
Enforcing
Constant Execution Times
for Software
Peter Puschner
TU Vienna

Vienna, IFIP WG 1.9/2.15 Mtg. July, 2014

!

Contents

•  Problem and possible solutions
•  Code generation
•  Properties

2

•  Inputs available at start
•  Outputs ready at the end
•  No blocking inside
•  No synchronization or

communication inside
•  Execution time variations only

due to differences in
•  inputs
•  task state at start time
(no external disturbances)

3

Task

Input

Output

State

State

Simple Task

Task Execution Time

4

1.  Sequence of actions
(execution path)

2.  Duration of each
occurrence of an
action on the path

Actual path and timing of
an execution depends on
task inputs (incl. state)

a1

a2
a3 a4

a5 a6

a7

a9

a8

WCET Analysis

Many different execution times
•  Non-trivial analysis of (in)feasible paths
•  Complex modeling of task timing on hardware

5

BCET WCET
t

fre
qu

en
cy

WCET Bound

Task Timing Goals

Prioritized goals:
1.  Temporal predictability / stability first
2.  Performance second

6

➭  Strategy: Get the overall timing constant:
•  Instruction padding
•  Delay termination until end of WCET-bound

time budget
•  Single-path code transformation

Instruction Padding

Idea: add NOPs to make execution times of alternatives with
input-dependent conditions equal

7

if cond if cond

alt1
NOPs
alt2 alt1 alt2

Instruction Padding

Padding of input-
dependent loops

8

MAX

cnt1+cnt2=MAX

cnt1

cnt2 NOPs

min

min

Instruction Padding Problem

Duration of actions depends on the execution history
à we cannot remove execution-time variations from

branching code

9

A B

Caching: loop with instructions A and B,
executing two iterations

A B
A A

A
A

... cache miss

... cache hit

t

t B A
t B B
t

Instruction Padding

Applicable to simple architectures: execution times
of instructions are not state dependent

•  WCET bound of transformed code ≈ original WCET bound
•  Code-size increase

10

Constant Exec. Time Using a Delay

Strategy:
1.  Def: task time budget = computed WCET bound
2.  Insert delay(until end of time budget) at end of task

Problem: bad resource utilization due to
•  Pessimism in path analysis (all architectures)
•  Pessimism in hardware modelling (complex arch.)
ð  Full flavour of WCET analysis problems ...

11

Time-Predictable Single-Path Code

12

Don‘t let the environment dictate

•  Sequence of actions
•  Durations of actions

Take control decisions offline!!!

Control sequencing of all actions instead of being controlled

by the environment (data, interrupts)

14

Single-path code:
•  no input-data dependent branches
•  predicated execution (poss. with speculation)
•  control-flow orientation à data flow focus

Remove Data Dependent Control Flow

•  Hardware with invariable timing
•  Single-path conversion of code

if cond

res := expr1 res := expr2

 P := cond
(P) res := expr1
(not P) res := expr2

➭  Predicated execution

Branching vs. Predicated Code

16

 predlt Pi, rA, rB
 (Pi) swp rA, rB

 cmplt rA, rB
 bf skip
 swp rA, rB

 skip:

if rA < rB then swap(rA, rB); Code example:

Predicated code Branching code

How to Generate Single-Path Code

Introduce the transformation in two steps:

1.  Transformation model
set of rules
assumes full predication

2.  Implementation details
adaptation for platforms with partial predication

17

Single-Path Transformation Rules

Only constructs with input-data dependent control flow are
transformed, the rest of the code remains unchanged à
two steps:

1.  data-flow analysis: mark variables and conditional
constructs that are input dependent
à result available through predicate ID(...)

2.  actual transformation of input-data dependent
constructs into predicated code

18

Single-Path Transformation Rules

Recursive transformation function based on syntax tree:

 SP[[p]]σδ

p … code construct to be transformed into single path

σ … inherited precondition from previously transformed code
constructs. The initial value of the inherited precondition is
‘T’ (logical true).

δ ... counter, used to generate variable names needed for the
transformation. The initial value of δ is zero.

19

Single-Path Transformation Rules (1)

20

SP[[S]]σδ

 S

simple statement: S

if σ = T :

if σ = F :

 (σ) S otherwise:

// no action

// unconditional

// predicated
 (guarded)

Single-Path Transformation Rules (2)

21

sequence: S = S1; S2

SP[[S1; S2]]σδ

guardδ := σ;
SP[[S1]]〈guardδ〉〈δ+1〉 ;
SP[[S2]]〈guardδ〉〈δ+1〉

Single-Path Transformation Rules (3)

22

alternative: S = if cond then S1 else S2 endif

SP[[if cond then S1 else S2 endif]]σδ

guardδ := cond;
SP[[S1]]〈σ ∧ guardδ〉〈δ+1〉;
SP[[S2]]〈σ ∧ ¬guardδ〉〈δ+1〉

if ID(cond):

otherwise: if cond then SP[[S1]]σδ
 else SP[[S2]]σδ

endif

Single-Path Transformation Rules (4)

23

loop: S = while cond max N times do S1 endwhile

SP[[while cond max N times do S1 endwhile]]σδ

endδ := F; // loop-body-disable flag
for countδ := 1 to N do // “hardwired loop”
 SP[[if ¬cond then endδ := T endif]]σ〈δ+1〉 ;
 SP[[if ¬endδ then S1 endif]]σ〈δ+1〉
endfor

if ID(cond):

Single-Path Transformation Rules (5)

24

loop: S = while cond max N times do S1 endwhile

while cond max N times do
 SP[[S1]]σδ
endwhile

if ¬ID(cond):

SP[[while cond max N times do S1 endwhile]]σδ

Single-Path Transformation Rules (6)

25

procedure call: S = proc(act-pars)

SP[[proc(act-pars)]]σδ

 proc(act-pars)

 proc-sip(σ, act-pars)

if σ = T :

otherwise:

Single-Path Transformation Rules (7)

26

proc p-sip(precond-par, form-pars)
 SP[[S]]〈precond-par 〉〈0〉
end

procedure definitions: proc p(form-pars) S end

SP[[proc p(form-pars) S end]]σδ

HW-Support for Predicated Execution

Predicate registers

Instructions for manipulating predicates
(define, set, clear, load, store)

Predication support of processors

•  Full predication
execution of all instructions is controlled by a predicates

•  Partial predication
limited set of predicated instructions
(e.g., conditional move, select, set, clear)

27

Implications of Partial Predication

Speculative code execution
•  unconditional execution of non-predicated instructions
•  the results are stored in temporary variables;
•  subsequently, predicates determine which values of temporary

variables are further used

Cave: speculative instructions must not raise exceptions!
(e.g., div. by zero, referencing an invalid memory address)

28

 src1 := expr1
 src2 := expr2

(pred) cmov dest, src1
(not pred) cmov dest, src2

Fully vs. Partially Predicated Code

29

(Pred) div dest, src1, src2

if src2 ≠	
 0 then dest := src1/ src2; Original code:

 Pred := (src2 ≠ 0)

Fully predicated code:

Fully vs. Partially Predicated Code (2)

30

if src2 ≠	
 0 then dest := src1/ src2; Original code:

Partially predicated code, first attempt:

 div tmp_dst, src1, src2
 (Pred) cmov dest, tmp_dst

 Pred := (src2 ≠ 0)
may raise
an exception
on division
by zero

Fully vs. Partially Predicated Code (3)

31

if src2 ≠	
 0 then dest := src1/ src2; Original code:

Partially predicated code:

 Pred := (src2 ≠ 0)

 mov tmp_src, src2
 (not Pred) cmov tmp_src, $safe_val

 div tmp_dst, src1, tmp_src
 (Pred) cmov dest, tmp_dst

if src2 equals 0,
then replace it
by a safe value
(e.g., 1) to avoid
division by zero

“Minimal” Predicated-Exec. Support

Conditional Move instruction:

Semantics:

 if CC
 then destination := source
 else no operation

32

movCC destination, source

If-conversion with conditional move

33

t1 := expr1 ’
t2 := expr2 ’
test cond
movT res, t1
movF res, t2

avoid
side
effects!

if cond

res := expr1 res := expr2

Emulation of conditional move
In architectures without predicate support, conditional moves

can be emulated with bit-mask operations

34

if (cond) x=y; else x=z; Example:

t0 = 0 – cond; // fat bool: 0..false, -1..true
t1 = ~t0; // bitwise negation (fat bool)
t2 = t0 & y;
t3 = t1 & z;
x = t2 | t3;

assumption: the types of all
values have the same size

Example

35

 for(i=SIZE-1; i>0; i--)
 {
 for(j=1; j<=i; j++)
 {
 if (a[j-1] > a[j])
 {
 t = a[j];
 a[j] = a[j-1];
 a[j-1] = t;
 }
 }
 }

 for(i=SIZE-1; i>0; i--)
 {
 for(j=1; j<=i; j++)
 {
 t1 = a[j-1];
 t2 = a[j];

 (t1>t2): t = a[j];
 (t1>t2): a[j] = a[j-1];
 (t1>t2): a[j-1] = t;
 }
 }

Bubble sort: input array a[SIZE]

Single-Path Properties

Every execution has the same instruction trace, i.e., the
same sequence of references to instruction memory

Path analysis is trivial – there is only one path

Two executions starting from the same instruction-cache
state have identical hit/miss sequences on accesses to
instruction memory

36

Single-Path and Timing

Every execution uses the same sequence (and thus
number) of instructions à good basis for obtaining
invariable timing

variable, data-dependent instruction execution times cause
execution-time jitter

starting from a different memory state may cause different
access times to instruction and data memory, and thus
variable execution times

37

Enforcing Invariable Timing

➭  Always start from the same state of instruction cache,
 pipeline, branch prediction logic, etc.

➭  Enforce invariable access times for data objects
➭  Invariable durations of all processor operations
➭  All interference must be predictable (preemptions)

38

Don‘t let the environment dictate
•  Sequence of actions
•  Durations of actions

Invariable Duration of Operations

Processor operations have to be implemented such that they
execute in constant time, i.e., independent of operand
values (e.g., shift, mul, div)

In particular, predicated instructions need to execute in
constant time à if predicate is false: allow instruction to
execute, but disallow changes of the processor state in the
write-back stag

ARM7 experiment: use of strCC-strNCC pairs to obtain
constant time despite variable strCC timing

39

Performance of Single-Path Code
Execution times of input-dependent alternatives sum up due

to serialization
ð Execution times of single-path code are long if the control

flow of its source is strongly input dependent

40

B
C

A

D E

A
B
C
D
E

Performance of Single-Path Code (2)
CPUs with deep pipelines need a number of cycles to re-fill

the pipeline after a (mis-predicted) branch
ð predicated execution can be cheaper than jumping
ð this is where modern compilers/processors use

predicated execution to improve performance

41

Example: Speedup by if-conversion

42

 predlt Pi, rA, rB
 (Pi) swp rA, rB

 cmplt rA, rB
 bf skip
 swp rA, rB

 skip:

if rA < rB then swap(rA, rB);

Predicated code Branching code

5 cycles 6 cycles 4 cycles

IF
DE
EX

IF
DE
EX

Execution in three-stage pipeline

Avoiding Long Execution Times

•  Input-invariant coding
➭ avoid classical optimisation patterns that test inputs

➭ do „the same“ for all inputs

➭ programming style, libraries, etc.

•  Mode-specific execution times
➭ Make „hidden“ modes visible

➭ Generate single-path code for each mode

43

Related Issues

•  State disruption by dynamic scheduling
➭ Static, table-driven scheduling

➭ Scheduled preemption

➭ Preemption points

•  Benefit from path knowledge – we know the future!
➭ Predictable memory hierarchy instead of cache

44

Summary

Completeness: every piece of code with boundable
WCET can be transformed

Transformed code has a single path

WCET analysis is trivial and exact

We know the future

Inputs do not influence timing – execution times do
not give clues about what‘s going on

45

Execution Times

46

t

t

