
Assurance-Driven Design of Cyber-Physical
Systems1

N. Shankar

Computer Science Laboratory
SRI International
Menlo Park, CA

July 16, 2014

1 Supported by NASA NRA NNA13AC55C, NSF Grant CNS-0917375, and
DARPA under agreement number FA8750-12-C-0284. The views and conclusions
contained herein are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed or implied, of
NASA, NSF, DARPA, or the U.S. Government.



Motivation

An assurance case is a “a documented body of evidence that
provides a convincing and valid argument that a specified set
of critical claims about a system’s properties are adequately
justified for a given application in a given environment.”
[Adelard]

From the FDA Draft Guidance document Total Product Life
Cycle: Infusion Pump - Premarket Notification [510(k)]
Submissions:
An assurance case is a formal method for demonstrating the validity

of a claim by providing a convincing argument together with

supporting evidence. It is a way to structure arguments to help

ensure that top-level claims are credible and supported. In an

assurance case, many arguments, with their supporting evidence,

may be grouped under one top- level claim. For a complex case,

there may be a complex web of arguments and sub-claims.

Natarajan Shankar ADD4CPS 2/31



Talk Outline

Key Challenges are

How do we systematically construct assurance cases consisting
of claims, evidence, and arguments (formal, semi-formal, and
informal)?
Can we make assurance an integral goal of the design process?

Assurance for cyber-physical systems

Eight-variables model
Layered assurance of cyber-physical systems: The Landshark
Example

Architecture for cyber-physical systems

Robot Architecture Definition Language (RADL)
The Quasi-synchronous model of computation

The Evidential Tool Bus

What is the Evidential Tool Bus?
How is it used in defining assurance workflows and arguments?

Natarajan Shankar ADD4CPS 3/31



Cyber-Physical Systems: Eight Variables Model

These are systems composed of physical and computational
components, with multiple control loops operating at multiple
time scales.
CP stems are typically distributed and consist of a network of
sensors, controllers, and actuators.
The whole system can itself be seen as a giant control loop
with a plant and a controller.

Command

Controller

Plant

SensorActuator

Environment

Controlled Monitored

Pose

InputOutput

Operator

Display

Examples of such systems range from engine controllers, cars,
and robots to factories, buildings, and power grids.

Natarajan Shankar ADD4CPS 4/31



A Simple Example: Room-Heating Thermostat

Set Temperature, On/Off

Thermostat

Room

Heater

Leakage

Heat Location Temperature

Room Temperature

Temperature ReadingOn/Off

Operator

Temperature Reading

Thermometer

1 The plant consists of the room whose temperature is being
maintained, the actuator is the heater, and the environment is
the energy leakage from the room.

2 The goal requirement is to maintain the average temperature
across the room above a specified temperature that is set by
the operator.

Natarajan Shankar ADD4CPS 5/31



Top Assurance Claim

Command

Controller

Plant

SensorActuator

Environment

Controlled Monitored

Pose

InputOutput

Operator

Display

EnvironmentAssumption(environment) AND

PlantModel(environment, control, pose, monitor) AND

SensorAccuracy(monitor, input) AND

ActuatorResponse(output, control) AND

ControllerOutput(input, command, output, display) AND

OperatorModel(display, command)

IMPLIES

Requirement(command, environment, pose, display)

Natarajan Shankar ADD4CPS 6/31



The Refinement Layers in the Assurance Argument

The argument is structured into three refinement layers where
each layer is shown to implement the assumptions imposed by
the higher layer:

1 The Mathematical Model: A spatio-temporal model that
captures the physics of the vehicle, the environment
assumptions, the system-level requirements, and the
mathematical designs of the controllers and monitors.

2 The Engineering Model: Algorithmic/architectural models
for plants and controllers/monitors, fault models for the
physical components, and a model of computation (MoC) for
communication and computation.

3 The Computation Model: The software from the engineering
model are executed as processes within a hypervisor partition
and communicating using hypervisor/network services.

Each layer also introduces fault models and mitigations for the
components relevant to it.

Natarajan Shankar ADD4CPS 7/31



Robot Architecture Definition Language (RADL)

The Robot ADL bridges the gap between the engineering and
computation models.
The ADL is inspired by the popular Robot Operating System
(ROS) middleware for building cyber-physical systems.
The architecture definition captures

1 Message types

2 Nodes, with their period, initialization, and steady-state
computation steps, published topics, received topics (with
latency bounds), and devices

3 Topics, with a message type, period, and authentication

4 Mapping of nodes to partitions within processors and
associated devices

5 Mapping of channels to buses with firewalls and authentication

Natarajan Shankar ADD4CPS 8/31



Thermostat in ROS

75

Thermometer

Thermostat

Heater

Operator

Temperature
Integer

75

Heater_on
Boolean

Off

Thermostat_on
Boolean

Off

Set_temperature
Integer

Natarajan Shankar ADD4CPS 9/31



RADL: Nodes

thermostat : node {
SUBSCRIBES

setting { TOPIC thermostat_setting

SUBSCRIBER default_sub MAXLATENCY msec 1 }
thermom { TOPIC thermometer_data

SUBSCRIBER default_sub MAXLATENCY msec 1 }
PUBLISHES

control { TOPIC thermostat_control PUBLISHER default_pub}
CXX {

CLASS "Thermostat" HEADER "thermostat.h"

FILENAME "thermostat.cpp" }
PERIOD msec [49, 51]

WCET msec 2

}

Natarajan Shankar ADD4CPS 10/31



A RADL Device Node

thermometer : node {
PUBLISHES

temp { TOPIC thermometer_data PUBLISHER default_pub }
CXX { CLASS "Thermometer"

HEADER "thermometer.h" FILENAME "thermometer.cpp"}
DEVICES

temperature_sensor

PERIOD msec [49,51]

WCET msec 2

}

Natarajan Shankar ADD4CPS 11/31



RADL: Topics

thermostat_set : topic {
FIELDS

temp : float32 75

}

Natarajan Shankar ADD4CPS 12/31



RADL: Platform

blackbox: PROCESSOR {
DEVICE

thermometer1: thermometer

heater1: heater

radio1: radio

HYPERVISOR

CertiKOS

PARTITIONS

controllerPartition

heaterPartition

thermometerPartition

BUSES

CertiKOS_IPC

USB

Ethernet

}

Natarajan Shankar ADD4CPS 13/31



RADL: Mappings

controllerPartition: PARTITION {
OS Ubuntu 12.0.4

PACKAGES

...

NODES

thermostat

}

Natarajan Shankar ADD4CPS 14/31



RADL: Buses

CertiKOS_IPC: BUS {
ENDPOINTS

controllerPartition

thermometerPartition

heaterPartition

}

Ethernet: BUS {
ENDPOINTS

consolePartition

controllerPartition

}

Natarajan Shankar ADD4CPS 15/31



Using RADL

The architecture description is used to
1 Check the architectural integrity to ensure that the message

types, rates, and device assignments match
2 Relate the model of computation at the engineering layer to

the ROS configuration and platform in the computation layer
3 Generate glue code to handle initialization, and access to

devices and communication
4 Build and certify the running ROS configuration to conform to

the architecture
The model(s) of computation in the engineering layer is
correctly realized

1 The system is properly initialized
2 The nodes are scheduled at their specified periodic rate and

meet their WCET.
3 The node computations are executed correctly within the

hypervisor
4 The messages are delivered with integrity and authenticity

within the latency bounds
5 The fault assumptions in the model are met by the architecture

Natarajan Shankar ADD4CPS 16/31



Semantics of RADL

Semantics is captured by a PVS theory RADLsemantics with
uninterpreted types for topic, node, data, flag, and
nodestate.

A message contains data and flag.

An event contains message and timestamp.

A stream is a sequence of events with time that is
nondecreasing and eventually exceeding any bound.

A node event consists of a nodestate and a timestamp.

A node computation is a sequence of node events with same
constraints on time as above.

The outputs for each node event are published within the
WCET of the timestamp.

Natarajan Shankar ADD4CPS 17/31



The Quasi-Synchronous Model of Computation

Synchronous models has been heavily studied, but they are
impractical for typical distributed control systems.
The quasi-synchronous model consists of locally clocked
processes, but with a bounded drift between the rates of
individual clocks.
Several basic theorems can be proved (in PVS) about this
model:

1 The latency for processing a transmitted message is bounded
by the maximum transmission latency and the maximum
receiver period.

2 Under some assumptions on the relative rates and drifts, the
number of consecutive dropped (unprocessed) messages is
bounded

3 With added assumptions on the queue length, no messages are
dropped.

4 The staleness of a processed message is bounded

These theorems are crucial for proving physical system
properties.

Natarajan Shankar ADD4CPS 18/31



RADL Assurance Flow

Natarajan Shankar ADD4CPS 19/31



Physical Architecture

The RADL physical architecture assigns nodes to partitions
(VMs) running on a hypervisor executing on a (possibly
multi-core) processor.

Topics are assigned to bus channels, including inter-process
communication (IPC) implemented by the hypervisor.

The physical architecture must implement the period, latency,
and WCET assumptions in the logical architecture.

The middleware — ROS in this case — manages the
application-specific tasks like the network initialization, node
scheduling, the socket interface including
marshalling/unmarshalling of data, authentication, and
hypercalls.

The hypervisor ensures memory partitioning, and implements
timely and authenticated inter-process communication, and
timely inter-processor communication.

Natarajan Shankar ADD4CPS 20/31



ETB Overview

The Evidential Tool Bus (ETB) is a distributed tool
integration framework for constructing and maintaining claims
supported by arguments based on evidence.

ETB provides the infrastructure for

Creating workflows that integrate multiple tools, e.g., static
analyzers, dynamic analyzers, satisfiability solvers, model
checkers, and theorem provers
Generating claims based on these workflows
Producing checkable evidence (e.g., files) supporting these
claims
Maintaining the evidence against changes to the inputs

ETB is implemented in Python 2.7.

Natarajan Shankar ADD4CPS 21/31



Datalog as a Metalanguage for ETB

Datalog is a fragment of Horn-clause logic programming first
introduced in the 1970s as a database query language.

A Horn clause is of the form P : −Q1, . . . ,Qn, where ‘: −’ can
be read as ‘if’.

Query languages based on first-order logic can’t represent
recursive queries like transitive closure (parent is a database
relation):

ancestor(x, y) :- parent(x, y)

ancestor(x, y) :- parent(x, z), ancestor(z, y)

In ETB, we admit interpreted predicates that are evaluated
using wrappers, e.g., the evaluation of veryComposite(8, 3),
can dynamically generate the clause

veryComposite(8, 3) : − composite(8),
composite(9),
composite(10).

Natarajan Shankar ADD4CPS 22/31



DO-178C Certification Argument in ETB

The top-level claim is that the assurance artifacts AA are
DO-178C compliant.

A Datalog rule decomposes the claim into several subclaims.

do178c_compliant(AA) :-

do178c_a2_check(AA),

do178c_a3_check(AA),

do178c_a4_check(AA),

do178c_a5_check(AA),

do178c_a6_check(AA),

do178c_a7_check(AA).

Natarajan Shankar ADD4CPS 23/31



The Certification Flow

The verification workflow is launched before the compliance
check

do178c_verify(AA) :-

a2verify(AA, A2Evidence),

a3verify(AA, A3Evidence),

a4verify(AA, A4Evidence),

a5verify(AA, A5Evidence),

a6verify(AA, A6Evidence),

a7verify(AA, A7Evidence).

Natarajan Shankar ADD4CPS 24/31



DO-178C A4: Verification of Outputs of Software Design
Process

a4verify(AA, A4Evidence) :-

a4artifacts(AA, HLR, LLR, SWA, A4Checklist, ReviewDocs),

a4checklist_reviewed(A4Checklist, ReviewResult),

a4verify_checklist(HLR, LLR, SWA, A4Checklist,

..., A4Evidence).

a4verify against checklist is actually a wrapper that
generates the clause below, which triggers the tool wrappers.

a4verify_checklist(HLR, LLR, SWA, A4Checklist, ..., A4Evidence) :-

design_llr_hlr_compliance(LLR, HLR, VerificationReport_1),

design_model_trace_anchor(LLR, HLR, VerificationReport_2),

...,

design_llr_conforms_to_standards(LLR, VerificationReport_5)

...

package_a4evidence(..., VerificationReport_5, ..., A4Evidence)

Natarajan Shankar ADD4CPS 25/31



The Certification Phase

The certification process checks the results of the reports
generated in the verification phase.

llr_conforms_to_standards(LLR, Report) :-

design_llr_conforms_to_standards(LLR, Report),

...,

design_chart_lang_functionrules_conformance(Report, ‘Yes‘),

... .

do178c_a4_check(AA) :-

a4verify(AA, A4Evidence)

unpack_evidence(A4Evidence, ...,

VerificationReport_5, ...)

...

llr_conforms_to_standards(LLR, VerificationReport_5),

... .

Natarajan Shankar ADD4CPS 26/31



ETB Architecture

Clients
Clients

Git Server Git Server

Git Server
Git Server

Link

Clients
Clients

Server Server

Server Server

Natarajan Shankar ADD4CPS 27/31



Landshark Assurance in ETB

Functionality

Assurance
Artifacts

Mathematical
Models

SensorPlant

Actuator

Reqmt

Engineering
Artifacts

Contrlr
Design

Platform
Model

Platform
Mapping

Computational
Artifacts

ROS
Nodes

ROS

Network Hypervisr

Validation

Operator

Contrlr Correctness

Refinement

Refinement

Info. Flow

Timeliness

Resilience

Natarajan Shankar ADD4CPS 28/31



Conclusions

Cyber-physical systems range from engine controllers, cars,
and robots to factories, buildings, and power grids.

The incorporation of software and networking makes the
safety and security of these systems a critical challenge.

The construction of the assurance case should drive the
design of cyber-physical systems.

The assurance-driven design (ADD) starts with an
eight-variables model of the system developing three layers of
design and assurance: the mathematical, engineering, and
computation layers.

The assurance argument and artifacts are assembled using the
Evidential Tool Bus (ETB).

Our approach is currently being applied to the Landshark
Robot and will subsequently be adapted to the American
Build Automobile.

Natarajan Shankar ADD4CPS 29/31


