }

Using this invariant, it is now possible to establish the postcondition when exiting function
routine. To see it, we can use the Split command in the graphical user interface, which
results in four sub-goals. The validity of the postcondition is the fourth one and is easily
discharged by a solver. On the contrary, we cannot discharge the third goal, which states
the preservation of the loop invariant we just added. Without any surprise, we have to
equip the inner loop with an invariant as well, namely the following:

for s = 1 to r do invariant { 'u = s * fact r }

It is now easy for a solver to show the correctness of the program. There is no termination
to prove here, as it is automatically guaranteed in the case of for loops. The whole file
is given figure ?7.

3.1.2 McCarthy’s 91 Function

Let us consider now another example, namely the aforementioned McCarthy’s 91 func-
tion |?]. It is the following recursive function:

[ n-10 if 7 > 100,
fn) = f(f(n+11)) otherwise.
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In WhyML syntax, we define such a function using the let rec construct.

let rec f (n:int) : int =
if n <= 100 then f (f (n + 11)) else n - 10

We intend to prove the termination of this function. To do so, we must equip it with
a variant, that is a term that decreases at each recursive call for a well-founded order
relation. The simplest solution is to use an integer term and the following relation:

x—<yd:efa:<y/\0§y.

In the case of function 91, the variant is quite easy to figure out. It is 100 - n. In
WhyML syntax, we give it as follows:

let rec f (n:int) : int variant { 100 - n } =
if n <= 100 then f (f (n + 11)) else n - 10

As a result, we get a verification condition to show that the variant indeed decreases in
each of the two recursive calls. In the first case, the sub-goal is easily discharged. Indeed
we have 100 — (n + 11) < 100 — n when n < 100. On the contrary, the second sub-goal
cannot be discharged, for we don’t have enough information regarding the value returned
by the first recursive call. Thus we have to give function f a specification, namely a
postcondition:

let rec f (n: int) : int variant { 100-n }
ensures { result = if n <= 100 then 91 else n-10 }

if n <= 100 then
f (f (n+ 11))
else
n - 10

Then we get a verification condition that is easily discharged by automated provers. It ex-
presses both termination and correctness. This is an example where proving termination
requires proving a behavioral property as well. (Another example is Floyd’s algorithm
for cycle detection, also know as tortoise and hare algorithm; see [?].)

Let us consider now a non-recursive version of function 91, namely the following
iterative program:

let iter (n0: int) =
let n = ref n0 in
let e = ref 1 in
while !e > 0 do
if !'n > 100 then begin

n := !n - 10;

e :=le -1
end else begin

n:=!n+ 11;

e :=le + 1
end

20



done;
In

The idea behind this program is the following. It is not necessary to maintain a stack
of all recursive calls to £. The total number of such calls is enough. It is maintained
in variable e, and initialized to 1. If n > 100 we subtract 10 from n and we decrement
e, to account for one completed call to £. Otherwise, we add 11 to argument n and we
increment e to account for a completed call to £ and to two new calls to be performed.

Proving termination of this program is both simpler and more complex than proving
the termination of the recursive function. It is simpler as we do not have to prove
anything regarding the values computed by the program. But it is also more complex, as
the variant is now a pair, namely

(101 —n + 10e, e),

that decreases for the lexicographic order, each component being ordered by relation <
above. Such a lexicographic order relation is defined in Why3 standard library and we
simply need to import it:

use import int.Lex2
We can now set this variant to the while loop, using the following syntax:

while !e > 0 do
variant { (100 - !'n + 10 * le, le) with lex }

where keyword with is used to specify the order relation. The verification condition is
discharged automatically, without any other annotation in the program.

We could stop here. But proving the behavioral correctness of this iterative code
appears to be interesting as well. Indeed, this is not obvious that this new code computes
f(n). The loop invariant is

fe(n) = f(no)

where ng stands for the initial value of n. Therefore, when we exit the loop, with e = 0,
we get n = f(ng) and we return this value. To write down such an invariant, we first
introduce the logical function f.

function f (x: int) : int = if x >= 101 then x-10 else 91

This is not the recursive function we proved above, but rather the specification of function
91. Then we define f*(x). A logical function cannot be defined recursively over integers
(only structural recursion is allowed) thus we cannot define f*(z) recursion over k. As a
consequence, we turn to an axiomatization:

function iter int int : int
axiom iter_0: forall x: int. iter 0 x = X
axiom iter_s: forall k x: int. 0 < k -> iter k x = iter (k-1) (f x)

More generally, Why3 standard library contains a theory int.Iter that axiomatizes the
iteration of a given function. Thus we can conveniently replace the three declarations
above with the appropriate cloning of that theory:

21



use import int.Int
use import int.Lex2
use import ref.Ref

function f (n: int) : int = if n <= 100 then 91 else n-10
clone import int.Iter with type t = int, function f = £

let iter (n0: int) : int
ensures { result = f n0 }

let n ref n0 in

let e = ref 1 in

while le > 0 do
invariant { 'e >= 0 /\ iter !'e 'n = f n0 }
variant { (100 - 'n + 10 * 'e, 'e) with lex }
if !'n > 100 then begin

n := !n - 10;
e :=le -1
end else begin
n:=!n+ 11;
e :=le +1
end
done;
In

Figure 3.2: Non-recursive version of McCarthy’s 91 function.

clone import int.Iter with type t = int, function f = f

The annotated code is given figure ??7. As for the recursive version, the verification
condition is automatically discharged.

3.2 Arrays

Up to now, we had programs using only integers. Let us consider now programs using

arrays.

Why3 standard library provides arrays in module array.Array.

use import array.Array

This module declares a polymorphic type array ’a, an access operation written ale],
an assignment operation written alel] <- e2, and various operations such as create,

length, append, sub, or copy.
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3.2.1 Two-Way Sort

As an example, let us consider proving the correctness of the following algorithm that
sorts an array a of n Boolean values according to False < True.

i, 0,n—1
while i < j
if —ali] then i+ i+ 1
else if a[j] then j <—j—1
else swap ali] and a[j]; i« i+1;j+ j—1

’False‘?‘...‘?\True‘

We first set up the program specification. We have to state that array a is sorted when
the program exits. We define a predicate sorted to do so:

predicate (<<) (x y: bool) = x = False \/ y = True
predicate sorted (a: array bool) =
forall il i2: int. 0 <= il <= i2 < a.length -> alil] << al[i2]

We also have to specify that the final contents of array a is ane permutation of its initial
contents (otherwise, a program setting all elements to False would be accepted as a valid
sort). There are multiple ways to define the permutation property. We could count the
number of False (or True) values and assert that it is unchanged, or, equivalently, assert
that the two multi-sets of elements are the same. Another solution, well-suited for the
program above, consists in defining the permutation property as the smallest equivalence
relation containing transpositions (swaps to two elements). Thus we define permut as an
inductive predicate

inductive permut (al a2: array bool) =
with two clauses for reflexive and transitive properties

| permut_refl:
forall a: array bool. permut a a
| permut_trans:
forall al a2 a3: array bool.
permut al a2 -> permut a2 a3 -> permut al a3

and a third clause to indicate that permut contains transpositions:

| permut_swap:
forall al a2: array bool. forall i j : int.
length al = length a2 -> 0 <= i < length al -> 0 <= j < length a2 ->
alli] = a2[j] -> al[j] = a2[i] ->
(forall k: int. O <= k < length al -> k <> i -> k <> j -> all[k]=all[k]) ->
permut al a2

Note that we have no clause to say that permut is symmetric (which is, in a general
case, required to define an equivalence relation). There are several reasons: first, we can
prove that relation permut is symmetric; second, this extra property is not needed for our
proof. The generic definition of permut for arrays with elements of any type is provided
by Why3 standard library, in module array.ArrayPermut.
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We can now write the specification. It is as follows:

let two_way_sort (a: array bool) : unit
ensures { sorted a }
ensures { permut (old a) a }

Notation old a in the postcondition stands for the initial value of a, that is its values at
the function entry. We still need a loop invariant. It decomposes into four parts. First,
we have two arithmetic relations over ¢ and j.

invariant { 0 <= !'i /\ !j < length a }
Then we state that all values left to ¢ are all False.

invariant { forall k: int. 0 <= k < !'i -> a[k] = False }
Similarly, we state that all values right to j are all True.

invariant { forall k: int. !j < k < length a -> alk] = True }

Finally, we have to state the permutation property, that is that array a is always a
permutation of its initial contents. To do so, we introduce a label Init at the end of
the function body, with construct >Init:, then we use that label in the loop invariant to
refer to the value of a at this program point, with notation at a ’Init.

invariant { permut (at a ’Init) a }

This completes the loop invariant. Besides, we prove termination in a trivial way, using
j — 1 as variant. The code is summarized in figure ?77.

Exercise: Dijkstra’s Dutch national flag problem. Prove the correctness of a
program sorting an array with three different values, standing for the three colors of the
Dutch national flag (type color = Blue | White | Red). The code is given on the
lecture web site.

3.2.2 Boyer-Moore’s Majority Algorithm

Let us consider a slightly more complex algorithm using arrays, known as majority al-
gorithm. N people are voting for candidates. We are given their votes in an array. For
instance, with three candidates A, B, and C, and N = 13, we may have the following set
of votes:

(a[afafc[c[r[B[c[c[c[B[c][c]

The problem is to determine whether one candidate get absolute majority, that is more
than N/2 votes. In the example above, candidate C gets 7 votes, and thus absolute
majority since 7 > 13/2.

There is a very nice algorithm to solve this problem, due to Boyer and Moore [?]. It
runs in time O(N), using constant extra space (three integer variables). There are two
passes. In the first pass, we maintain a potential winner for absolute majority (initialized
with the first vote) and a counter (initialized with 1). When we encounter the same vote,
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use
use
use
use
use

import int.Int

import bool.Bool

import ref.Refint

import array.Array
import array.ArrayPermut

predicate (<<) (x y: bool) = x = False \/ y = True

predicate sorted (a: array bool) =
forall il i2: int. O <= il <= i2 < a.length -> a[il] << a[i2]

let

two_way_sort (a: array bool) : unit

ensures { sorted a }
ensures { permut (old a) a }

’Init:

let i

ref 0 in

let j = ref (length a - 1) in
while 'i < !'j do

invariant { 0 <= !'i /\ !j < length a }
invariant { forall k: int. 0 <= k < !'i -> al[k] = False }
invariant { forall k: int. !j < k < length a -> al[k] = True }
invariant { permut (at a ’Init) a }
variant { !'j - 'i }
if not a[!i] then
incr i
else if al[!j] then
decr j
else begin
let tmp = a[!i] in
alli]l <- a[!jl;
altjl <- tmp;
incr i;
decr j
end

done

Figure 3.3: Sorting an array of Boolean values.
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we increment the counter; otherwise we decrement it. Whenever the counter reaches zero,
we simply pick up the next element in the array as potential winner. The key idea is
that, when we are done with all array elements, only our potential winner may indeed
have absolute majority. Thus we simply make a second pass to count the actual number
of votes for that candidate and then decide whether it is greater than N/2.

We start by introducing an uninterpreted type for candidates

type candidate

and two exceptions that are going to be used to signal failure and success during the
search:

exception Not_found
exception Found

The first pass of the algorithm uses two references cand and k and a for loop:

let mjrty (a: array candidate) : candidate =

let n = length a in

let cand = ref al[0] in

let k = ref O in

for i = 0 to n-1 do
if 'k = 0 then begin cand := al[il; k := 1 end
else if !cand = al[i] then incr k else decr k

done;

As a slight optimization, we immediately signal a negative search if k is 0 at the end of
the loop.

if 'k = 0 then raise Not_found;

To implement the second pass efficiently, we use the exception Found to signal a successful
search. Thus we have the following structure:

try

raise Not_found
with Found ->
Icand
end

If exception Found is raised at some point, we return !'cand. Otherwise, we raise
Not_found. The second pass itself is coded as follows. If the count for cand is already
over N/2, we are done:

if 2 x 'k > n then raise Found;

Otherwise, we reset the counter to 0 and we count the actual number of votes for cand
using a for loop. If at any moment the counter exceeds N/2, we raise Found.

k := 0;
for i = 0 to n-1 do
if a[i] = !cand then begin
incr k;
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if 2 x 'k > n then raise Found
end
done;

To specify this program, we make use of library array.Num0OfEq. It provides a predi-
cate numof, such that numof @ v [ u is the number of values in the sub-array a[l..u[ that
are equal to v. This way, the postcondition for a successful search is as simple as

ensures { 2 * numof a result O (length a) > length a }

Note that we avoid using a division: we use 2 X a > b rather than a > b/2. This
is equivalent and results in simpler verification conditions. In case of an unsuccessful
search, we state that any candidate ¢ gets no more than N/2 votes.

raises { Not_found ->
forall c: candidate. 2 * numof a ¢ 0 (length a) <= length a }

The code, its specification, and the loop invariants are given in figure ?7?7. All verification
conditions are discharged automatically.

3.2.3 Ring Buffer

Let us illustrate now the notions of ghost code and type invariant using one of the ver-
ification challenges from the 2nd Verified Software Competition [?]. A circular buffer is
implemented within an array, using the following record type:

type buffer ’a = {
mutable first: int;
mutable len : int;
data : array ’a;

}
Elements are stored in array data starting at index first and there are len of them:
Lo fae] o [#e] [ ]
T
first

This data structure has a queue interface: if the queue is not full, a new element can be
added to the right of x1.,; if the queue is not empty, x; can be popped. Elements may
wrap around the array bounds, as follows:

Lo [[[[ ][ [o]a]
T.

To specify the various operations over this data structure, it is convenient to model its
contents as a list, namely the list [x1, 29, ..., T1en), and to store it inside the record itself,
in a ghost field:

type buffer ’a = {
mutable first: int;
mutable len : int;
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exception Not_found
exception Found

type candidate
clone import array.NumOfEq with type elt = candidate

let mjrty (a: array candidate) : candidate
requires { 1 <= length a }
ensures { 2 * numof a result O (length a) > length a }
raises { Not_found ->
forall c: candidate. 2 * numof a ¢ O (length a) <= length a }
= let n = length a in
let cand = ref a[0] in
let k = ref 0 in
for i = 0 to n-1 do
invariant { 0 <= !k <= numof a !cand 0 i }

invariant { 2 * (numof a !cand 0 i - !'k) <= i - 'k }
invariant { forall c:candidate. ¢ <> !cand -> 2 * numof a ¢ 0 1 <= 1i - 'k }
if 'k = 0 then begin
cand := alil;
k =1
end else if !cand = al[i] then
incr k
else
decr k
done;
if 'k = 0 then raise Not_found;
try
if 2 x 'k > n then raise Found;
k := 0;

for i = 0 to n-1 do
invariant { 'k = numof a !'cand 0 i /\ 2 * 'k <=n }

if a[i] = !cand then begin
incr k;
if 2 * 'k > n then raise Found
end
done;

raise Not_found
with Found ->
Icand
end

Figure 3.4: Boyer and Moore’s majority algorithm.
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data : array ’a;
ghost mutable sequence: list ’a;

}

A ghost field, and more generally any ghost code, is to be used in specification only. It
cannot interfere with regular code in the following sense:

e ghost code cannot modify regular data (but it can access it in a read-only way);
e chost code cannot modify the control flow of regular code;

e regular code cannot access or modify ghost data.

Said otherwise, ghost data and ghost code can be removed without affecting the execution
of the program. On the example above, it means that only ghost code will be able to
access and assign field sequence.

To relate the contents of the regular fields and of the ghost field, we equip the record
type buffer ’a with a type invariant. A type invariant is valid at function boundaries:
it is assumed at function entry for function arguments and global variables, and must
be established at function exit for the function result, if any, and for values modified by
the function. A type invariant is introduced after the type definition, using the keyword
invariant. In our case, it first says that data contains at least one element and that
first is a valid index in data:

invariant {
let size = Array.length self.data in
0 <= self.first < size /\ ... }

The identifier self is used to refer to the value of type buffer ’a. Then we add that
field len cannot be greater than the number of elements in data:

{ ... 0 <= self.len <= size /\ ... }

Finally, we relate the contents of data with the list in field sequence. First, we say that
sequence has length len:

{ ... self.len = List.length self.sequence /\ ... }
Finally, we way that elements in sequence are exactly those in array data at indices
first, first+1, ... To account for the wrapping around the array bound, we make two
cases:

{ ...

forall i: int. 0 <= i < self.len ->
(self.first + i < size ->
nth i self.sequence = Some self.datalself.first + i]) /\
(0 <= self.first + i - size ->
nth i self.sequence = Some self.datalself.first + i - size]) }

(Function nth is imported from Why3 standard library. It returns the i-nth element of a
list, as Some z when it exists and None otherwise.)

Given this type invariant, we can now use field sequence to specify operations over
the ring buffer. For instance, function push has a postcondition stating that sequence
has been extended to the right with a new element:
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val push (b: buffer ’a) (x: ’a) : unit

ensures { b.sequence = (old b.sequence) ++ Cons x Nil }

The full specification, including other operations, is given in figure ??.

Exercises. Implement operations create, clear, push, head, and pop over the ring
buffer and prove them correct. The template file is given on the lecture web site.

3.3 Algebraic Data Types

A key idea of Hoare logic |?] is that all symbols from the logic can be used in programs.
In particular, we already used type int from the logic in many programs. Similarly, we
can use algebraic data types in programs. In Why3 standard library, we find the following
algebraic data types:

type bool = True | False (in bool.Bool)
type option ’a = None | Some ’a (in option.Option)
type list ’a = Nil | Cons ’a (list ’a) (in list.List)

The user is free to define other algebraic data types and to use them in programs. Let us
illustrate this on an example. This is the famous same fringe problem: given two binary
trees holding values at nodes, we want to check whether they have the same elements
when traversed in inorder. The problem is subtle, as the two trees may have different
shapes. For instance, the two trees

8 4
TN /N / N\
1 5 3 5
/N 4/ AN /N /N
/ N\
both have elements 1,3,4,5,8 when traversed in inorder. This problem has practical
application: it provides an order relation over binary search trees (BST) that is shape-
insensitive. This is useful to build other BSTs whose elements are BSTs (to implement
sets of sets).
Let us write a WhyML program to solve the same fringe problem and let us prove its

correctness. We introduce some uninterpreted type elt for the elements (the nature of
the elements is irrelevant here) and a type tree for binary search trees.

type elt
type tree = Empty | Node tree elt tree

For the purpose of the specification, we introduce a function elements returning the
result of an inorder traversal of a tree.

function elements (t: tree) : list elt = match t with
| Empty -> Nil
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type buffer ’a = {
mutable first: int;
mutable len : int;
data : array ’a;
ghost mutable sequence: list ’a;
+
invariant {
let size = Array.length self.data in
0 <= self.first < size /\
0 <= self.len <= size /\
self.len = List.length self.sequence /\
forall i: int. 0 <= i < self.len ->
(self.first + i < size ->
nth i self.sequence = Some self.datalself.first + i]) /\
(0 <= self.first + i - size ->
nth i self.sequence = Some self.datalself.first + i - size])

val create (n: int) (dummy: ’a) : buffer ’a
requires { n > 0 }
ensures { length result.data = n }
ensures { result.sequence = Nil }

val clear (b: buffer ’a) : unit
writes { b.len, b.sequence }
ensures { b.len = 0 }
ensures { b.sequence = Nil }

val push (b: buffer ’a) (x: ’a) : unit
requires { b.len < length b.data }
writes { b.data.elts, b.len, b.sequence }
ensures { b.len = (old b.len) + 1 }
ensures { b.sequence = (old b.sequence) ++ Cons x Nil }

val head (b: buffer ’a) : ’a
requires { b.len > 0 }
ensures { match b.sequence with Nil -> false | Cons x _ -> result = x end }
val pop (b: buffer ’a) : ’a
requires { b.len > 0 }
writes { b.first, b.len, b.sequence }
ensures { b.len = (old b.len) - 1 }
ensures { match old b.sequence with
| Nil -> false
| Cons x 1 -> result = x /\ b.sequence = 1 end }

Figure 3.5: Specification of a ring buffer.
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| Node 1 x r -> elements 1 ++ Cons x (elements r)
end

The function we seek to define and prove is thus as follows:

let same_fringe (tl t2: tree) : bool
ensures { result=True <-> elements tl = elements t2 }

Of course, we could simply use function elements to solve the problem. However, this
would be a quite bad solution: first, list concatenations are costly (they could reach a
quadratic total cost) second, it is unnecessary to build the two lists if they quickly differ
(at least in the context of a strict language as WhyML).

Thus we consider a better solution, consisting in considering the leftmost branch of
each tree as a list, from bottom up. Each element on this list is paired with its right
sub-tree. It is thus a list of pairs (x;,t;), as follows:

On the example above, the two lists are the following:

A ®
@ / 0N
Q/ N ®\3 N

4
/ N\ / N\

The comparison then proceeds as follows. We first compare the first element of each list.
If they differ, we are done. Otherwise, we replace the first element in each list by the
leftmost branch of its right sub-tree, and then we recursively perform the comparison. If
at some point a list is exhausted while the other is not, we answer negatively. Finally,
we successfully terminate if both lists exhaust at the same time.

To write this algorithm in WhyML, we first introduce a data type enum for the lists of
pairs (in the following, we call such a list an enumerator).

type enum = Done | Next elt tree enum

Then we define a recursive function enum_elements to get the inorder traversal of an
enumerator, analogous to function elements, for specification purposes only.
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function enum_elements (e: enum) : list elt = match e with
| Done -> Nil
| Next x r e -> Cons x (elements r ++ enum_elements e)

end

Now we proceed to the code itself. We start with a function enum that builds an enumer-
ator of type enum from a tree t of type tree. We proceed recursively along the leftmost
branch of t. To do so, we pass a second argument e of type enum to accumulate.

let rec enum (t: tree) (e: enum) : enum
ensures { enum_elements result = elements t ++ enum_elements e }

match t with

| Empty -> e
| Node 1 x r -> enum 1 (Next x r e)
end

The specification states that the traversal of the result is the concatenation of the traversal
of t and that of e. Then we write the core of the algorithm as a function eq_enum
comparing two enumerators el and e2. We proceed recursively, until we exhaust at least

one list.

let rec eq_enum (el e2: enum) : bool
ensures { result=True <-> enum_elements el = enum_elements e2 }

match el, e2 with
| Done, Done ->
True
| Next x1 rl el, Next x2 r2 e2 ->
x1 = x2 && eq_enum (enum rl el) (enum r2 e2)
| _ >

False
end

The specification states that we decide equality of the traversals of el and e2. Finally,
the solution to the same fringe problem is a mere call to eq_enum on the enumerators for
the two trees.

let same_fringe (tl t2: tree) : bool
ensures { result=True <-> elements tl1 = elements t2 }

eq_enum (enum tl Done) (enum t2 Done)

The solution is summarized in figure 77.

Exercise: inorder traversal. Using the same type for binary trees, we consider the
following recursive function that fills an array a with the elements of a tree t, following

an inorder traversal.

£i11 t start &<
if ¢ = Empty then return start
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use import int.Int
use import list.List
use import list.Append

type elt
type tree = Empty | Node tree elt tree

function elements (t: tree) : list elt = match t with
| Empty -> Nil
| Node 1 x r -> elements 1 ++ Cons x (elements r)
end

type enum = Done | Next elt tree enum

function enum_elements (e: enum) : list elt = match e with
| Done -> Nil
| Next x r e -> Cons x (elements r ++ enum_elements e)
end

let rec enum (t: tree) (e: enum) : enum
ensures { enum_elements result = elements t ++ enum_elements e }

match t with

| Empty -> e
| Node 1 x r -> enum 1 (Next x r e)
end

let rec eq_enum (el e2: enum) : bool
ensures { result=True <-> enum_elements el = enum_elements e2 }

match el, e2 with
| Done, Done ->
True
| Next x1 r1 el, Next x2 r2 e2 ->
x1 = x2 && eq_enum (enum rl el) (enum r2 e2)
| _ >

False
end

let same_fringe (t1 t2: tree) : bool
ensures { result=True <-> elements tl1 = elements t2 }

eq_enum (enum tl Done) (enum t2 Done)

Figure 3.6: Solving the same fringe problem.
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if t =Node [ = r then
res <— £ill [ start
if res = length a then return res
afres| « x
£fill r (res+1)

The WhyML code for this program, as well as the properties to prove, are available from
the lecture web site.

3.4 Other Data Structures

If we look into Why3 standard library module array.Array we find the following decla-
rations for the type of arrays:

type array ’a model { length: int; mutable elts: map int ’a }

Such a declaration has two meanings. In programs, it is analogous to the declaration of
an abstract type, that would be

type array ’a

In the logic, however, it is equivalent to the declaration of an immutable record type, that
would be

type array ’a = { length: int; elts: map int ’a }

Said otherwise, an array is modeled in the logic as a record with two fields, the length of
type int, and the contents of type map int ’a (a purely applicative map).

The type being abstract in programs, we cannot implement operations over type
array ’a. But we can declare them. For instance, the access operation is declared as
follows:

val ([]) (a: array ’a) (i: int) : ’a reads {a}
requires { 0 <= i < length a }
ensures { result = a[i] }

This function takes a and i as arguments, together with a precondition to ensure an array
access within bounds. It returns a value of type ’a, and the postcondition states that
the returned value is the value contained in the purely applicative map, that is a.elts.
As we see, logical annotations, such as the pre- and postcondition here, have access to
the record fields length and elts. It is the purpose of a model type to be available in
the logic (and only in the logic). The annotation reads {a} indicates that the function
accesses the contents of array a (but does not modify it). The assignment operation is
declared in a similar way:

val ([J<-) (a: array ’a) (i: int) (v: ’a) : unit writes {a}
requires { 0 <= i < length a }
ensures { a.elts = M.set (old a.elts) i v }

The main difference is the annotation writes {a}, which indicates that the contents of
a is modified by a call to this function. This is allowed since the field elts was declared
to be mutable.
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Modeling Hash Tables. As an example, let us do a similar model of hash tablesE]
More precisely, let us consider polymorphic hash tables with the following interface (in
OCaml syntax):

type t ’a ’b

val create: int -> t ’a ’b

val clear: t ’a ’b -> unit

val add: t ’a ’b -> ’a -> ’b -> unit
exception Not_found

val find: t ’a ’b -> ’a -> ’b

Function create returns a fresh, empty table. Function clear empties a given table.
Function add inserts a new entry. Finally, function find returns the value mapped to a
key, if any, and raises exception Not_found otherwise.

As for arrays above, we first declare a type t ’a ’b for the hash tables, modeling the
contents using a purely applicative map.

type t ’a ’b model { mutable contents: map ’a (option ’b) }

We choose to map at most one value for each key. Thus the fields contents maps each
key k of type ’a to a value of type option ’b: None stands for the absence of value
for key k, and Some v stands for an entry £ +— v in the table. To ease forthcoming
specifications, we set up notation h[k] for the entry for key k in table h.

function ([]) (h: t ’a ’b) (k: ’a) : option ’b = get h.contents k

Function create takes an integer n as argument (the initial size of the bucket array) and
returns a fresh, empty table.

val create (n:int) : t ’a ’b
requires { 0 < n }
ensures { forall k: ’a. resultl[k] = None }

Function clear empties a given table. Thus it has the same postcondition as function
create. But it also has specifies that table h is modified (writes {h}).
val clear (h: t ’a ’b) : unit
writes { h }
ensures { forall k: ’a. h[k] = None }

Function add also has a writes {h} annotation:

val add (h: t ’a ’b) (k: ’a) (v: ’b) : unit
writes { h }

ensures { h[k] = Some v /\ forall k’: ’a. k’> <> k -> h[k’] = (old h)[k’] }

Its postcondition states that key k is now mapped to value v in the new contents of h and
that any other key k’ is still mapped to the same value as before, that is (o1d h) [k’].
Indeed, annotation writes h denotes a possible modification of all the contents of table
h and thus it is here the role of the postcondition to state what is modified and what is
not. Finally, we declare function find.

2Hash tables are provided in Why3 standard library since version 0.80.
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use import option.Option
use import int.Int
use import map.Map

type t ’a ’b model { mutable contents: map ’a (option ’b) }
function ([]) (h: t ’a ’b) (k: ’a) : option ’b = get h.contents k

val create (n:int) : t ’a ’b
requires { 0 < n }
ensures { forall k: ’a. resultl[k] = None }

val clear (h: t ’a ’b) : unit
writes { h }
ensures { forall k: ’a. h[k] = None }

val add (h: t ’a ’b) (k: ’a) (v: ’b) : unit
writes { h }
ensures { hl[k] = Some v /\ forall k’: ’a. k> <> k -> h[k’] = (old h)[k’] }

exception Not_found

val find (h: t ’a ’b) (k: ’a) : ’b
reads { h }
ensures { h[k] = Some result }
raises { Not_found -> h[k] = None }

Figure 3.7: Modeling hash tables.

exception Not_found

val find (h: t ’a ’b) (k: ’a) : ’b
reads { h }
ensures { h[k] = Some result }
raises { Not_found -> h[k] = None }

The keyword raises introduces a postcondition corresponding to the case where an
exception is raised (Not_found in that case), while ensures declares a postcondition
corresponding to the case where a value is returned. Figure 7?7 summarizes our model of
hash tables.

It is worth mentioning that there is currently no possibility to ensure that a given
WhyML implementation of hash tables conforms to this model.
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Chapter 4

Using Why3 as an Intermediate
Language

Using Why3 to verify programs written in a mainstream programming language (such as
C or Java) requires an adequate modeling of its semantics in the logic of Why3. In this
chapter, we briefly explain how to do so on two examples.

4.1 Machine Arithmetic

So far we have use arithmetic from Why3 standard library, that is mathematical integers
of unbounded precision. Let us assume we need to model machine arithmetic instead (say,
signed 32-bit integers), either to show the absence of arithmetic overflow in a program,
or to reason about possible overflows. The main difficulty is that we do not want to
loose the arithmetic capabilities of SMT solvers (which only know about mathematical
arithmetic). One way to do is to introduce a new, uninterpreted type int32 for machine
integers

type int32
together with a function giving the corresponding value of type int:
function toint int32 : int

The idea is then to use only type int in program annotations, that is to apply function
toint in a systematic way around sub-expressions of type int32. The range of 32-bit
integers is defined with two constants

-2147483648
2147483647

constant min_int: int
constant max_int: int

and an axiom states that any value of type int32 is bounded by these constants:

axiom int32_domain:
forall x: int32. min_int <= toint x <= max_int

If our purpose is to build a model to prove the absence of arithmetic overflow, we simply
need to function to build a value of type int32 from a value of type int with a suitable
precondition:
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val ofint (x:int) : int32
requires { min_int <= x <= max_int }
ensures { toint result = x }

Then we can translate any program manipulating machine integers into a WhyML program
where each arithmetic operation uses function ofint. For instance, an expression such
as = + y is translated into ofint (toint x) (toint y). Equivalently, we can also declare
(or define) a function performing this computation, that is

val (+) (x: int32) (y: int32) : int32
requires { min_int <= toint x + toint y <= max_int }
ensures { toint result = toint x + toint y }

The lecture web site contains an application of this model to the verification of a program
searching for a value in a sorted array using binary search. This way we find the famous
bug related to the computation of the mean value of 1 and u using (1+u)/2 [?]. Then
we can fix the bug, for instance using 1+(u-1)/2 instead, and we can show that this new
program is safe from any arithmetic overflow.

4.2 Memory Models

A key idea of Hoare Logic, implemented in Why3, is that the system can statically identify
the various memory locations. This is absence of aliasing. In particular, memory locations
are not first-class values. Thus to handle programs with mutable data structures such
as linked lists or mutable trees, or programs with explicit pointers, one has to model the
memory heap.

A trivial example would be that of C programs with explicit pointers of type intx*.
A simple way to model such programs would be to introduce a type for pointers and a
global reference holding the contents of the memory:

type pointer
val memory: ref (map pointer int)

Then a C expression such as *p is translated into !'memory[p]. If pointer arithmetic is
allowed, then either the type pointer is defined as an alias for type int, or operations
over type pointer (such as shifting, comparisons, etc.) are introduced. This is somehow
a rather crude model, where the user quickly get stuck into a specification nightmare.

There are more subtle models, such as the component-as-array model [?, ?]. Say we
want to model the following C type for simply linked lists:

struct List {
int head;
struct List *next;

}s

The idea behind the component-as-array model is to have several maps to model the
various structure fields. In this case, we have (at least) two global maps for fields head
and next:
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type pointer
val head: ref (map pointer int)
val next: ref (map pointer pointer)

An obvious benefit is that any modification to reference head does not have any impact on
the contents of reference next. The benefit is even greater when there are many C fields
(being they of the same type or not, of from the same structure or not). The component-
as-array model may be even further refined using a region-analysis of pointers [?]. On the
contrary, a drawback is that low-level tricks such as pointer casts or pointer arithmetic
are not easily allowed anymore.
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