
Formal verification of a static analyzer based on
abstract interpretation

joint work with J.-H. Jourdan, V. Laporte, A. Maroneze, X. Leroy, D. Pichardie

IFIP WG 1.9/2.15, 2014-07-14

Sandrine Blazy

1lundi 14 juillet 14

Background: verifying a compiler

 Compiler + proof that the compiler does not introduce bugs

CompCert, a moderately optimizing C compiler usable for critical embedded
software

Using the Coq proof assistant, we prove the following semantic preservation
property:

• Compiler written from scratch, along with its proof; not trying to prove an
existing compiler

For all source programs S and compiler-generated code C,
if the compiler generates machine code C from source S,
without reporting a compilation error,
then «C behaves like S».

2lundi 14 juillet 14

CompCert main correctness theorem

 If the source program can not go wrong, then the behavior of the
generated assembly code is exactly one of the behaviors of the source
program.

The generated assembly code can not wrong.

Theorem transf_c_program_is_refinement:
forall p tp, transf_c_program p = OK tp !
(forall behv, exec_C_program p behv ! not_wrong behv) !
(forall behv, exec_Asm_program tp behv ! exec_C_program p behv).

3lundi 14 juillet 14

Proof methodology

• The compiler is written inside the purely
functional Coq programming language.

• We state its soundness w.r.t. a formal
specification of the language semantics.

• We interactively and mechanically prove this.
• We decompose the proof in proofs for each

compiler pass.
• We extract a Caml implementation of the

compiler.

4lundi 14 juillet 14

Proof methodology

• The compiler is written inside the purely
functional Coq programming language.

• We state its soundness w.r.t. a formal
specification of the language semantics.

• We interactively and mechanically prove this.
• We decompose the proof in proofs for each

compiler pass.
• We extract a Caml implementation of the

compiler.

 Logical
 Framework
(here Coq)

Compiler Language
Semantics

Soundness Proof

parser.ml pprinter.mlcompiler.ml

4lundi 14 juillet 14

CompCert components

5lundi 14 juillet 14

Verification patterns
(for each compilation pass)

6

Verified transformation
transformation transformation

validator

Verified translation validation

= formally verified
= not verified

transformation

checker

untrusted
solver

External solver with verified transformation

6lundi 14 juillet 14

Compiling critical embedded software

Fly-by-wire software, Airbus A380 and A400M
• FCGU (3600 files, 3.96 MB of assembly code): mostly control-command code
generated from block diagrams (Scade)
• minimalistic OS

Results
• Estimated WCET for each file
• Average improvement per file: 14%
• Compiled with CompCert 2.3, May 2014

Conformance to the certification process (DO-178)
• Trade-off between traceability guarantees and efficiency of the generated code

7lundi 14 juillet 14

Tools that participate in the production and
verification of critical embedded software

Are these verification tools semantically sound ?

static
analyzer

model
checker

code
generator

program
prover

verified
compiler

subsets
of C

Vision: simpler, more precise
verification tools
Know precisely how the
compiler implements
unspecified behaviors of C

8lundi 14 juillet 14

This talk

• From CompCert to formally verified static analysis

• A first formally verified static analyzer
• Architecture
• Applications

• Quantitative jump: an improved formally verified static analyzer

9lundi 14 juillet 14

From CompCert to formally verified
static analysis

10lundi 14 juillet 14

Static analysis

Absence of run-time errors in programs

A reference tool: the Astrée static analyzer (P.Cousot et al.)
• Based on a rock salt theory: abstract interpretation
• Programmed in Caml and highly modular
• Takes care of numerical pitfalls

• machine integers and floating point numbers
• both in the C semantics and in the analyzer’s own computations

• Memory safety of the A380 fly-by-wire software (~5 hours of computation)

Implementations on real languages are still error-prone.
• Abstract interpretation proofs are (mainly) done on paper and without

direct linkk to the actual implementation

11lundi 14 juillet 14

The Verasco project
INRIA Celtique, Gallium, Abstraction, Toccata + VERIMAG + Airbus

Goal: develop and verify in Coq a realistic static analyzer by abstract
interpretation

• Language analyzed: the CompCert subset of C
• Nontrivial abstract domains, including relational domains
• Modular architecture inspired from Astrée’s
• Decent alarm reporting

Slogan: if « CompCert ≈ 1/10th of GCC but formally verified»,
likewise «Verasco ≈1/10th of Astrée but formally verified»

 http://verasco.imag.fr

12lundi 14 juillet 14

http://verasco.imag.fr
http://verasco.imag.fr

Building a static analyzer in ML

Modular design

Example of interface

module IntervalAbVal : ABVAL = ...

module NonRelAbEnv (AV:ABVAL) : ABENV = ...

module SimpleAbMem (AE:ABENV) : ABMEMORY = ...

module Iterator (AM:ABMEMORY) : ANALYZER = ...

module myAnalyzer = Iterator(SimpleAbMem(NonRelAbEnv(IntervalAbVal)))

module type ABDOM = sig
 type ab
 val le : ab → ab → bool
 val top : ab
 val join : ab → ab → ab
 val widen : ab → ab → ab
end

13lundi 14 juillet 14

Building a static analyzer

in ML in Coq
Class adom (ab:Type) (c:Type) := {
 le : ab → ab → bool;
 top : ab;
 join : ab → ab → ab;
 widen : ab → ab → ab;

 gamma : ab → ℘(c);

 gamma_monotone : ∀ a1 a2,
 le a1 a2 = true ⟹
 gamma a1 ⊆ gamma a2;
 gamma_top : ∀ x,
 x ∈ gamma top;
 join_sound : ∀ x y,
 gamma x ∪ gamma y
 ⊆ gamma (join x y)
}

module type ABDOM = sig
 type ab
 val le : ab → ab → bool
 val top : ab
 val join : ab → ab → ab
 val widen : ab → ab → ab
end

14lundi 14 juillet 14

Lazy proofs
Proof by necessity
• We don’t prove properties that

are not strictly necessary to
establish a soundness theorem.

What we don’t prove
• (ab,le,join) enjoy a lattice

structure
• gamma is a meet morphism

between complete lattices
(Galois connection)

• widen is a sound widening
operator

Class adom (ab:Type) (c:Type) := {
 le : ab → ab → bool;
 top : ab;
 join : ab → ab → ab;
 widen : ab → ab → ab;

 gamma : ab → ℘(c);

 gamma_monotone : ∀ a1 a2,
 le a1 a2 = true ⟹
 gamma a1 ⊆ gamma a2;
 gamma_top : ∀ x,
 x ∈ gamma top;
 join_sound : ∀ x y,
 gamma x ∪ gamma y
 ⊆ gamma (join x y)
}

15lundi 14 juillet 14

Verifying a static analyzer

Definition analyzer (p: program) := ...
Theorem analyzer_is_sound :
 ∀ p, analyzer p = Success ->
 sound(p).
Proof. ...(* few months later *)...Qed.
Extraction analyzer.

16lundi 14 juillet 14

 Logical
 Framework
(here Coq)

Static
Analyzer

Language
Semantics

Soundness Proof

parser.ml pprinter.mlanalyzer.ml

Verifying a static analyzer

Definition analyzer (p: program) := ...
Theorem analyzer_is_sound :
 ∀ p, analyzer p = Success ->
 sound(p).
Proof. ...(* few months later *)...Qed.
Extraction analyzer.

16lundi 14 juillet 14

A holistic effect with compiler verification

Compiler
Theorem transf_c_program_is_refinement:
forall p tp, transf_c_program p = OK tp →
(forall behv, exec_C_program p behv → not_wrong behv) →
(forall behv, exec_Asm_program tp behv → exec_C_program p behv).

Static analyzer
Theorem analyzer_is_correct:
forall p, static_analyzer_result p = Success →
(forall behv, exec_C_program p behv → not_wrong behv).

Stronger correctness result
Theorem transf_c_program_is_refinement:
forall p tp, transf_c_program p = OK tp →
(forall behv, exec_Asm_program tp behv → exec_C_program p behv).

17lundi 14 juillet 14

Verasco 1.0

18lundi 14 juillet 14

numbers

CompCert compiler

General architecture

? ...

statesState abstraction

control flowAbstract interpreterAlarms

Numerical abstraction

...

Each layer is parameterized by the underlying one.

19lundi 14 juillet 14

CompCert: 1 compiler, 11 languages

type elimination
loop simplifications

CFG construction
expr. decomp.

spilling, reloading
calling conventions

Compcert C Clight C#minor

CminorCminorSelRTL

LTL LTLin Linear

MachASM

side-effects out
of expressions

stack allocation
of «&»variables

Optimizations: constant prop., CSE, tail calls,
(LCM), (software pipelining)

instruction
selection

register
allocation (IRC)

linearization
of the CFG

layout of
stack frames

asm code
generation

(instruction scheduling)

Where should we perform
the analysis ?

20lundi 14 juillet 14

Which CompCert representation ?

C source ?
• the place where we want to prove program safety
• but the most difficult place to start (not an IR but a source language)

RTL ?
• the place where most CompCert optimizations take place
• but platform specific, flat expressions

Cminor ?
• the last step before platform specific semantics
• designed to welcome forthcoming extensions
• but control flow still less uniform than in RTL (nested blocks and exits)

Platform specific backend

ASMCompcert C ... Cminor RTL ...

21lundi 14 juillet 14

Which CompCert representation ?

A new representation: CFG
• Cminor expressions (i.e. side effect free C expressions)
• control flow graphs with explicit program points
• control flow is restricted to simple unconditional and conditional jumps
• platform independent

Platform specific backend

ASMCompcert C ... Cminor RTL ...

CFG

Value
Analysis

22lundi 14 juillet 14

Modular design
The abstract interpreter

CFG program are unstructured.
• We need to build widening strategies on unstructured control flow graph !
• We let an external tool computes a post-fixpoint and check the result in

Coq.

• The external tool is complex (Bourdoncle strategy + widening heuristics),
• but we don’t prove anything about it as well as about all widening operators.

CompCert
compiler

CFG

RTL... Cminor ...

control flowAbstract interpreterAlarms

23lundi 14 juillet 14

Modular design
The state abstract domain

From a simple imperative semantic domain to the C memory
• The current functor tracks only the content of local variables.
• A pointer Vptr(b,i) is abstracted by its offset i.
• 1 concrete block = 1 abstract block

states

CompCert
compiler

CFG

RTL... Cminor ...

control flowAbstract interpreterAlarms

Memory & value domain

b1 b2

i2

24lundi 14 juillet 14

Modular design
The non relational abstract domain

From a set of values to one single value
• The set of abstract values is implemented with efficient binary tree

representations.
• We use downward iterations of branch conditions.
• As much as we can, we reduce empty properties to a single abstract

element.

numbersNon relational abstract domain

states

CompCert
compiler

CFG

RTL... Cminor ...

control flowAbstract interpreterAlarms

Memory & value domain

25lundi 14 juillet 14

Modular design
The interval numeric abstraction

Compiler internal representation of integers
• At this level of CompCert, there are no signed or unsigned integers: only

machine integers.
• An interval abstraction can represent a range for the signed interpretation

of integers, or the unsigned interpretation.
• A reduced product combines both abstractions for enhanced precision.

numbers

statesMemory & value domain

control flowAbstract interpreterAlarms

reduced product

Signed intervals Unsigned intervals

Non relational abstract domain

26lundi 14 juillet 14

WCET
estimation

 tool

Application:
a formally verified WCET estimation tool [WCET2014]

Estimate
computation

HW features

loop bounds

Control flow
analysis

CompCert
compiler

CFG

RTL... Cminor ... ASM

27lundi 14 juillet 14

WCET
estimation

 tool

Application:
a formally verified WCET estimation tool [WCET2014]

Estimate
computation

loop bounds

Control flow
analysis

CompCert
compiler

CFG

RTL... Cminor ... ASM

27lundi 14 juillet 14

WCET
estimation

 tool

Application:
a formally verified WCET estimation tool [WCET2014]

Estimate
computation

loop bounds

Control flow
analysis

Control flow analysis
Program
slicing

Value
analysis

Bound
computation

CompCert
compiler

CFG

RTL... Cminor ... ASM

27lundi 14 juillet 14

A second application
Disassembling low-level self-modifying code [ITP2014]

07000607

03000000

00000005

00000000

00000100

09000000

00000004

09000002

00000002

05000002

04000000

00000001

07000607

03000000

00000004

00000000

00000100

09000000

00000004

09000002

00000002

05000002

04000000

00000001

 0: cmp R6, R7
 1: gotoLE 5
 2:
 3: halt R0
 4: halt R1
 5: cst 4 ! R0
 6:
 7: cst 2 ! R2
 8:
 9: store R0 ! *R2
10: goto 1
11:

Small assembly language inspired from x86, with indirect jumps

28lundi 14 juillet 14

Our approach

• Value analysis
• Attach to each reachable program point an over-approximation of the

state at that point
• Analyze the content of memory and of the registers

(e.g. check every memory write to decide if it modifies the code)
• No previous disassembling of CFG reconstruction

• New abstract domain: integer congruences (stridded intervals)
• combines interval and congruence information
• Ex.: {1000; 2000}.4 represents {1000; 10004; 1008; . . . ; 2000}

29lundi 14 juillet 14

Verasco 2.0

modular architecture
much more complex language

much more sophisticated static analysis techniques

30lundi 14 juillet 14

From CFG to C#minor

C-like language, but
• no side effects in expressions
• no overloading in C operators
• no implicit casts

C#minor is a mostly structured language (only gotos are unstructured)

CompCert
compiler

C#minor

CFG

Cminor ...Clight

control flowAbstract interpreterAlarms

CompCert C

31lundi 14 juillet 14

From CFG to C#minor

C-like language, but
• no side effects in expressions
• no overloading in C operators
• no implicit casts

C#minor is a mostly structured language (only gotos are unstructured)

CompCert
compiler

C#minor

CFG

Cminor ...Clight

control flow

CompCert C

Abstract interpreterAlarms

31lundi 14 juillet 14

Abstract interpreter

Structural approach instead of CFG approach
• obviates the need to define program points
• uses less memory than the CFG-based interpreter
• transfer functions are more involved (control can leave a stmt in many ways)

Parameterized by a relational abstract domain for execution states
(environment + memory state + call stack)

CompCert compilerC#minor ...

statesMemory & value domain

control flowAbstract interpreterAlarms

...

32lundi 14 juillet 14

Abstract interpreter (cont’d)

Loops
• post-fixpoint (pfp) computation written in Coq
• using a widening operator provided by the abstract domain
• Once a pfp is found, use of narrowing in the hope of finding a smaller pfp

Local fixpoints for each loop + per-function fixpoint for gotos + per-program
fixpoint for function calls (interprocedural analysis)

Written in monadic style so that alarms can be reported during analysis
• logging monad collecting alarms in the log while the analysis continues

Coq soundness proof relying on axiomatics semantics and step indexing
semantics

33lundi 14 juillet 14

The state abstract domain

statesMemory & value domain

control flowAbstract interpreterAlarms

Abstract memory cell: 1 unit of storage

Abstract value: (type, points-to, num)

The domain is parameterized by a relational numerical domain where cells act as
variables.

Block fusion and strong/weak updates
Ex.: memory store to an array cell. The analysis generates the set of cells that may
be accessed. When this set is a singleton, the analysis can perform a strong update.

34lundi 14 juillet 14

numbers

General architecture
Abstract numerical domains

statesMemory & value domain

control flowAbstract interpreterAlarms

Z → int

Integer congruences Integer & F.P. intervals

Nonrel→ Rel Nonrel→ Rel
Symbolic
equalities

Convex
polyhedra

CompCert compilerC#minorClightCompCert C ...

35lundi 14 juillet 14

numbers

General architecture
Abstract numerical domains

statesMemory & value domain

control flowAbstract interpreterAlarms

Z → int

Integer congruences Integer & F.P. intervals

Nonrel→ Rel Nonrel→ Rel
Symbolic
equalities

Convex
polyhedra

conjunctions of linear
equalities
∑ai xi ≤ c equalities

xi = cond. expr
cond. expr = true/false

CompCert compilerC#minorClightCompCert C ...

35lundi 14 juillet 14

Combining abstract domains

Implementations of reduced products tend to be specific to the 2 domains
being combined.

System of inter-domains communication channels inspired by that of Astrée
• Channels are used by domains when they need information from another

domain.
• The information already present in a channel is enriched with information

of a query.

36lundi 14 juillet 14

Implementation

30 000 lines of Coq, excluding blanks and comments
+ parts reused from CompCert

Bulk of the development: abstract domains for states and for numbers
(involve large case analyses and difficult proofs over integer and floating
points arithmetic)

Except for the operations over polyhedra, the algorithms are implemented
directly in Coq’s specification language.

37lundi 14 juillet 14

Experimental results

Preliminary experiments on small C programs (up to a few hundred lines)
• CompCert benchmarks
• Cryptographic routines (NaCl library)

Exercise many delicate aspects of the C language: arrays, pointer arithmetic,
function pointers, floating-point arithmetic.

The analyzer can take several minutes to analyze a few hundred lines of C.

38lundi 14 juillet 14

Future directions

39lundi 14 juillet 14

Conclusion

Static analyzer based on abstract interpretation which establishes the
absence of run-time errors in C programs (excluding recursion and dynamic
allocation)

Modular architecture supporting the extensible combination of multiple
abstract domains (relational and non-relational)

Integrates with CompCert, so that the soundness of the analysis is
guaranteed on the compiled code as well

Theorem vanalysis_is_correct:
forall prog res tr,
vanalysis prog = (res, nil) !
program_behaves (semantics prog) (Goes_wrong tr)!
False.

40lundi 14 juillet 14

Future directions

Improving the algorithmic efficiency of the static analyzer
• from Coq’s integer and FP arithmetic (list of bits) to more efficient libraries
• purely functional data structures used for maps and sets

Extend the memory abstract domain to handle dynamic memory allocation
• one memory cell could stand for several concrete memory locations

(e.g. all blocks created by malloc inside a loop)

Improving the precision of the analysis
• on-the-fly unrolling of certain loops (based on unverified heuristics)

New abstract domains, e.g. octagons (linear inequalities ± x ± y ≤ c)

41lundi 14 juillet 14

Questions ?

42lundi 14 juillet 14

43

Interval abstraction:
signed or unsigned ?

43lundi 14 juillet 14

43

Interval abstraction:
signed or unsigned ?

int f(void) { signed s; unsigned u;

 if (*) u = 231 - 1; else u = 231;

 if (*) s = 0; else s = -1;

 return u + s; }

43lundi 14 juillet 14

43

Interval abstraction:
signed or unsigned ?

int f(void) { signed s; unsigned u;

 if (*) u = 231 - 1; else u = 231;

 if (*) s = 0; else s = -1;

 return u + s; }

u ∈ [231-1; 231] (unsigned)

43lundi 14 juillet 14

43

Interval abstraction:
signed or unsigned ?

int f(void) { signed s; unsigned u;

 if (*) u = 231 - 1; else u = 231;

 if (*) s = 0; else s = -1;

 return u + s; }

u ∈ [231-1; 231] (unsigned)

u ∈ T (signed)

43lundi 14 juillet 14

43

Interval abstraction:
signed or unsigned ?

int f(void) { signed s; unsigned u;

 if (*) u = 231 - 1; else u = 231;

 if (*) s = 0; else s = -1;

 return u + s; }

u ∈ [231-1; 231] (unsigned)

u ∈ T (signed)
s ∈ T (unsigned)

43lundi 14 juillet 14

43

Interval abstraction:
signed or unsigned ?

int f(void) { signed s; unsigned u;

 if (*) u = 231 - 1; else u = 231;

 if (*) s = 0; else s = -1;

 return u + s; }

u ∈ [231-1; 231] (unsigned)

u ∈ T (signed)

s ∈ [-1; 0] (signed)
s ∈ T (unsigned)

43lundi 14 juillet 14

