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•  Inputs available at start 
•  Outputs ready at the end 
•  No blocking inside 
•  No synchronization or 

communication inside 
•  Execution time variations only 

due to differences in 
•  inputs 
•  task state at start time 
(no external disturbances) 
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Task Execution Time 
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1.  Sequence of actions 
(execution path) 

2.  Duration of each 
occurrence of an 
action on the path 

Actual path and timing of 
an execution depends on 
task inputs (incl. state) 
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WCET Analysis 

Many different execution times 
•  Non-trivial analysis of (in)feasible paths 
•  Complex modeling of task timing on hardware 
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Task Timing Goals 

Prioritized goals: 
1.  Temporal predictability / stability first 
2.  Performance second 
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➭  Strategy: Get the overall timing constant: 
•  Instruction padding 
•  Delay termination until end of WCET-bound 

time budget 
•  Single-path code transformation 



Instruction Padding 

Idea: add NOPs to make execution times of alternatives with 
input-dependent conditions equal 
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Instruction Padding 

Padding of input-
dependent loops 
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Instruction Padding Problem 

Duration of actions depends on the execution history 
à we cannot remove execution-time variations from 

branching code 
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Caching: loop with instructions A and B, 
executing two iterations 
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Instruction Padding 

Applicable to simple architectures: execution times 
of instructions are not state dependent 

•  WCET bound of transformed code ≈ original WCET bound 
•  Code-size increase 
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Constant Exec. Time Using a Delay 

Strategy: 
1.  Def: task time budget = computed WCET bound 
2.  Insert delay(until end of time budget) at end of task 

Problem: bad resource utilization due to 
•  Pessimism in path analysis (all architectures) 
•  Pessimism in hardware modelling (complex arch.) 
ð    Full flavour of WCET analysis problems ... 
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Time-Predictable Single-Path Code 
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Don‘t let the environment dictate 

•  Sequence of actions 
•  Durations of actions 



Take control decisions offline!!! 



 
Control sequencing of all actions instead of being controlled 

by the environment (data, interrupts) 
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Single-path code:  
•  no input-data dependent branches 
•  predicated execution (poss. with speculation) 
•  control-flow orientation à data flow focus 



Remove Data Dependent Control Flow 

•  Hardware with invariable timing 
•  Single-path conversion of code 
 

if cond 

res := expr1 res := expr2 

  P := cond 
(P)   res := expr1 
(not P) res := expr2 

➭  Predicated execution 



Branching vs. Predicated Code 
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  predlt  Pi, rA, rB 
 (Pi)  swp    rA, rB 

  cmplt  rA, rB 
  bf       skip 
  swp    rA, rB 

 skip: 

if rA < rB then swap(rA, rB); Code example: 

Predicated code Branching code 



How to Generate Single-Path Code 

Introduce the transformation in two steps: 

1.  Transformation model 
set of rules 
assumes full predication 

2.  Implementation details 
adaptation for platforms with partial predication 
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Single-Path Transformation Rules 

Only constructs with input-data dependent control flow are 
transformed, the rest of the code remains unchanged à 
two steps: 

1.  data-flow analysis: mark variables and conditional 
constructs that are input dependent 
à result available through predicate ID(...) 

2.  actual transformation of input-data dependent 
constructs into predicated code 
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Single-Path Transformation Rules 

Recursive transformation function based on syntax tree: 

  SP[[ p ]]σδ 

p … code construct to be transformed into single path  

σ … inherited precondition from previously transformed code 
constructs. The initial value of the inherited precondition is 
‘T’ (logical true). 

δ ... counter, used to generate variable names needed for the 
transformation. The initial value of δ is zero. 
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Single-Path Transformation Rules (1) 
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SP[[ S ]]σδ 

        S 

simple statement: S 

   

if σ = T : 

if σ = F : 

  (σ) S otherwise: 

// no action 

// unconditional 

// predicated 
   (guarded) 



Single-Path Transformation Rules (2) 
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sequence: S = S1; S2 

SP[[ S1; S2 ]]σδ 

guardδ := σ; 
SP[[ S1 ]]〈guardδ〉〈δ+1〉   ;   
SP[[ S2 ]]〈guardδ〉〈δ+1〉 



Single-Path Transformation Rules (3) 
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alternative: S = if cond then S1 else S2 endif 

SP[[ if cond then S1 else S2 endif ]]σδ 

guardδ := cond; 
SP[[ S1 ]]〈σ ∧   guardδ〉〈δ+1〉; 
SP[[ S2 ]]〈σ ∧ ¬guardδ〉〈δ+1〉 

if ID(cond): 

otherwise: if cond then SP[[ S1 ]]σδ  
    else SP[[ S2 ]]σδ 

endif 



Single-Path Transformation Rules (4) 

23 

loop: S = while cond max N times do S1 endwhile 

SP[[ while cond max N times do S1 endwhile ]]σδ 

endδ := F;                 // loop-body-disable flag 
for countδ := 1 to N do       // “hardwired loop” 
  SP[[ if ¬cond then endδ := T endif ]]σ〈δ+1〉  ; 
  SP[[ if ¬endδ then S1 endif ]]σ〈δ+1〉 
endfor 

if ID(cond): 



Single-Path Transformation Rules (5) 
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loop: S = while cond max N times do S1 endwhile 

while cond max N times do 
  SP[[ S1 ]]σδ 
endwhile 

if ¬ID(cond): 

SP[[ while cond max N times do S1 endwhile ]]σδ 



Single-Path Transformation Rules (6) 
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procedure call: S = proc(act-pars) 

SP[[ proc(act-pars) ]]σδ 

 proc(act-pars) 

 proc-sip(σ, act-pars) 

if σ = T : 

otherwise: 



Single-Path Transformation Rules (7) 
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proc p-sip(precond-par, form-pars) 
    SP[[ S ]]〈precond-par 〉〈0〉  
end 

procedure definitions: proc p(form-pars) S end 

SP[[ proc p(form-pars) S end ]]σδ 



HW-Support for Predicated Execution 

Predicate registers 

Instructions for manipulating predicates 
(define, set, clear, load, store) 

Predication support of processors 

•  Full predication  
execution of all instructions is controlled by a predicates 

•  Partial predication 
limited set of predicated instructions 
(e.g., conditional move, select, set, clear) 
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Implications of Partial Predication 

Speculative code execution 
•  unconditional execution of non-predicated instructions 
•  the results are stored in temporary variables; 
•  subsequently, predicates determine which values of temporary 

variables are further used 

 

 

 

Cave: speculative instructions must not raise exceptions! 
(e.g., div. by zero, referencing an invalid memory address) 
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   src1 := expr1 
   src2 := expr2 

(pred)   cmov dest, src1 
(not pred)  cmov dest, src2 



Fully vs. Partially Predicated Code 
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(Pred) div dest, src1, src2 

if src2 ≠	
  0 then dest := src1/ src2; Original code: 

  Pred := (src2 ≠ 0) 

Fully predicated code: 



Fully vs. Partially Predicated Code (2) 
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if src2 ≠	
  0 then dest := src1/ src2; Original code: 

Partially predicated code, first attempt: 

   div       tmp_dst, src1, src2 
 (Pred)  cmov  dest, tmp_dst 

   Pred := (src2 ≠ 0) 
may raise  
an exception 
on division 
by zero 



Fully vs. Partially Predicated Code (3) 
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if src2 ≠	
  0 then dest := src1/ src2; Original code: 

Partially predicated code: 

   Pred := (src2 ≠ 0) 

   mov    tmp_src, src2 
 (not Pred)  cmov   tmp_src, $safe_val 

   div       tmp_dst, src1, tmp_src 
 (Pred)  cmov  dest, tmp_dst 

if src2 equals 0, 
then replace it 
by a safe value 
(e.g., 1) to avoid 
division by zero 



“Minimal” Predicated-Exec. Support 

Conditional Move instruction: 
 
 
 
Semantics:  

         if CC  
         then destination := source 
         else no operation 
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movCC destination, source 



If-conversion with conditional move 
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t1 := expr1 ’  
t2 := expr2 ’  
test cond 
movT res, t1 
movF res, t2 

avoid 
side 
effects! 

if cond 

res := expr1 res := expr2 



Emulation of conditional move 
In architectures without predicate support, conditional moves 

can be emulated with bit-mask operations 
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if (cond) x=y; else x=z; Example: 

t0 = 0 – cond;  // fat bool: 0..false, -1..true 
t1 = ~t0;   // bitwise negation (fat bool) 
t2 = t0 & y; 
t3 = t1 & z; 
x = t2 | t3; 

assumption: the types of all 
values have the same size 



Example 
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 for(i=SIZE-1; i>0; i--) 
 { 
   for(j=1; j<=i; j++) 
   { 
      if (a[j-1] > a[j]) 
      { 
          t = a[j]; 
          a[j] = a[j-1]; 
          a[j-1] = t; 
      } 
   } 
 } 

 for(i=SIZE-1; i>0; i--) 
 { 
   for(j=1; j<=i; j++) 
   { 
      t1 = a[j-1]; 
      t2 = a[j]; 
 
      (t1>t2): t = a[j]; 
      (t1>t2): a[j] = a[j-1]; 
      (t1>t2): a[j-1] = t; 
   } 
 } 

Bubble sort: input array a[SIZE] 



Single-Path Properties 

Every execution has the same instruction trace, i.e., the 
same sequence of references to instruction memory 

Path analysis is trivial – there is only one path 

Two executions starting from the same instruction-cache 
state have identical hit/miss sequences on accesses to 
instruction memory 

36 



Single-Path and Timing 

Every execution uses the same sequence (and thus 
number) of instructions à good basis for obtaining 
invariable timing 

variable, data-dependent instruction execution times cause 
execution-time jitter 

starting from a different memory state may cause different 
access times to instruction and data memory, and thus 
variable execution times 
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Enforcing Invariable Timing 

➭  Always start from the same state of instruction cache, 
 pipeline, branch prediction logic, etc. 

➭  Enforce invariable access times for data objects 
➭  Invariable durations of all processor operations 
➭  All interference must be predictable (preemptions) 
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Don‘t let the environment dictate 
•  Sequence of actions 
•  Durations of actions 



Invariable Duration of Operations 

Processor operations have to be implemented such that they 
execute in constant time, i.e., independent of operand 
values (e.g., shift, mul, div) 

In particular, predicated instructions need to execute in 
constant time à if predicate is false: allow instruction to 
execute, but disallow changes of the processor state in the 
write-back stag 

ARM7 experiment: use of strCC-strNCC pairs to obtain 
constant time despite variable strCC timing 
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Performance of Single-Path Code 
Execution times of input-dependent alternatives sum up due 

to serialization  
ð Execution times of single-path code are long if the control 

flow of its source is strongly input dependent 
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Performance of Single-Path Code (2) 
CPUs with deep pipelines need a number of cycles to re-fill 

the pipeline after a (mis-predicted) branch 
ð predicated execution can be cheaper than jumping 
ð this is where modern compilers/processors use 

predicated execution to improve performance 
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Example: Speedup by if-conversion 
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  predlt  Pi, rA, rB 
 (Pi)  swp  rA, rB 

  cmplt  rA, rB 
  bf        skip 
  swp  rA, rB 

 skip: 

if rA < rB then swap(rA, rB); 

Predicated code Branching code 

5 cycles 6 cycles 4 cycles 

IF 
DE 
EX 

IF 
DE 
EX 

Execution in three-stage pipeline 



Avoiding Long Execution Times 

•  Input-invariant coding 
➭ avoid classical optimisation patterns that test inputs 

➭ do „the same“ for all inputs 

➭ programming style, libraries, etc. 

•  Mode-specific execution times 
➭ Make „hidden“ modes visible 

➭ Generate single-path code for each mode 
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Related Issues 

•  State disruption by dynamic scheduling 
➭ Static, table-driven scheduling 

➭ Scheduled preemption 

➭ Preemption points 

•  Benefit from path knowledge – we know the future! 
➭ Predictable memory hierarchy instead of cache 
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Summary 

Completeness: every piece of code with boundable 
WCET can be transformed 

Transformed code has a single path 

WCET analysis is trivial and exact 

We know the future 

Inputs do not influence timing – execution times do 
not give clues about what‘s going on 
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Execution Times 
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